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We give theorems about asymptotic normality of general additive function-

als on patricia tries, derived from results on tries. These theorems are applied

to show asymptotic normality of the distribution of random fringe trees in pa-

tricia tries. Formulas for asymptotic mean and variance are given. The propor-

tion of fringe trees with 𝑘 keys is asymptotically, ignoring oscillations, given by

(1 − 𝜌(𝑘))/(𝐻 + 𝐽)𝑘(𝑘 − 1) with the source entropy 𝐻, an entropy-like con-

stant 𝐽, that is 𝐻 in the binary case, and an exponentially decreasing function

𝜌(𝑘). Another application gives asymptotic normality of the independence num-

ber and the number of 𝑘-protected nodes.

1 Introduction
A trie is an abstract data structure for strings that directly uses the stored string as a path in

a tree. It has various uses for sorting, searching and compressing. Because it directly uses the

stored strings rather than ahash, it particularly excels atmemoryusage andprefix lookup. We

will throughout the paper assume that the trie is built from infinite strings whose letters are

i.i.d. The letters will be distributed by a fixed distribution on a finite alphabet 𝒜. The most

important case will be𝒜 = {0, 1}. In this model of i.i.d. letters, the size and other important

parameters of the trie are inversely proportional to the entropy of the letter distribution and

have no deterministic bound.

The patricia trie (Practical Algorithm to Retrieve Information Coded in Alphanumeric), in-

troduced 1968 byMorrison [Mor68] improves on the trie by eliminating nodes with only one

child. It has deterministic size in the main |𝒜| = 2 case. Knuth [Knu73] gives a good ex-

planation and some examples of usage. This structure is also called radix tree or compressed

trie; more on terminology in Remark 2.1.
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The number of stringswill be either fixed or a Poisson variable. For certain letter probabili-

ties,most notably the uniform case, (numerically small) oscillations occur in the asymptotics

of both mean and variance for functionals of tries and patricia tries. Nonetheless, one has

asymptotic normality for suitable normalizations. Janson [Jan22] gave central limit theorems

for additive functionals on tries with rather weak conditions and a law of large numbers. His

general results cover various parameters which had been studied one by one by various au-

thors before, for example [JS15], [Szp90]. We show that these theorems can be extended to

patricia tries by relating additive functionals on patricia tries to those on tries (Prop. 2.2). We

get central limit theorems for the Poisson model and the fixed 𝑛 model (Theorem 3.3) and as

corollary a strong law of large numbers (Theorem 3.9).

We then go on and give applications of this theorem. This gives us e.g. the asymptotic

distribution of random fringe trees of patricia tries (Theorem4.5). Because the size of patricia

tries is deterministic in the binary case, many statements are simpler in that case. We will

usually begin with the general case and then show how the statements simplify in the binary

case. Furthermore, we calculate the asymptotic mean and sometimes also the asymptotic

variance of some other additive functionals, for example the amount of 𝑘-protected nodes in
patricia tries.

2 Preliminaries
We use notation similar to Janson[Jan22], with some minor differences, such as writing 𝑝𝛼
instead of 𝑃(𝛼) for the probability of a string 𝛼.
In general, we use 𝐶 to denote generic constants, which can change between different oc-

currences. log is the natural logarithm, even in the definition of the entropy.

2.1 Strings
Fix a finite alphabet 𝒜 and define 𝒜∗ = ⋃∞

𝑛=0 𝒜𝑛 as the set of finite strings on it. The

items in the string are called characters or chars for short. Denote the empty string by 𝜀. Let
|𝛼| be the length of string, defined as the amount of chars. We denote concatenation of two

strings𝛼, 𝛽 ∈ 𝒜∗ by𝛼𝛽 and extend this notation to sets of strings, such as in𝛼𝐵 ∶= {𝛼𝛽 ∣
𝛽 ∈ 𝐵} for 𝐵 ⊆ 𝒜∗, and to letters 𝑎 ∈ 𝒜. Denote by 𝒜N the infinite strings (sequences)

on 𝒜.

We also fix a probability distribution 𝑝, called source, on the alphabet and sample infinite

strings Ξ = (Ξ(1), Ξ(2), …), where Ξ(1), Ξ(2), … ∈ 𝒜 are independently distributed

with 𝑝. For 𝑎 ∈ 𝒜 write 𝑝𝑎 ∶= 𝑝({𝑎}) for the point mass and for a finite string 𝛼 =
(𝑎1, … , 𝑎𝑛) ∈ 𝒜∗ let 𝑝𝛼 ∶= ∏𝑛

𝑖=1 𝑝𝑎𝑖
.

To avoid trivialities, we assume that 𝑝𝑎 > 0 for every 𝑎 ∈ 𝒜 and |𝒜| ≥ 2. Hence, for two
independent infinite strings Ξ1, Ξ2 we have Ξ1 ≠ Ξ2 almost surely. Let 𝑆 ∶= {− log𝑝𝑎 ∣
𝑎 ∈ 𝒜}. If there is a real number 𝑑 > 0 such that 𝑆 ⊂ 𝑑Z, we call the source 𝑝 periodic. In

this case define𝑑𝑝 as the biggest of such𝑑; this𝑑 is called the greatest commondivisor of𝑆. If
the source is not periodic, we define 𝑑𝑝 ∶= 0. The periodic case is where periodic oscillations
typically occur. The uniform distribution on 𝒜 on periodic; this is the symmetric case.
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For complex 𝑠 ∈ C let

𝜌(𝑠) ∶= ∑
𝑎∈𝒜

𝑝𝑠
𝑎. (2.1)

For natural 𝑠 ∈ N, we may interpret this as the probability of 𝑠 strings to start with the same

char. Note that for longer substrings of length 𝑚 ∈ N we have

∑
𝛼∈𝒜∗

|𝛼|=𝑚

𝑝𝑠
𝛼 = ∑

𝑎1…𝑎𝑚∈𝒜𝑚

𝑚
∏
𝑖=1

𝑝𝑠
𝑎𝑖

= 𝜌(𝑠)𝑚. (2.2)

An important quantity of the source is the entropy 𝐻, given by

𝐻 = − ∑
𝑎∈𝒜

𝑝𝑎 log𝑝𝑎 = −𝜌′(1), (2.3)

which is central in the analysis of tries and patricia tries. There is a similar quantity, which

we call 𝐽, defined by
𝐽 = − ∑

𝑎∈𝒜
(1 − 𝑝𝑎) log(1 − 𝑝𝑎), (2.4)

which will show up in the size of patricia tries. In the most common case of |𝒜| = 2, this
will be equal to the entropy 𝐻. Note that, however, 𝐽 is bounded by

𝐽 ≤ (|𝐴| − 1) log(1 − 1
|𝐴| − 1) < 1. (2.5)

2.2 Trees
We consider finite, rooted trees where the edges have labels in 𝒜 and every node has no two

outgoing edges with the same label. These are subtrees of the infinite |𝒜|-ary tree𝑇∞ where

the |𝒜| outgoing edges of each node are each labelled with a unique letter 𝑎 ∈ 𝒜. We call

these trees (𝒜-)labelled trees and define the set of such trees as 𝔗+ and 𝔗 ∶= 𝔗+ ∪ {∅}.
The labels on the path from the root to a node 𝑣 ∈ 𝑇∞ form a unique finite string, and we

can associate the nodes in 𝑇∞ with the finite strings 𝒜∗. A node 𝛼 is ancestor of a node 𝛽 if

and only if 𝛼 is a prefix of 𝛽. The root is the empty string 𝜀.
We identify a subtreewith the set of its nodes, so for a subtree𝑇wedefine |𝑇| as the amount

of nodes, made up of the amount of external nodes (leaves) |𝑇|𝑒 and the amount of internal

nodes |𝑇|𝑖. Let 𝔗𝑛 ∶= {𝑇 ∈ 𝔗𝑛 ∣ |𝑇|𝑒 = 𝑛} be the set of subtrees with 𝑛 leaves. Tries and

patricia tries store their data only in leaves, so this is themost natural notion of size for them.

Let • be the tree consisting of only the root, the only tree in 𝔗1.
Given a subtree 𝑇 and a string 𝑣 ∈ 𝑇, let 𝑇𝑣 be the subtree of 𝑇 consisting of 𝑣 and its

descendants. Those subtrees are called fringe trees of 𝑇. For 𝑣 ∈ 𝒜∗\𝑇, we define 𝑇𝑣 = ∅.
When seen as subsets of 𝒜∗, the descendants of 𝑣 are 𝑣𝒜∗, the strings beginning with 𝑣.
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For a node 𝑣𝛼 ∈ 𝑇𝑣 the path to the new root 𝑣 is only 𝛼, so the new tree is given as

𝑇𝑣 = {𝛼 ∈ 𝒜∗ ∣ 𝑣𝛼 ∈ 𝑇}. (2.6)

Let𝑇∗ be a (uniformly) random fringe subtree of a tree𝑇, defined as𝑇𝑣 for a uniformrandom

node 𝑣 ∈ 𝑇. Note that 𝑣 can also be a leaf. One might also consider a random fringe tree by

taking only internal nodes. This is equivalent to conditioning 𝑇∗ on {𝑇∗ ≠ •}. The results
can then be easily transferred to this version.

Given a function 𝜑 ∶ 𝔗 → R𝑛, 𝑛 ≥ 1 with 𝜑(∅) = 0, we define the corresponding
additive functional Φ ∶ 𝔗 → R𝑛 as

Φ(𝑇) = ∑
𝛼∈𝒜∗

𝜑(𝑇𝛼) = ∑
𝑣∈𝑇

𝜑(𝑇𝑣). (2.7)

This can be written recursively as

Φ(𝑇) = 𝜑(𝑇) + ∑
𝑎∈𝒜

Φ(𝑇𝑎); Φ(∅) = 0, (2.8)

which also shows that every functional is an additive functional. The term “additive func-

tional” for Φ is thus mainly defined by its relation to 𝜑, which is called toll function of Φ.

2.3 Tries
A trie 𝑇(𝔛) from strings 𝔛 = {Ξ1, … , Ξ𝑛} ⊂ 𝒜N is the minimal subtree of 𝑇∞ such that

every string Ξ𝑖 is contained in a unique leaf whose path is a prefix of Ξ𝑖. The path of the leaf
containing the string Ξ𝑖 is thus the shortest prefix of Ξ𝑖 that is not a prefix for all Ξ𝑗 with
𝑗 ≠ 𝑖.
A more algorithmic, recursive definition is given as follows: For 𝑛 = 0 the trie is empty.

For 𝑛 = 1 it only consists of the root, containing the only string. For 𝑛 ≥ 2 the strings are

sorted by their first character 𝑎 ∈ 𝒜. The root is in the trie, and the 𝑎-subtree of the root is
the trie from the strings {Ξ ∈ 𝒜∗ ∣ (𝑎, Ξ) ∈ 𝔛} beginning with 𝑎.
From the construction we have that 𝑇(𝔛)𝑣 for 𝑣 ∈ 𝒜∗ contains the strings 𝑣𝒜N ∩ 𝔛

starting with 𝑣 and is itself a trie of the strings {𝛼 ∈ 𝒜N ∣ 𝑣𝛼 ∈ 𝔛}, except in the case

where there is exactly one string Ξ starting with 𝑣, in which 𝑣 could be not in 𝑇(𝔛). This is
the case if there is a shorter prefix of Ξ than 𝑣 that is unique to Ξ. Then Ξ is farther up the

tree. This exception is the reason we will have to special-case • in our theorems.

We now construct two models of random tries. Define 𝒯𝑛 ∶= 𝑇(Ξ1, … , Ξ𝑛) for 𝑛 ∈ N
as the trie for 𝑛 i.i.d. random strings as in Section 2.1. Call this the fixed 𝑛 model. Define

𝒯𝜆 ∶= 𝑇(Ξ1, … , Ξ𝑁𝜆
) for 𝜆 ∈ (0, ∞) as the trie for 𝑁𝜆 i.i.d. random strings, where 𝑁𝜆

is Poi(𝜆)-distributed and independent of the strings. This is the Poisson model.

We noted before that, for an 𝛼 ∈ 𝒜∗, the strings in 𝒯 𝛼
𝜆 are the strings starting with 𝛼. In

the Poisson model, let 𝑁𝛼
𝜆 be the amount of these strings; 𝑁𝛼

𝜆 is then Poi(𝜆𝑝𝛼)-distributed.

Because of the recursive definition of tries,𝒯 𝛼
𝜆 is a trie of𝑁𝛼

𝜆 independent strings and there-
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0
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0
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1
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1

1

Figure 1: A trie made from the strings 1100, 1101, 1010, 1000, 1001, 1011

fore a copy of 𝒯𝑝𝛼𝜆. Additionally, 𝒯 𝑎
𝜆 and 𝒯 𝑏

𝜆 are independent for 𝑎 ≠ 𝑏 ∈ 𝒜. There is

again an exception for the case 𝑁𝛼
𝜆 = 1, where 𝒯 𝛼

𝜆 could be either • or ∅.

2.4 Patricia trie
A patricia trie can be constructed from a trie by iteratively merging every node with only one

child with its child. If this child also has just one child, it will also get merged with it, and so

on. In this way, multiple nodes forming a chain get merged into a single node. The labels of

the edges that connected the merged nodes are kept as a string 𝛼 ∈ 𝒜∗ as an extra date in

the child, we call them contracted edges. See Figure 2 for an example. So our patricia tries

consist not only of a labelled tree𝑇, but also of a map of contracted edges𝑇𝑖 → 𝒜∗ from the

internal nodes 𝑇𝑖 of 𝑇 to 𝒜∗.
We call this process pat, so pat(𝑇) is the patricia trie to a trie 𝑇. From 𝒯𝑛 and 𝒯𝜆 we

define 𝒫𝑛 ∶= pat(𝒯𝑛) and 𝒫𝜆 ∶= pat(𝒯𝜆) as randommodels of Patricia tries.

The patricia trie can also be defined recursively and directly, similar to the trie. The patricia

trie to a set 𝔛 of strings is given by ∅ if |𝔛| = 0 and by • if |𝔛| = 1. If |𝔛| ≥ 2, let 𝑣 be

the common prefix of all strings in 𝔛. The patricia trie 𝑇 is then given as follows: It has

𝑣 as contracted edges in the root, and 𝑇𝑎 for 𝑎 ∈ 𝒜 is the patricia trie from the strings

{𝛼 ∈ 𝒜N ∣ 𝑣𝑎𝛼 ∈ 𝔛} starting with 𝑣𝑎.
We will for the most part ignore the contracted edges and consider a patricia trie equal to

the tree, but we allow additive functionals to depend on them, with one important exception:

We impose a restriction that the toll functionmust not depend on the contracted edges in the

root. We therefore define an additive functional on patricia tries as an additive functional on

trees whose toll function can additionally depend on the contracted edges besides those in

the root.

Remark 2.1. This tree is more correctly referred to as a radix tree or compressed trie. For

performance the original patricia tries merge internal with external nodes, storing the keys
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Figure 2: The patricia trie made from the same strings 1100, 1101, 1010, 1000, 1001, 1011 as in

Figure 1. The labels in the nodes are the contracted edges.

in internal nodes, which makes the actual data structure more like an acyclic graph. But

the edges pointing to external nodes are still distinguished from normal edges (they point

“upwards”), and the algorithm always terminates after reaching such an edge, so in effect the

tree is the same[Knu73]. The difference is thus only in implementation, and when mainly

considering the tree, radix tree and patricia trie are used synonymously.

Another difference is that in patricia tries only the amount of contracted edges is kept per

node in a so-called SKIP attribute because the actual contracted edges are irrelevant for the

search algorithm.

We can link additive functionals on patricia tries with ones on tries:

Proposition 2.2. An additive functional Φ on patricia tries defines an additive functional

Φ̃ ∶= Φ ∘ 𝑝 on tries by push-forward with pat. The toll function 𝜑(𝑇) of Φ̃ is given by

𝜑(𝑇) =
⎧{
⎨{⎩

0 𝑇 has exactly 1 child

𝜑(pat(𝑇)) else.
(2.9)

Proof. Each node �̃� of the patricia trie pat(𝑇) was created by compressing nodes in the trie.

Associate �̃� with the youngest node 𝑣 of the compressed nodes (the one that is a descendant

of all the others). In this way, we have a bijection between the nodes of the patricia trie and

the nodes in the trie which have not exactly one child.

The fringe tree of �̃� consists of the compressed nodes of the fringe tree of 𝑣, so pat(𝑇)�̃� =
pat(𝑇𝑣), except that pat(𝑇𝑣) has no contracted edges in the root. Because the toll func-

tion 𝜑 is not allowed to depend on the contracted edges in the root, we nevertheless have

𝜑(pat(𝑇)�̃�) = 𝜑(𝑇𝑣) and summing over all nodes yields the equation.

Ifwe lift the restriction on toll functions,𝜑becomes adifference𝜑(pat(𝑇))−𝜑(pat(𝑇𝑎))
if there is only one child 𝑎 ∈ 𝒜. Since we usually do not depend on the contracted edges this

added complexity does not seem useful.
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We can now extend results on additive functionals on tries to additive functionals on pa-

tricia tries by translating properties of Φ̃ into properties of Φ. If we define an additive func-

tional Φ on patricia tries, 𝜑 is understood to be the corresponding toll function and vice

versa. In similar fashion Φ̃, 𝜑 are then the pullbacks on tries. We might use subscripts to

distinguish different additive functionals and their toll functions. From the definition we

have Φ(𝒫𝜆) = Φ̃(𝒯𝜆) and Φ(𝒫𝑛) = Φ̃(𝒯𝑛). We mainly use Φ(𝒫𝑛) etc. in the results,

but might use Φ̃(𝒯𝜆) etc. in calculations, especially when together with 𝜑(𝒯𝜆) etc.

Example 2.3. A simple toll function is given by

𝜑•(𝑇) ∶= 1{𝑇 = •} = 1{|𝑇|𝑒 = 1}. (2.10)

Because the only trie that is compressed to • is • itself,𝜑• = 𝜑•. The subtrees equal to • are
the leaves, so Φ•(𝑇) = Φ̃•(𝑇) counts the leaves of 𝑇.

Example 2.4. Wedefine𝜑𝑝 ∶= 𝜑𝑝 ∶= 𝜑1 as the induced additive functional for the constant
toll function 𝜑1(𝑇) ∶= 1. Then, 𝜑𝑝(𝑇) = 1 if and only if the root of 𝑇 has not exactly one

child and is therefore included in the patricia trie, and 𝜑𝑝(𝑇) = 0 else. With this, we can

alternatively express the relationbetweena toll function𝜑 onpatricia tries to the toll function

𝜑 on tries as 𝜑 = (𝜑 ∘ 𝑝)𝜑𝑝.

An additive functional Φ of patricia tries is called increasing if for two finite sets 𝔛1 ⊂
𝔛2 ⊂ 𝒜∗ of strings Φ̃(𝑇(𝔛1)) ≤ Φ̃(𝑇(𝔛2)) holds. This notion is central for the depois-
sonisation used by Janson [Jan22, (6.64) ff.].

2.5 Bucket trie
Bucket tries are a generalization of tries, where a leaf can pack up to a fixed number 𝑏 ≥ 1
of strings. In the recursive definition, this means that up to 𝑏 strings, the bucket trie consists

of only one node until it splits up like a normal trie. A leaf of the bucket trie is called bucket

and can contain 1 to 𝑏 strings. A normal trie is a bucket trie with bucket size 1.

Given a bucket size 𝑏 ≥ 1, we can construct the trie 𝑇 from a set of strings by first con-

structing the bucket trie 𝑇′ with bucket size 𝑏, and then replacing each bucket with a small

trie out of the contents of the bucket. In our model of strings with i.i.d. chars, conditioned on

the bucket trie, the small tries are independent of each other and the trie from a bucket of 𝑘
strings is a copy of 𝒯𝑘.
We can also construct a bucket patricia trie by compressing nodes in a bucket trie. Thenwe

can construct the patricia trie out of the bucket patricia trie by again growing patricia tries

out of the buckets.

By compressing all leaves with parents with less or equal 𝑏 strings, we can get the bucket

trie / patricia trie out of the trie / patricia trie. Call this operation buc𝑏.
We will use the bucket trie as a tool in proofs because it is clearer to “condition on the

bucket trie” than “condition on nodes with more than 𝑏 strings and the amount of strings in

their children.”

7



2.6 Mellin transform
For a measurable function 𝑓 on (0, ∞) theMellin transform is defined by

𝑓 ∗(𝑠) ∶= ∫∞
0 𝑓 (𝑥)𝑥𝑠−1d𝑥 (2.11)

for all 𝑠 ∈ C where the integral absolutely converges. Since the absolute value of 𝑥𝑠−1 de-

pends only on the real part of 𝑠, this is always a vertical strip in the complex plane.

TheMellin transform is obviously linear. An important example is givenby 𝑓 (𝑥) = 𝑥𝑘𝑒−𝜆𝑥

for 𝑘 ∈ R, 𝜆 > 0, where
𝑓 ∗(𝑠) = Γ(𝑘 + 𝑠)

𝜆𝑠+𝑘 (2.12)

for Re 𝑠 > −𝑘. Another example is 𝑓 (𝑥) = 𝑒−𝜆𝑥 − 1 for 𝜆 > 0, where for −1 < Re 𝑠 < 0

𝑓 ∗(𝑠) = Γ(𝑠)
𝜆𝑠 . (2.13)

Those two examples will come up a lot in calculations.

2.7 Convergence
Weuse standard o andOnotation in both a global and asymptotic sense: 𝑓 (𝑥) = 𝑂(𝑔(𝑥)) for
𝑥 ∈ 𝑆 means that |𝑓 (𝑥)| ≤ |𝐶𝑔(𝑥)| for all 𝑥 ∈ 𝑆, while 𝑓 (𝑥) = 𝑂(𝑔(𝑥)) for 𝑥 → ∞ means

that |𝑓 (𝑥)| ≤ |𝐶𝑔(𝑥)| for large 𝑥. Also, we use Ω and Θ: 𝑓 (𝑥) = Ω(𝑔(𝑥)) means 𝑔(𝑥) =
𝑂(𝑓 (𝑥)); and 𝑓 (𝑥) = Θ(𝑔(𝑥)) means that both 𝑓 (𝑥) = 𝑂(𝑔(𝑥)); 𝑔(𝑥) = 𝑂(𝑓 (𝑥)).
We use

P
→ denote convergence in probability and

𝑑
→ for convergence in distribution.

Let (𝑋𝑛) and (𝑌𝑛) be two sequences of random variables in a metric space 𝒮. We write

𝑋𝑛
𝑑
≈ 𝑌𝑛 if, for every bounded continuous function 𝑓 ∶ 𝑆 → R,

E𝑓 (𝑋𝑛) = E𝑓 (𝑌𝑛) + 𝑜(1) as 𝑛 → ∞. (2.14)

If 𝑆 ⊆ R and additionally

E𝑋𝑠
𝑛 = E𝑌𝑠

𝑛 + 𝑜(1) (2.15)

with both sides finite for 𝑠 ∈ N holds, we say that 𝑋𝑛
𝑑
≈ 𝑌𝑛 with moments of order 𝑠.

Similarly, for 𝑠 > 0 we say that 𝑋𝑛
𝑑
≈ 𝑌𝑛 with absolute moments of order 𝑠 if (2.14) holds

and also

E|𝑋𝑛|𝑠 = E|𝑌𝑛|𝑠 + 𝑜(1) (2.16)

with both sides finite. We will write with [absolute] moments for approximation in distri-

bution with normal moments and absolute moments. If |𝑌𝑛|𝑠 is uniformly integrable, then

approximation with normal moments follows from approximation with absolute moments

[Jan22, Lemma B.1].
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3 Central limit theorems for tries
We restate some of Janson’s results regarding additive functionals Φ̃ on random tries 𝒯𝑛 or

𝒯𝜆, replacing Φ̃(𝒯𝑛) with Φ(𝒫𝑛) to change them into statements regarding patricia tries.

Theorem 3.1. Let Φ be an additive functional on patricia tries with associated toll function

𝜑 and functions Φ̃, 𝜑 on tries as before. Suppose that, for some 𝜀 > 0, as 𝜆 → ∞ both

E[𝜑(𝒯𝜆)] = 𝑂(𝜆1−𝜀) and Var(𝜑(𝒯𝜆)) = 𝑂(𝜆1−𝜀) hold. Let

𝜒 ∶= 𝜑(•) (3.1)

𝑓𝐸(𝜆) ∶= E𝜑(𝒯𝜆) − 𝜒𝜆𝑒−𝜆 (3.2)

𝑓𝑉(𝜆) ∶= 2 Cov(𝜑(𝒯𝜆), Φ̃(𝒯𝜆)) − Var𝜑(𝒯𝜆)
+ 2𝜒𝜆𝑒−𝜆(EΦ̃(𝒯𝜆) − E𝜑(𝒯𝜆)) − 𝜒2𝜆𝑒−𝜆(1 − 𝜆𝑒−𝜆) (3.3)

𝑓𝐶(𝜆) ∶= Cov(𝜑(𝒯𝜆), 𝑁𝜆) + 𝜒𝜆(𝜆 − 1)𝑒−𝜆. (3.4)

Then the following hold. For 𝜆 → ∞

EΦ(𝒫𝜆)
𝜆 = 𝜒 + 1

𝐻𝜓𝐸(log𝜆) + 𝑜(1), (3.5)

VarΦ(𝒫𝜆)
𝜆 = 𝜒2 + 1

𝐻𝜓𝑉(log𝜆) + 𝑜(1), (3.6)

Cov(Φ(𝒫𝜆), 𝑁𝜆)
𝜆 = 𝜒 + 1

𝐻𝜓𝐶(log𝜆) + 𝑜(1), (3.7)

where 𝜓𝑋 for 𝑋 = 𝐸, 𝑉, 𝐶 are bounded continuous functions defined as follows:

• If 𝑑𝑝 = 0, then 𝜓𝑋 is constant and given for all 𝑡 by

𝜓𝑋(𝑡) ∶= 𝑓 ∗
𝑋(−1). (3.8)

• If 𝑑 ∶= 𝑑𝑝 > 0, then 𝜓𝑋 is a continuous 𝑑-periodic function having the Fourier series

𝜓𝑋(𝑡) ∼
∞

∑
𝑚=−∞

𝑓 ∗
𝑋(−1 − 2𝜋𝑚

𝑑 𝑖)𝑒2𝜋𝑖𝑚𝑡/𝑑. (3.9)

Moreover, if 𝑋 = 𝐸 or if 𝑓 ′
𝑋(𝜆) = 𝑂(𝜆−𝜀1) as 𝜆 → ∞ for some 𝜀1 > 0, then the

Fourier series (3.8) converges absolutely, and thus ∼ may be replaced by = in (3.8).

Remark 3.2. Even if 𝑑𝑝 > 0, we may regard the constant term 𝑓 ∗
𝑋(−1) as “average asymp-

totic value” because the oscillations are typically numerically small. In most of our examples,

the 𝑓 ∗
𝑋 functions will consist of sums with the Gamma function Γ, for which is well known

that |Γ(𝑥 + 𝑖𝑦)| converges to 0 swiftly for |𝑦| → ∞.
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If 𝜒 = 𝜑(•) is 0, the formulas for the 𝑓𝑋 simplify. If we now split up Φ̃ to a sum of 𝜑 in

the definition of 𝑓𝑉, we get

𝑓𝑉(𝜆) = 2 ∑
𝛼∈𝒜∗

Cov(𝜑(𝒯𝜆), 𝜑(𝒯 𝛼
𝜆 )) − Cov(𝜑(𝒯𝜆), 𝜑(𝒯𝜆)), (3.10)

which leads us to define the notation

∑
𝛼

∗ ∶= 2 ∑
𝛼∈𝒜∗

− ∑
𝛼=𝜀

= ∑
𝛼∈𝒜∗

+ ∑
𝛼∈𝒜∗

𝛼≠𝜀

. (3.11)

This lets us write (3.10) as

𝑓𝑉(𝜆) = ∑
𝛼

∗
Cov(𝜑(𝒯𝜆), 𝜑(𝒯 𝛼

𝜆 )). (3.12)

Through depoissonisation Janson derives the following theorem for the fixed 𝑛 case, which

is also our main result for patricia tries.

Theorem 3.3. [Jan22, Theorem 3.9] (Central limit theorem in the fixed 𝑛 case.) Let 𝜑+, 𝜑−
be a bounded toll functions on patricia tries so that their additive functionals Φ+, Φ− are

increasing. Let Φ ∶= Φ+ − Φ− and 𝜑, Φ̃ be the corresponding toll function and additive

functional on tries as in 2.2. Then, with notation from Theorem 3.1, especially 𝑓𝑋 (3.2)-(3.3)

and 𝜓𝑋 (3.9):

i) If 𝑑𝑝 = 0, then as 𝜆 → ∞ respective 𝑛 → ∞,

Φ(𝒫𝜆) − E[Φ(𝒫𝜆)]
√𝜆

𝑑
→ 𝒩(0, 𝜎2) (3.13)

Φ(𝒫𝑛) − E[Φ(𝒫𝑛)]
√𝑛

𝑑
→ 𝒩(0, �̂�2) (3.14)

with all moments, where

𝜎2 = 𝜒2 + 𝐻−1𝑓 ∗
𝑉(−1) (3.15)

�̂�2 = 𝐻−1𝑓 ∗
𝑉(−1) − 𝐻−2𝑓 ∗

𝐶(−1)2 − 2𝜒𝐻−1𝑓 ∗
𝐶(−1) (3.16)

ii) For any 𝑑𝑝, as 𝜆 → ∞ and 𝑛 → ∞,

Φ(𝒫𝜆) − E[Φ(𝒫𝜆)]
√𝜆

𝑑
≈ 𝒩(0, 𝜎2(𝜆)) (3.17)

Φ(𝒫𝑛) − E[Φ(𝒫𝑛)]
√𝑛

𝑑
≈ 𝒩(0, �̂�2(𝑛)) (3.18)
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with all moments, where

𝜎2(𝜆) = 𝜒2 + 𝐻−1𝜓𝑉(log𝜆) (3.19)

�̂�2(𝑛) = 𝐻−1𝜓𝑉(log𝑛) − 𝐻−2𝜓𝐶(log𝑛)2 − 2𝜒𝐻−1𝜓𝐶(log𝑛) (3.20)

iii) The expected values satisfy

E[Φ̃(𝒯𝑛)] − E[Φ̃(𝒯𝑛)] ∈ 𝑜(√𝑛), (3.21)

and we may thus replace E[Φ̃(𝒯𝑛)] with E[Φ̃(𝒯𝑛)] in (3.14) and (3.18).

iv) If Var Φ̃(𝒯𝑛) ∈ Ω(𝑛), then

Φ̃(𝒯𝜆) − E[Φ̃(𝒯𝜆)]
√VarΦ(𝒯𝜆)

𝑑
→ 𝒩(0, 𝜎2) (3.22)

Φ̃(𝒯𝑛) − E[Φ̃(𝒯𝑛)]
√Var Φ̃(𝒯𝑛)

𝑑
→ 𝒩(0, �̂�2) (3.23)

with all moments for all 𝑑𝑝.

v) The expected values E[Φ(𝒯𝑛)],E[Φ(𝒯𝜆)] satisfy

E[Φ(𝒯𝜆)]
𝜆 =

𝜓𝐸(log𝜆)
𝐻 + 𝑜(1) (3.24)

E[Φ(𝒯𝑛)]
𝑛 =

𝜓𝐸(log𝑛)
𝐻 + 𝑜(1). (3.25)

To show the condition Var Φ̃(𝒯𝑛) = Ω(𝑛) in iv), Janson gives following lemma:

Lemma 3.4. [Jan22, 3.14] Let Φ be an additive functional with bounded toll function 𝜑 and

suppose that 𝜑(𝒯𝑛) is deterministic for almost all 𝑛 ∈ N and that VarΦ(𝒫𝑛) ≠ 0 for some

𝑛 ≥ 1. Then VarΦ(𝒫𝑛) = Ω(𝑛).

Wewill often have toll functions that are 0 if the tree exceeds a certain size, thenwe can de-

rive asymptotic normality using this lemma. An example where the condition Var Φ̃(𝒯𝑛) =
Ω(𝑛)does not hold is the size of a binary patricia trie, as it is deterministic. It can be extended

to following lemma:

Lemma 3.5. Let Φ be an additive functional with toll function 𝜑 and let 𝜑′ be another toll
function. Suppose that there is a 𝑏 ≥ 2, such that

1. 𝜑(𝑇) for |𝑇|𝑒 > 𝑏 only depends on the bucket trie buc𝑏(𝑇) of𝑇with bucket size 𝑏 and

on 𝜑′(𝑇𝛼) for the 𝑏-buckets 𝛼 ∈ (buc𝑏(𝑇))𝑒.
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2. The additive functional Φ(𝒯𝑏) for the buckets is not solely dependent on 𝜑′(𝒯𝑏), that
is, we have

E[Var(Φ(𝒯𝑏) ∣ 𝜑′(𝒯𝑏))] > 0 (3.26)

Then VarΦ(𝒯𝑛) = Ω(𝑛).

Remark 3.6. Using Cramér-Wold, a multivariate version of this theorem can be shown. The

results are linear inΦ, sowe canuse polarization to get results for the covariance between two

additive functionals Φ1, Φ2. The full formula for the 𝑓𝑋 function is given in [Jan22, (3.19)];

in the important special case of 𝜑1(•) = 𝜑2(•) = 0, it is

𝑓𝑉,12(𝜆) ∶= Cov(𝜑1(𝒯𝜆), Φ̃2(𝒯𝜆)) + Cov(Φ̃1(𝒯𝜆), 𝜑2(𝒯𝜆))
− Cov(𝜑1(𝒯𝜆), 𝜑2(𝒯𝜆)). (3.27)

This gives us as usual a function 𝜓𝑉,12(log𝑛). Then, the covariance satisfies

𝑛−1 Cov(Φ1(𝒫𝑛), Φ2(𝒫𝑛)) → �̂�12(𝑛) (3.28)

where

�̂�12(𝑛) = 𝐻−1𝜓𝑉,12(log𝑛) − 𝐻−2𝜓𝐶,1(log𝑛)𝜓𝐶,2(log𝑛) (3.29)

Remark 3.7. The condition of boundedness on𝜑 can be relaxed to the conditions sublinear-

ity conditions E[𝜑(𝒯𝜆)],Var(𝜑(𝒯𝜆)) = 𝑂(𝜆1−𝜀) from Theorem 3.1 and the condition

that for all 𝑟 > 2 we have

E∣𝜑(𝒯𝜆) − E[𝜑(𝒯𝜆)]∣𝑟 = 𝑂(𝜆𝑟/2). (3.30)

The function 𝜓𝐶 can be calculated from 𝜓𝐸 as follows:

Lemma 3.8. Let 𝜑 be a toll function on tries as in Theorem 3.1. Then, for all 𝜆, 𝑡 and at least
for 𝑠 ∈ C with Re 𝑠 ∈ (−2, −1 + 𝜀/2)

𝑓 ∗
𝐶(𝑠) = −𝑠𝑓 ∗

𝐸(𝑠) (3.31)

𝑓 ∗
𝐶(−1) = 𝑓 ∗

𝐸(𝑠) (3.32)

𝜓𝐶(𝑡) = 𝜓𝐸(𝑡) + 𝜓′
𝐸(𝑡). (3.33)

From Theorem 3.3 Janson derives a weak law of large numbers, while leaving as open ques-

tion if one also had a.s. convergence. Using a proof technique for the strong law of large num-

bers for sums of i.i.d. random variables with a finite fourth absolute moment, we can show

a.s. convergence. We therefore have following strong law of large numbers for patricia tries.

Theorem 3.9. [Jan22, Theorem 3.12] Let 𝜑 be a bounded toll function on patricia tries as in
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Theorem 3.3. Let 𝑓 ∗
𝐸(𝑠), 𝜓𝐸(𝑡) and 𝜒 be as in Theorem 3.1. Then, as 𝜆 → ∞ and 𝑛 → ∞,

Φ(𝒫𝜆)
𝜆 − 𝐻−1𝜓𝐸(log(𝜆)) − 𝜒 → 0 a.s., (3.34)

Φ(𝒫𝑛)
𝑛 − 𝐻−1𝜓𝐸(log(𝑛)) − 𝜒 → 0 a.s. (3.35)

In particular, if 𝑑𝑝 = 0, then, as 𝑛 → ∞,

Φ(𝒫𝑛)
𝑛 → 𝐻−1𝑓 ∗

𝐸(−1) + 𝜒 a.s. (3.36)

Proof. Weproof the fixed𝑛 case (3.35), the Poisson case (3.34) is analogous. Note thatE[Φ(𝒫𝑛)]
is asymptotically𝐻−1𝜓𝐸(log𝜆) + 𝜒 according to (3.25). So (3.35) is equivalent to showing

that 𝑛−1𝑍𝑛 ∶= 𝑛−1(Φ(𝒫𝑛) − EΦ(𝒫𝑛)) → 0 a.s. Writing the quantifiers of “not converg-

ing” out, we have

{
𝑍𝑛
𝑛 ↛ 0} = ⋃

𝑚∈N

∞
⋂

𝑁=1

∞
⋃

𝑛=𝑁
{∣

𝑍𝑛
𝑛 ∣ > 1

𝑚}

= ⋃
𝑚∈N

lim sup
𝑛→∞

{∣
𝑍𝑛
𝑛 ∣ > 1

𝑚} (3.37)

Since we have convergence of all moments of 𝑍𝑛/√𝑛 in (3.18), we have E|𝑍𝑛/𝑛|4 ≤ 𝐶/𝑛2

for a constant 𝐶 > 0 and all 𝑛 ≥ 1. Markov’s inequality implies

∞
∑
𝑛=1

P (∣
𝑍𝑛
𝑛 ∣ > 1

𝑚) =
∞

∑
𝑛=1

P ⎛⎜
⎝

∣
𝑍𝑛
𝑛 ∣

4
> 1

𝑚4
⎞⎟
⎠

≤
∞

∑
𝑛=1

𝑚4𝐶
𝑛2 < ∞,

hence the Lemma of Borel-Cantelli yields

P (lim sup
𝑛→∞

{∣
𝑍𝑛
𝑛 ∣ > 1

𝑚}) = 0

for all 𝑚 ≥ 1. In view of (3.37) subadditivity implies the assertion.

4 Fringe trees of patricia tries
We now use this theorem for the distribution of random fringe patricia tries.

4.1 Size of patricia tries
To calculate the distribution of fringe trees, we want to first count the number of nodes that

could be the root of the fringe tree. This section is irrelevant for the most common |𝒜| = 2
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case, as in this case, the size of the patricia trie is deterministic and given by |𝒫𝑛| = 2𝑛 − 1.
This is because every internal node has outdegree 2.

In this section,we define the size of the patricia trie as the amount of internal nodes. That is

an additive functional Φ𝑖 with toll function 𝜑𝑖(𝑇) ∶= 1{the root of 𝑇 is an internal node}.
Thus, the induced toll function on tries is given as

𝜑𝑖(𝑇) = 1{the root of 𝑇 has more than one child}.

Adding strings only increases the number of internal nodes, so Φ𝑖 is increasing.

Theorem 4.1. Theorem 3.3 applies to the size Φ𝑖(𝑇) =∶ |𝑇|𝑖 of patricia tries 𝑇. If 𝑑𝑝 = 0,
the limit for the expected value is given by

|𝒫𝑛|𝑖
𝑛 → 𝐻−1𝑓 ∗

𝐸(−1) = 𝐽
𝐻 = 𝐻−1 ∑

𝑎∈𝒜
(1 − 𝑝𝑎)|log(1 − 𝑝𝑎)|. (4.1)

This result can be found in [Bou01, Prop 6]. To show the equality in (4.1), remember the

notation Ξ𝑗(𝑖) for the 𝑖-th char in the 𝑗-th string. Because 𝜒 = 𝜑𝑖(•) = 0, the formulas

simplify somewhat:

𝑓𝐸,𝑖(𝜆) = E𝜑(𝒯𝜆) = 1 − P (Ξ1(1) = ⋯ = Ξ𝑁𝜆
(1))

= 1 − P(𝑁𝜆 = 0) − ∑
𝑎∈𝒜

P (𝑁𝜆 > 0, 𝑎 = Ξ1(1) = ⋯ = Ξ𝑁𝜆
(1))

= 1 − 𝑒−𝜆 − ∑
𝑎∈𝒜

𝑒𝜆(𝑝𝑎−1) − 𝑒−𝜆 (4.2)

= 1 + (|𝒜| − 1)𝑒−𝜆 − ∑
𝑎∈𝒜

𝑒𝜆(𝑝𝑎−1) (4.3)

Applying the Mellin transform to (4.2) and integrating by parts yield

𝑓 ∗
𝐸,𝑖(𝑠) = ∫∞

0
⎛⎜⎜
⎝

1 − 𝑒−𝜆 − ∑
𝑎∈𝒜

𝑒𝜆(𝑝𝑎−1) − 𝑒−𝜆⎞⎟⎟
⎠

𝜆𝑠−1d𝜆

= − ∫∞
0

⎛⎜⎜
⎝

𝑒−𝜆 − ∑
𝑎∈𝒜

−(1 − 𝑝𝑎)𝑒𝜆(𝑝𝑎−1) + 𝑒−𝜆⎞⎟⎟
⎠

𝑠−1𝜆𝑠d𝜆

= Γ(𝑠 + 1)
𝑠

⎛⎜⎜
⎝

−1 + ∑
𝑎∈𝒜

−(1 − 𝑝𝑎)−𝑠 + 1⎞⎟⎟
⎠

(4.4)
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for −1 < Re 𝑠 < 0 and this function can be extended to 𝑠 = −1 by

𝑓 ∗
𝐸,𝑖(−1) = lim

𝑠→−1
Γ(𝑠 + 2)

𝑠 ⋅ 1
𝑠 − (−1)

⎛⎜⎜
⎝

−1 + ∑
𝑎∈𝒜

1 − (1 − 𝑝𝑎)−𝑠⎞⎟⎟
⎠

= Γ(1)
−1

d

d𝑠 ∑
𝑎∈𝒜

1 − (1 − 𝑝𝑎)−𝑠∣𝑠=−1

= ∑
𝑎∈𝒜

(1 − 𝑝𝑎)|log(1 − 𝑝𝑎)| = 𝐽 (4.5)

As an important constant of the size of patricia tries, we will use this 𝐽 quite often from now

on. We can see that in the case of only two symbols, this is the entropy𝐻 and soE[|𝒯𝑛|𝑖]𝑛−1 →
1. That is as expected, as Φ𝑖(𝑇) = |𝑇|𝑒 − 1. For comparison, tries have 𝑓 ∗

𝐸,𝑖(−1) = 1.

Example 4.2. In the symmetric case with |𝒜| = 3, the mean term of the size is

𝑓 ∗
𝐸,𝑖,3(−1) = 𝐽 = 2 log(3

2) ≈ 0.81093. (4.6)

That means that
E[|𝒫𝑛|𝑖]

𝑛 is asymptotically oscillating around 𝐽/𝐻 ≈ 0.73814. The second-
biggest term in the Fourier series is, for 𝑠 = −1 + 2𝜋/ log3,

𝑓 ∗
𝐸,𝑖,3(𝑠) = Γ(𝑠)

𝑠 + 1(2 − (2
3)

−𝑠
) ≈ 1.80305 ⋅ 10−5 + 1.57181 ⋅ 10−5𝑖. (4.7)

So there are indeed oscillations, but they are numerically small.

By (4.4) and Lemma 3.8 the covariance function is

𝑓 ∗
𝐶,𝑖(𝑠) = Γ(𝑠 + 1)⎛⎜⎜

⎝
1 + ∑

𝑎∈𝒜
(1 − 𝑝𝑎)−𝑠 − 1⎞⎟⎟

⎠
(4.8)

and 𝑓 ∗
𝐶,𝑖(−1) = 𝑓 ∗

𝐸,𝑖(−1).
For the variance function (3.3) we have to consider 𝜑𝑖(𝒯𝑛)𝜑𝑖(𝒯 𝛼

𝑛 ) for 𝜀 ≠ 𝛼 ∈ 𝒜∗. It
is 1 if and only if 𝜑𝑖(𝒯 𝛼

𝑛 ) is 1 and there is at least one string that has not the same first char

as 𝛼. So we have

𝑓𝑉,𝑖(𝜆) = Var(𝜑𝑖(𝒯𝜆)) + 2 Cov(𝜑𝑖(𝒯𝜆), Φ̃𝑖(𝒯𝜆) − 𝜑𝑖(𝒯𝜆)) (4.9)

𝑓𝑉,𝑖(𝜆) = 𝑓𝐸,𝑖(𝜆) − 𝑓 2
𝐸,𝑖(𝜆)

+ 2 ∑
𝑏∈𝒜

(1 − 𝑒−(1−𝑝𝑏)𝜆 − 𝑓𝐸,𝑖(𝜆)) ∑
𝛼∈𝒜∗

𝑓𝐸,𝑖(𝑝𝑏𝑝𝛼𝜆). (4.10)

Multiplying (4.10) out, we get a sum of lots of terms of the form ±𝑒−𝑞𝜆, 𝑞 ≥ 0, which can
be treated like in 𝑓𝐸. The rest is left to the reader.
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Using (4.3) we see that 𝑓𝐸,𝑖(0) = 𝑓 ′
𝐸,𝑖(0) = 0, so we also have 𝑓𝑉,𝑖(0) = 𝑓 ′

𝑉,𝑖(0) = 0,
thus

𝑓 ∗
𝑉,𝑖(𝑠) = 1

𝑠(𝑠 + 1) ∫∞
0 𝑓 ″

𝑉,𝑖(𝜆)𝜆𝑠+1d𝜆 (4.11)

for Re 𝑠 < 0 using partial integration. Multiplying (4.10) out, we get a sum of lots of terms of

the form ±𝑒−𝑞𝜆, 𝑞 ≥ 0. To avoid having to spell each of them out every time, we show how

a single one transforms and write down the final result in (4.14). Those with 𝑞 > 0 show up

in 𝑓 ∗
𝑉,𝑖 as

± 1
𝑠(𝑠 + 1) ∫∞

0
d2

d𝜆2 𝑒−𝑞𝜆𝜆𝑠+1d𝜆 = ± Γ(𝑠 + 2)
𝑠(𝑠 + 1)𝑞𝑠 . (4.12)

This has a singularity on 𝑠 = −1. This singularity is removable because the sumof±𝑞, which
is 𝑓 ′

𝑉,𝑖(0), is 0. Hence, the value on 𝑠 = −1 is given by the sum of

Γ(1)
−1

d

d𝑠 𝑞−𝑠∣𝑠=−1 = 𝑞 log𝑞. (4.13)

In the end, we have, with 𝛿(𝑞) ∶= 𝑞 log𝑞 and 𝛼1 being the first char of a string 𝛼 ∈ 𝒜,

𝑓 ∗
𝑉,𝑖(−1) = ∑

𝑎∈𝒜
𝛿(1 − 𝑝𝑎) − (|𝐴| − 1)2 2 log2 + 2(|𝐴| − 1)𝛿(2 − 𝑝𝑎)

+ ∑
𝑎,𝑏∈𝒜

−𝛿(2 − 𝑝𝑎 − 𝑝𝑏)

+ 2 ∑
𝛼∈𝒜∗\{𝜀}

𝑎∶=𝛼1

[−𝛿(1 − 𝑝𝑎) + ∑
𝑏∈𝒜

𝛿(1 − 𝑝𝑏) (4.14a)

− (|𝐴| − 1)2𝛿(1 + 𝑝𝛼) + ∑
𝑏∈𝒜

(|𝐴| − 1)𝛿(1 + 𝑝𝛼(1 − 𝑝𝑏))

− (|𝐴| − 1)𝛿(1 − 𝑝𝑎 + 𝑝𝛼) + ∑
𝑏∈𝒜

𝛿(1 − 𝑝𝑎 + 𝑝𝛼(1 − 𝑝𝑏))

+ (|𝐴| − 1) ∑
𝑐∈𝒜

𝛿(1 − 𝑝𝑐 + 𝑝𝛼) − ∑
𝑏,𝑐∈𝒜

𝛿(1 − 𝑝𝑐 + 𝑝𝛼(1 − 𝑝𝑏))]. (4.14)

Note that while the entire sum over 𝛼 converges, this is not the case if summed up over each

term. For example if one sums all 𝛼 with |𝛼| ≤ 𝑘 for 𝑘 ∈ N, the two terms in the row (4.14a)
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form a telescoping series in following fashion:

∑
1≤|𝛼|≤𝑘
𝑎∶=𝛼1

⎛⎜⎜
⎝

−𝛿(1 − 𝑝𝑎) + ∑
𝑏∈𝒜

𝛿(1 − 𝑏)⎞⎟⎟
⎠

= − ∑
0≤|𝛼|≤𝑘−1

∑
𝑎∈𝒜

𝛿(1 − 𝑝𝑎) + ∑
1≤|𝛼|≤𝑘

∑
𝑏∈𝒜

𝛿(1 − 𝑝𝑏)

= (|𝒜|𝑘 − 1)𝐽. (4.15)

In the case of binary (𝒜 = {0, 1}) patricia tries, we already know that Var(𝒫𝜆) =
Var(𝑁𝜆 − 1 ∨ 0) → 𝜆 and that thus 𝜓𝑉,𝑖(log𝜆) = 𝐻 from (3.17). In the binary case,

summing over 1 − 𝑝𝑏 for 𝑏 ∈ 𝒜 is the same as summing over 𝑝𝑏, so the rows after (4.14a)
also become telescoping series as in (4.15) and one can show after some calculations that the

entire term then indeed is 𝐻.

4.2 Size of fringe trees
We now study the amount of strings in a random fringe subtree 𝒫 ∗

𝑛 of a patricia trie 𝒫𝑛, as
defined in Section 2.2. This is the size measured in the amount of leaves, noted as |𝑇|𝑒, and
is equal for trie and patricia trie. We count the number of subtrees of size 𝑘 ≥ 1 with the

functional

𝜑𝑘(𝑇) ∶= 1{|𝑇|𝑒 = 𝑘}. (4.16)

Note that subtrees of size 1 are the leaves, so 𝜑1 = 𝜑• = 𝜑•. This case behaves different
from the others, so we will first consider only 𝑘 ≥ 2.
WhileΦ𝑘 is not increasing, it can bewritten asΦ≥𝑘−Φ≥𝑘+1, where𝜑≥𝑘 ∶= 1{|𝑇|𝑒 ≥ 𝑘}

is bounded and Φ≥𝑘 is increasing, so we can apply Theorem 3.3.

Because 𝜑𝑘(𝒯𝑛) = 0 a.s. for 𝑛 > 𝑘 and e.g. Var Φ̃𝑘(𝒯𝑘+2) > 0, we can apply Lemma

3.4 to show (3.23).

Theorem4.3. Theorem 3.3 applies to the amountΦ𝑘(𝒫𝑛) of fringe trees of size𝑘 in a random

patricia trie. Especially, we have

Φ𝑘(𝒫𝑛) − EΦ𝑘(𝒫𝑛)
√VarΦ𝑘(𝒫𝑛)

𝑑
→ 𝒩(0, 1) (4.17)

with convergence of all [absolute] moments. In the asymmetric case (𝑑𝑝 = 0) for 𝑘 ≥ 2 we

have convergence
Φ𝑘(𝒫𝑛)

𝑛 ⟶
1 − 𝜌(𝑘)

𝐻𝑘(𝑘 − 1) (4.18)

almost surely.

Remark 4.4. Note that the results depend on the source through 𝜌(𝑘) and 𝐻. This is differ-

ent to fringe trees of tries, whose size only depends on the entropy, see [Jan22, Theorem 4.4].
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Tries have
Φ𝑘(𝒯𝑛)

𝑛 → 1
𝐻𝑘(𝑘−1) , without the 1 − 𝜌(𝑘) term, that converges to 1 exponen-

tially fast. We will later see that (1 − 𝜌(𝑘))−1 is the expected amount of contracted edges in

a node whose fringe tree has size 𝑘.

Proof. We have 𝜑𝑘(𝒯𝜆) = 1{𝑁𝜆 = 𝑘}𝜑𝑝(𝒯𝜆), so the mean function is given by

𝑓𝐸,𝑘(𝜆) = E [𝜑𝑘(𝒯𝜆)] = P(𝑁𝜆 = 𝑘)E[𝜑𝑝(𝒯𝜆) ∣ 𝑁𝜆 = 𝑘]

= 𝜆𝑘

𝑘! 𝑒−𝜆⎛⎜⎜
⎝

1 − ∑
𝑎∈𝒜

𝑝𝑘
𝑎
⎞⎟⎟
⎠

= 𝜆𝑘

𝑘! 𝑒−𝜆(1 − 𝜌(𝑘)) (4.19)

with 𝜌(𝑘) as defined in (2.1). With (2.12) the Mellin transform is given by

𝑓 ∗
𝐸,𝑘(𝑠) = (1 − 𝜌(𝑘))Γ(𝑘 + 𝑠)

𝑘! (4.20)

𝑓 ∗
𝐸,𝑘(−1) =

1 − 𝜌(𝑘)
𝑘(𝑘 − 1). (4.21)

This shows (4.18) using (3.36).

To calculate the asymptotic variance,wenote that for 𝜀 ≠ 𝛼 ∈ 𝒜∗,𝜑𝑘(𝒯𝜆) and𝜑𝑘(𝒯 𝛼
𝜆 )

cannot be 1 at the same time. If both subtrees had the same amount of strings, all strings

would go to 𝛼 and the root would not be in the patricia trie. Thus, we have from (3.12)

𝑓𝑉,𝑘(𝜆) = ∑
𝛼

∗
Cov(𝜑𝑘(𝒯𝜆), 𝜑𝑘(𝒯 𝛼

𝜆 ))

= 𝑓𝐸,𝑘(𝜆) − ∑
𝛼

∗𝑓𝐸,𝑘(𝜆)𝑓𝐸,𝑘(𝑝𝛼𝜆)

=
1 − 𝜌(𝑘)

𝑘! 𝜆𝑘𝑒−𝜆 − ∑
𝛼

∗(
1 − 𝜌(𝑘)

𝑘! )
2
𝜆2𝑘𝑝𝑘

𝛼𝑒−𝜆(1+𝑝𝛼) (4.22)

𝑓 ∗
𝑉,𝑘(𝑠) =

1 − 𝜌(𝑘)
𝑘! Γ(𝑘 + 𝑠) − ∑

𝛼

∗(
1 − 𝜌(𝑘)

𝑘! )
2
𝑝𝑘

𝛼Γ(𝑠 + 2𝑘)(1 + 𝑝𝛼)−𝑠−2𝑘

(4.23)

𝑓 ∗
𝑉,𝑘(−1) =

1 − 𝜌(𝑘)
𝑘(𝑘 − 1) − (2𝑘 − 2)!(

1 − 𝜌(𝑘)
𝑘! )

2
∑
𝛼

∗ 𝑝𝑘
𝛼

(1 + 𝑝𝛼)2𝑘−1 . (4.24)

Now we turn to the covariances. We first calculate the asymptotic covariance between Φ𝑘
and Φ𝑖. Remember the formula (3.27) for the asymptotic covariance:

𝑓𝑉,𝑘𝑖(𝜆) = Cov(𝜑𝑘(𝒯𝜆), Φ̃𝑖(𝒯𝜆)) + Cov(𝜑𝑖(𝒯𝜆), Φ̃𝑘(𝒯𝜆) − 𝜑𝑘(𝒯𝜆)) (4.25)
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For the first covariance we note that

E[𝜑𝑘(𝒯𝜆)Φ̃𝑖(𝒯𝜆)] = E[𝜑𝑘(𝒯𝜆)]E[Φ̃𝑖(𝒯𝜆) ∣ 𝜑𝑘(𝒯𝜆) = 1]
= 𝑓𝐸,𝑘(𝜆)E[Φ̃𝑖(𝒯𝜆)] (4.26)

because conditioning on𝜑𝑘(𝒯𝜆) = 1means that |𝒯𝜆|𝑒 = 𝑘 and𝒫𝜆 hasno contracted edges

in the root. The condition |𝒯𝜆|𝑒 = 𝑘 makes the distribution equal to that of 𝒯𝑘. For a fixed
amount 𝑘 of strings, the amount of contracted edges in the root is independent of the tree

structure, so the second condition does not change the value. This is clear from the recursive

definition of tries or alternatively follows from the later Lemma4.9. The valueE[Φ̃𝑖(𝒯𝜆)] =
E[|𝒫𝑘|𝑖] is constant. From (4.26) we then have

Cov(𝜑𝑘(𝒯𝜆), Φ̃𝑖(𝒯𝜆)) = 𝑓𝐸,𝑘(𝜆)(E[|𝒫𝑘|𝑖] − E[|𝒫𝜆|𝑖]). (4.27)

For the second covariance we look at the subtrees 𝒯 𝑎
𝜆 for 𝑎 ∈ 𝒜. Let 𝑁𝑎

𝜆 be the amount

of strings starting with 𝑎. If Φ̃𝑘(𝒯 𝑎
𝜆 ) is not zero, then𝒯 𝑎

𝜆 is not empty. In this case,𝜑𝑖(𝒯𝜆)
is 1 if and only if 𝑁𝑎

𝜆 ≠ 𝑁𝜆 (not all strings start with 𝑎). Hence,

E [𝜑𝑖(𝒯𝜆)(Φ̃𝑘(𝒯𝜆) − 𝜑𝑘(𝒯𝜆))] = ∑
𝑎∈𝒜

E [𝜑𝑖(𝒯𝜆)Φ̃𝑘(𝒯 𝑎
𝜆 )]

= ∑
𝑎∈𝒜

E [1{𝑁𝜆 ≠ 𝑁𝑎
𝜆}Φ̃𝑘(𝒯 𝑎

𝜆 )]

= ∑
𝑎∈𝒜

(1 − 𝑒−(1−𝑝𝑎)𝜆)EΦ̃𝑘(𝒯 𝑎
𝜆 ),

Cov(𝜑𝑖(𝒯𝜆), Φ̃𝑘(𝒯𝜆) − 𝜑𝑘(𝒯𝜆)) = ∑
𝑎∈𝒜

(1 − 𝑒−(1−𝑝𝑎)𝜆 − 𝑓𝐸,𝑖(𝜆))EΦ̃𝑘(𝒯 𝑎
𝜆 ).

(4.28)

Combining (4.27) and (4.28) and plugging the values for 𝑓𝐸,𝑖 from (4.4) and 𝑓𝐸,𝑘 from (4.19)

in, we get,

𝑓𝑉,𝑘𝑖(𝜆) =
1 − 𝜌(𝑘)

𝑘! 𝜆𝑘𝑒−𝜆(E|𝒫𝑘|𝑖

− ∑
𝛼∈𝒜∗

(1 + (|𝒜| − 1)𝑒−𝑝𝛼𝜆 − ∑
𝑏∈𝒜

𝑒−(1−𝑝𝑏)𝑝𝛼𝜆))

+ ∑
𝑎∈𝒜

⎛⎜⎜
⎝

(|𝒜| − 1)𝑒−𝜆 − 𝑒−(1−𝑝𝑎)𝜆 + ∑
𝑏∈𝒜

𝑒−(1−𝑝𝑏)𝜆⎞⎟⎟
⎠

∑
𝛼∈𝒜∗

1 − 𝜌(𝑘)
𝑘! (𝑝𝑎𝑝𝛼𝜆)𝑘𝑒−𝑝𝑎𝑝𝛼𝜆. (4.29)

TheMellin transform can be calculated with (2.12). This yields, summing up over 𝑎𝛼 instead
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of 𝛼 and denoting the first char of 𝛼 with 𝛼1,

𝑓 ∗
𝑉,𝑘𝑖(−1) =

1 − 𝜌(𝑘)
𝑘(𝑘 − 1)[E|𝒫𝑘|𝑖

− ∑
𝛼∈𝒜∗

(1 + |𝐴| − 1
(1 + 𝑝𝛼)𝑘−1 − ∑

𝑏∈𝒜

1
(1 + (1 − 𝑝𝑏)𝑝𝛼)𝑘−1 )

+ ∑
𝛼∈𝒜∗

𝛼≠𝜀

𝑝𝑘
𝛼( |𝐴| − 1

(1 + 𝑝𝛼)𝑘−1 − 1
(1 − 𝑝𝛼1

+ 𝑝𝛼)𝑘−1

+ ∑
𝑏∈𝒜

1
(1 − 𝑝𝑏 + 𝑝𝛼)𝑘−1 )] (4.30)

Note, that for |𝒜| = 2 we directly have

𝑓 ∗
𝑉,𝑘𝑖(−1) = 𝑓 ∗

𝐶,𝑘(−1) = 𝑓 ∗
𝐸,𝑘(−1) =

1 − 𝜌(𝑘)
𝑘(𝑘 − 1) (4.31)

because of the deterministic size and Lemma 3.8. This was the 𝑘 ≥ 2 case.

For the special case of 𝜑1 = 𝜑• = 𝜑•, the number of leaves, we refer to Janson, as the

amount of leaves is the same in the patricia trie and the trie. The basic idea is to replace 𝜑•
with a new toll function

𝜑∗(𝑇) = ∑
𝑎∈𝒜

𝜑•(𝑇𝑎), (4.32)

on tries which instead counts the children that are leaves. For all tries 𝑇 ≠ • the functionals
Φ̃∗(𝑇) and Φ̃•(𝑇) are equal, so they have the same asymptotic properties. Because 𝜑∗ has
𝜑∗(•) = 𝜒 = 0, it is easier to handle.
We use the functions for 𝜑∗ instead of 𝜑1, which are

𝜓𝐸,1(𝑡) ∶= 𝜓𝐶,1(𝑡) ∶= 𝜓𝑉,1(𝑡) ∶= 𝐻, 𝜓𝑉,1𝑖(𝑡) ∶= 𝜓𝐶,𝑖(𝑡), (4.33)

see Example 3.17, especially (3.60)-(3.62) in [Jan22].

Theorem 4.5. The conditional fringe tree size distribution of 𝒫𝑛 given 𝒫𝑛 has asymptotically

normal fluctuations. For 𝑘 ≥ 1 let 𝑎𝑘𝑛 be either P (|𝒫 ∗
𝑛 |𝑒 = 𝑘) = EΦ̃𝑘(𝒯𝑛)

|𝒫𝑛| or
EΦ̃𝑘(𝒯𝑛)

E|𝒫𝑛| .

i) Then, with all [absolute] moments, as 𝑛 → ∞,

√𝑛(P (|𝒫 ∗
𝑛 |𝑒 = 𝑘 ∣ 𝒫𝑛) − 𝑎𝑘𝑛) = √𝑛⎛⎜

⎝
Φ̃𝑘(𝒯𝑛)

|𝒫𝑛| − 𝑎𝑘𝑛
⎞⎟
⎠

𝑑
≈ 𝒩(0, �̂�2

𝑘(𝑛)), (4.34)
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where, with 𝑡 = log𝑛 and 𝜓𝐸,+(𝑡) ∶= 𝜓𝐸,𝑖(𝑡) + 𝐻,

�̂�2
𝑘(𝑛) ∶= 𝐻

𝜓𝐸,+(𝑡)2
⎛⎜⎜
⎝

𝜓𝑉,𝑘(𝑡) − 2
𝜓𝐸,𝑘(𝑡)
𝜓𝐸,+(𝑡)

𝜓𝑉,𝑘𝑖(𝑡) +
𝜓𝐸,𝑘(𝑡)2

𝜓𝐸,+(𝑡)2 𝜓𝑉,𝑖(𝑡)⎞⎟⎟
⎠

− 1
𝜓𝐸,+(𝑡)4 (𝜓𝐸,+(𝑡)𝜓𝐶,𝑘(𝑡) − 𝜓𝐸,𝑘(𝑡)𝜓𝐶,𝑖(𝑡))2

(4.35)

ii) In particular, if 𝑑𝑝 = 0, then �̂�2
𝑘(𝑛) is constant and given by

�̂�2
𝑘(𝑛) = 𝐻

(𝐻 + 𝐽)4 ((𝐻 + 𝐽)2𝑓 ∗
𝑉,𝑘(−1) − 2(𝐻 + 𝐽)

1 − 𝜌(𝑘)
𝑘(𝑘 − 1)𝑓 ∗

𝑉,𝑘𝑖(−1)

+
(1 − 𝜌(𝑘))2

𝑘2(𝑘 − 1)2 (𝑓 ∗
𝑉,𝑖(−1) − 𝐻)); 𝑘 ≥ 2 (4.36)

�̂�2
1(𝑛) = (𝐻 + 𝐽)−4(𝐻3𝑓 ∗

𝑉,𝑖(−1) − 𝐻2(𝐽)2). (4.37)

iii) Moreover, the approximation in distribution (4.34) holds jointly for any finite number of 𝑘,
with a multivariate normal distribution 𝒩(0, (�̂�2

𝑘𝑙(𝑛))𝑘,𝑙), where �̂�2
𝑘𝑙(𝑛) for 𝑘 ≠ 𝑙 can

be expressed similar to (4.35) using polarization.

iv) In the aperiodic 𝑑𝑝 = 0 case, the expected values satisfy, as 𝑛 → ∞,

𝑎𝑘𝑛 →
⎧{
⎨{⎩

1−𝜌(𝑘)
𝑘(𝑘−1)(𝐻+𝐽) 𝑘 ≥ 2

𝐻
𝐻+𝐽 𝑘 = 1.

(4.38)

Remark 4.6. For the binary case |𝒯𝑛| = 2𝑛 − 1 is not random, so it suffices to directly use

Theorem 3.3 with (4.21) and (4.24), which gives nicer formulas than (4.35) and (4.36).

Remark 4.7. We already know that the limits in (4.38) form a distribution because 𝑓 ∗
𝐸,𝑖 =

∑∞
𝑘=2 𝑓 ∗

𝐸,𝑘, but summing the limits upmightmake clearerwhere the constant𝐽 comes from.

The relevant sum is

∞
∑
𝑘=2

𝜌(𝑘)
𝑘(𝑘 − 1) = ∑

𝑎∈𝒜

∞
∑
𝑘=2

𝑝𝑘
𝑎

𝑘 − 1 −
𝑝𝑘

𝑎
𝑘

= ∑
𝑎∈𝒜

∞
∑
𝑘=2

𝑝𝑘−1
𝑎

𝑘 − 1 −
𝑝𝑘

𝑎
𝑘 −

(1 − 𝑝𝑎)𝑝𝑘−1
𝑎

𝑘 − 1

= ∑
𝑎∈𝒜

𝑝𝑎 − (1 − 𝑝𝑎) log(1 − 𝑝𝑎) = 1 − 𝐽, (4.39)

using the series expansion of log(1 − 𝑥).
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We already have convergence ofΦ𝑘(𝒫𝑛) and |𝒫𝑛|, the convergence of the quotient follows
with standard methods. We repeat a lemma[Jan22, 4.8] from Janson, which states:

Lemma 4.8. Let (𝑋𝑛, 𝑌𝑛) be a sequence of random vectors, such that

𝑛−0,5(𝑋𝑛 − E𝑋𝑛, 𝑌𝑛 − E𝑌𝑛)
𝑑
≈ 𝒩(0, (𝜎2

𝑋𝑋(𝑛) 𝜎2
𝑋𝑌(𝑛)

𝜎2
𝑋𝑌(𝑛) 𝜎2

𝑌𝑌(𝑛))) (4.40)

and E𝑋𝑛 = 𝑂(𝑛),E𝑌𝑛 = Θ(𝑛) and 𝜎2
𝑋𝑋(𝑛), 𝜎2

𝑋𝑌(𝑛), 𝜎2
𝑌𝑌(𝑛) ∈ 𝑂(1).

(i) Then, with 𝑥𝑛 ∶= E𝑋𝑛 and 𝑦𝑛 ∶= E𝑌𝑛

√𝑛(
𝑋𝑛
𝑌𝑛

−
𝑥𝑛
𝑦𝑛

)
𝑑
≈ 𝒩⎛⎜

⎝
0, 𝑛2

𝑦2
𝑛

⎛⎜
⎝

𝜎2
𝑋𝑋(𝑛) − 2

𝑥𝑛
𝑦𝑛

𝜎2
𝑋𝑌(𝑛) +

𝑥2
𝑛

𝑦2
𝑛

𝜎2
𝑌,𝑌(𝑛)⎞⎟

⎠
⎞⎟
⎠
(4.41)

(ii) If, moreover, (4.40) holds with all moments, and 𝑌𝑛 ≥ 𝑐𝑛 a.s. for some 𝑐 > 0 and

all 𝑛, then (4.41) holds with all moments. Furthermore, we may then replace 𝑥𝑛/𝑦𝑛 by

E [𝑋𝑛/𝑌𝑛] in the left side of (4.41).

Proof of Theorem 4.5. We apply Lemma 4.8 to 𝑋𝑛 ∶= Φ𝑘(𝒫𝑛), 𝑌𝑛 ∶= |𝒫𝑛| ≥ 𝑛. A multi-

variate variant of Theorem 3.3 yields the condition (4.40). The variances 𝜎2
12(𝑛) are given

by 𝐻−1𝜓𝑉,12(𝑡) − 𝐻−2𝜓𝐶,1(𝑡)𝜓𝐶,2(𝑡) for 𝑡 = log(𝑛) according to (3.27). Putting this
into (4.41) gives (4.35).

For ii), we replace the 𝜓(𝑡) functions with 𝑓 ∗(−1), using also that 𝑓 ∗
𝐶(−1) = 𝑓 ∗

𝐸(−1)
according to Lemma 3.8. We then use that 𝑓 ∗

𝐸,𝑖(−1) = 𝐽 to get

�̂�2
𝑘(𝑛) = 𝐻

(𝐻 + 𝐽)2 (𝑓 ∗
𝑉,𝑘(−1) − 2(𝐻 + 𝐽)−1 1 − 𝜌(𝑘)

𝑘(𝑘 − 1)𝑓 ∗
𝑉,𝑘𝑖(−1)

+ (𝐻 + 𝐽)−2(
1 − 𝜌(𝑘)
𝑘(𝑘 − 1))

2
𝑓 ∗
𝑉,𝑖(−1))

− (𝐻 + 𝐽)−4(
1 − 𝜌(𝑘)
𝑘(𝑘 − 1))

2
𝐻 (4.42)

for 𝑘 ≥ 2 and expanding by (𝐻 + 𝐽)2 gives (4.36).

For 𝑘 = 1, we use the functions defined in (4.33) and get

�̂�2
𝑘(𝑛) = 𝐻

(𝐻 + 𝐽)2 (𝐻 − 2(𝐻 + 𝐽)−1𝐻𝐽 + (𝐻 + 𝐽)−2𝐻2𝑓 ∗
𝑉,𝑖(−1))

− (𝐻 + 𝐽)−4(2𝐻2 − 𝐻2)2

= 1
(𝐻 + 𝐽)4 (𝐻2(𝐻 + 𝐽)2 − 2(𝐻 + 𝐽)𝐻2𝐽 − 𝐻4 + 𝐻3𝑓 ∗

𝑉,𝑖(−1))

= 1
(𝐻 + 𝐽)4 (𝐻3𝑓 ∗

𝑉,𝑖(−1) − 𝐻2(𝐽)2) (4.43)
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4.3 Distribution of fringe patricia tries
We now turn to the tree structure of the fringe patricia tries. We first ignore the contracted

edges. Let 𝑇 ∈ 𝔗 be a fixed tree. We count the fringe trees equal to 𝑇 with the toll function

𝜑(𝑇′) = 1{𝑇 = 𝑇′ as trees}. (4.44)

Again, we exclude the case 𝑇 = •, which is 𝜑1 from the last section.

Let𝑘 ∶= |𝑇|𝑒. Similarly toΦ𝑘,we canwriteΦ𝑇 as the difference of the additive functionals

Φ𝑇+Φ>𝑘 andΦ>𝑘, eachwithbounded toll functions. Again,𝜑𝑇(𝒫𝑛) = 0 a.s. for𝑛 > 𝑘+1,
so Lemma 3.4 applies, and we have VarΦ𝑘(𝒫𝑛) ∈ Ω(𝑛). So all statements in Theorem 3.3

also apply to Φ𝑇(𝒫𝑛). We start by a general lemma about patricia tries.

Lemma 4.9. Let 𝑇 be a fixed labelled tree where no node has outdegree 1 and 𝑘 ∶= |𝑇|𝑒. Let
𝑇𝑒 ⊂ 𝒜∗ be its leaves and 𝑇𝑖 be its internal nodes.

i) The probability 𝑝𝑇 ∶= P(𝒫𝑘 = 𝑇) of a random patricia trie of size 𝑘 to be 𝑇 is given

by

𝑝𝑇 = 𝑘! ∏
𝑣∈𝑇𝑒

𝑝𝑣 ∏
𝑤∈𝑇𝑖

1
1 − 𝜌(|𝑇𝑤|𝑒). (4.45)

ii) Conditioned on 𝒫𝑘 = 𝑇, the contracted edges per node are independent. In an internal

node 𝑣 ∈ 𝑇𝑖, their distribution is given by 𝑞|𝑇𝑣|𝑒 , with 𝑞𝑖, 𝑖 ≥ 2 defined as

𝑞𝑖({𝛼}) ∶= 𝑝𝑖
𝛼(1 − 𝜌(𝑖)); 𝛼 ∈ 𝒜∗. (4.46)

Since the distribution of contracted edges in a node 𝑣 is only dependent on the fringe sub-

tree 𝑇𝑣, this lemma also applies to their distribution in a random fringe tree 𝒫 ∗
𝑛 .

Because E𝜑𝑇(𝒯𝑘) is the probability of pat(𝒯𝑘) to be 𝑇 as a tree and have no contracted

edges in the root,E𝜑𝑇(𝒯𝑘) = 𝑝𝑇(1 − 𝜌(𝑘)). This shows that

𝑓𝐸,𝑇(𝜆) = P(𝜑𝑇(𝒯𝜆) = 1 ∣ |𝒯𝜆|𝑒 = 𝑘, 𝜑𝑝(𝒯𝜆) = 1)P(𝜑𝑘(𝒯𝜆) = 1)

=
P(𝜑𝑇(𝒯𝑘) = 1)
P(𝜑𝑝(𝒯𝑘)) 𝑓𝐸,𝑘(𝜆)

= 𝑝𝑇𝑓𝐸,𝑘(𝜆) (4.47)

holds, and therefore we have 𝑓 ∗
𝐸,𝑇(𝑠) = 𝑝𝑇𝑓 ∗

𝐸,𝑘(𝑠). We can similarly derive 𝑓𝑉,𝑇 from 𝑓𝐸,𝑇
as in (4.22), and we get

𝑓 ∗
𝑉,𝑇(−1) =

𝑝𝑇(1 − 𝜌(𝑘))
𝑘(𝑘 − 1) − (2𝑘 − 2)!(

𝑝𝑇(1 − 𝜌(𝑘))
𝑘! )

2
∑
𝛼

∗ 𝑝𝑘
𝑎

(1 + 𝑝𝑎)2𝑘−1 . (4.48)
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Because of Lemma 4.9, the same holds if we fix a patricia trie𝑇with contracted edges and de-

fine 𝜑𝑇(𝑇′) = 1{𝑇 = 𝑇′} as equality of 𝑇 and 𝑇′ with tree structure as well as contracted
edges. We then also define 𝑝𝑇 ∶= P(𝒫𝑘 = 𝑇) with equality also in contracted edges.

Theorem4.10. Theorem 3.3 applies to the amountΦ𝑇(𝒫𝑛) of fringe trees equal to a fixed la-
belled tree𝑇 in a random patricia trie 𝑛, so we have central limit theorems (3.18) forΦ𝑇(𝒫𝑛)
with all moments and with periodic fluctuations. Asymptotics of the mean are given in (3.25)

with 𝑓𝐸,𝑇 as in (4.47).

Theorem 4.11. Let 𝑇 be a fixed labelled tree, or a fixed patricia trie with contracted edges.

The fringe tree distribution of 𝒫𝑛 satisfies

P(𝒫 ∗
𝑛 = 𝑇 ∣ 𝒫𝑛) −

𝜓𝐸,𝑇(log𝑛)
𝜓𝐸,𝑖(log𝑛) + 𝐻

P
→ 0. (4.49)

In the asymmetric case 𝑑𝑝 = 0, this limit is given by

P(𝒫 ∗
𝑛 = 𝑇 ∣ 𝒫𝑛)

P
→

⎧{
⎨{⎩

𝑝𝑇(1−𝜌(𝑘))
(𝐻+𝐽)𝑘(𝑘−1) , |𝑇|𝑒 ≥ 2,

𝐻
𝐽+𝐻 , 𝑇 = •.

(4.50)

Before we state the equivalent of Theorem 4.5, we note 𝑓𝑉,𝑇𝑖 is almost the same as 𝑝𝑇𝑓𝑉,𝑘𝑖
(see (4.30)), but with the constant E[|𝒫𝑘|𝑖] replaced by |𝑇|𝑖.

Theorem 4.12. The fringe tree distribution of 𝒫𝑛 has asymptotically normal fluctuations, in

the following sense. Let 𝑇 be a fixed tree and let either 𝑎𝑇,𝑛 = P(𝒫 ∗
𝑛 = 𝑇) or 𝑎𝑇,𝑛 =

EΦ𝑇(𝒫𝑛)
E|𝒫𝑛| . Then, with all moments, as 𝑛 → ∞,

√𝑛(P(𝒫 ∗
𝑛 ∣ 𝒫𝑛) − 𝑎𝑇,𝑛) = √𝑛(

Φ𝑇(𝒫𝑛)
|𝒫𝑛| − 𝑎𝑇,𝑛)

𝑑
≈ 𝒩(0, �̂�2

𝑇(𝑛)), (4.51)

where, with 𝑡 = log𝑛 and 𝜓𝐸,+(𝑡) ∶= 𝜓𝐸,𝑖(𝑡) + 𝐻,

�̂�2
𝑇(𝑛) ∶= 𝐻

𝜓𝐸,+(𝑡)2
⎛⎜⎜
⎝

𝜓𝑉,𝑇(𝑡) − 2
𝜓𝐸,𝑇(𝑡)
𝜓𝐸,+(𝑡)

𝜓𝑉,𝑇𝑖(𝑡) +
𝜓𝐸,𝑇(𝑡)2

𝜓𝐸,+(𝑡)2 𝜓𝑉,𝑖(𝑡)⎞⎟⎟
⎠

+ 1
𝜓𝐸,+(𝑡)4 (𝜓𝐸,+(𝑡)𝜓𝐶,𝑇(𝑡) − 𝜓𝐸,𝑇(𝑡)𝜓𝐶,𝑖(𝑡))2

(4.52)

Moreover, the approximation in distribution (4.51)holds jointly for anyfinite number of𝑇, with
amultivariate normal distribution𝒩(0, (�̂�2

𝑇𝑇′(𝑛))𝑇,𝑇′), where �̂�2
𝑇𝑇′(𝑛) for𝑇 ≠ 𝑇′ can

be expressed similar to (4.52) using polarization.

Proof of Lemma 4.9. The defining property of a trie is that there is exactly one string that has

a leaf as a prefix. So for a valid trie 𝑇′, the probability of a random trie of size 𝑘 to be 𝑇′ is
𝑝𝑇′ ∶= 𝑘! ∏𝑣∈𝑇𝑒

𝑝𝑣.
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Having no node of outdegree 1 makes 𝑇 a valid patricia trie. The probability 𝑝𝑇 is the sum

of the 𝑝𝑇′ of the tries𝑇′ ∈ 𝑝−1(𝑇) that are given by assigning contracted edges to the inner
nodes.

Fixing contracted edges 𝑐𝑣 ∈ 𝒜∗ for every inner node 𝑣 ∈ 𝑇𝑖 gives us a unique trie 𝑇′.
Let 𝑤 ∈ 𝑇 be a leaf in the patricia trie. Then the path of the corresponding leaf �̃� ∈ 𝑇′

in the trie consists of the path of 𝑤 and all contracted edges 𝑐𝑣 in the nodes 𝑣 ∈ 𝑇 on the

path of 𝑤 to the root. Thus, the probabilities 𝑝�̃� for the leaves �̃� in 𝑇′ are given by 𝑝𝑤 for

the corresponding leaf 𝑤 in 𝑇 times 𝑝𝑐𝑣
for the contracted edges on each inner node 𝑣 on

the way to the root. Each term 𝑝𝑐𝑣
gets multiplied as often as there are leaves in 𝑇𝑣. So the

probability 𝑝𝑇′ is given by

𝑝𝑇′ = 𝑘! ∏
𝑤∈𝑇𝑒

𝑝𝑤 ∏
𝑣∈𝑇𝑖

𝑝|𝑇𝑣|𝑒
𝛼𝑣

= 𝑘! ∏
𝑤∈𝑇𝑒

𝑝𝑤 ∏
𝑣∈𝑇𝑖

1
1 − 𝜌(|𝑇𝑣|𝑒) ∏

𝑣∈𝑇𝑖

𝑞|𝑇𝑣|𝑒({𝛼𝑣})

If we show that the 𝑞𝑖 for 𝑖 ≥ 2 really are distributions and sum up to 1, this already shows

the Lemma. Indeed,

∑
𝛼∈𝒜∗

𝑞𝑖({𝛼}) = (1 − 𝜌(𝑖)) ∑
𝛼∈𝒜∗

𝑝𝑖
𝛼 = (1 − 𝜌(𝑖))

∞
∑
𝑛=0

𝜌(𝑖)𝑛 = 1,

with the last sum converging because 𝜌(𝑖) < 1 for 𝑖 > 1.

4.4 Bucket patricia tries
A bucket patricia trie (see Section 2.5) is a patricia trie where leaves have up to 𝑏 ≥ 1 strings.

There is a straightforward connection between the amount of buckets and fringe tree sizes.

For bucket size 𝑘 ≥ 1, let Φ𝑏,𝑘 be the amount of buckets for bucket size 𝑘. For 𝑏 = 1,
the buckets are just the leaves in the patricia trie, so Φ𝑏,1 = Φ•. If one now increases the

bucket size to 𝑏, the nodes with 𝑏 strings become buckets, and their children (which must

have already been buckets in 𝑏 − 1) are not included anymore. So

Φ𝑏,𝑏(𝑇) = Φ𝑏,𝑏−1(𝑇) − (𝑎𝑏(𝑇) − 1)Φ𝑘(𝑇), (4.53)

where 𝑎𝑏(𝑇) is the average amount of children a node with 𝑘 strings in𝑇 has. This is always

2 in the binary case.

But even in the general case, 𝑎𝑏(𝒫𝜆) is independent of Φ𝑘(𝒫𝜆) and has expected value

independent of 𝜆. We define

𝐸𝑏 ∶= E[𝑎𝑏(𝒫𝜆) ∣ Φ𝑘(𝒫𝜆) > 0] − 1 = E[∣𝒫𝑘 ∩ 𝒜∣] − 1. (4.54)
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With this, we have for the expected value

𝑓𝐸,𝑏,𝑏(𝜆) = 𝑓𝐸,∗(𝜆) −
𝑏

∑
𝑘=2

𝐸𝑘𝑓𝐸,𝑘(𝜆) (4.55)

using the usual substitution of 𝜑∗ for 𝜑•. Buckets have no buckets as descendants, so we
note that the variance is given by

𝑓𝑉,𝑏,𝑏(𝜆) = 𝑓𝐸,𝑏,𝑏(𝜆) − ∑
𝛼

∗𝑓𝐸,𝑏,𝑏(𝜆)𝑓𝐸,𝑏,𝑏(𝑝𝛼𝜆). (4.56)

The functional Φ𝑏,𝑏 is increasing and suffices Lemma 3.4, so we can apply Theorem 3.3 on

it. The amount of buckets and their size in a patricia trie and trie are the same, so this is

basically the same analysis as for tries, see Janson’s Section 4.7[Jan22] for an analysis that

discerns buckets based on how many strings they contain.

The internal nodes of the bucket patricia trie are the nodes of the patricia trie with more

than 𝑏 strings, so the amount is given by Φ>𝑏 = ∑∞
𝑘=𝑏+1 Φ𝑘. This quickly gives

𝑓𝐸,>𝑏(𝜆) =
∞

∑
𝑘=𝑏+1

𝑓𝐸,𝑘(𝜆) (4.57)

𝑓𝑉,>𝑏(𝜆) = ∑
𝛼

∗(1 − 𝑓𝐸,>𝑏(𝜆))𝑓𝐸,>𝑏(𝑝𝛼𝜆), (4.58)

and the exact terms can be calculated using (4.19) for 𝑓𝐸,𝑘(𝜆).

5 Other additive functionals
The general theorem can also be applied on other additive functionals not directly related to

fringe trees, for example independence number or the number of 𝑘-protected nodes.

5.1 𝑘-protected nodes
A node in a tree is called 𝑘-protected if the minimum distance to a descendant that is a leaf

is at least 𝑘. The 1-protected nodes are therefore the internal nodes.
For 𝑘 ≥ 2 let Φ𝑘-prot. be the additive functional counting 𝑘-protected nodes. Adding a leaf

can make its up to 𝑘 nearest ancestors lose their protection, so Φ𝑘-prot. is not increasing, but
Φ𝑘-prot. + 𝑘Φ• is. Thus, we can apply Theorem 3.3.

Theorem 5.1. The central limit theorem Theorem 3.3 applies to the amount Φ𝑘-prot.(𝒫𝑛) of

𝑘-protected nodes in the random patricia trie.

For 𝑘 ≥ 2 a node is 𝑘-protected if and only if all of its children are 𝑘 − 1-protected. This
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leads us to following recursive equation:

𝑓𝐸,𝑘-prot.(𝜆) = ∏
𝑎∈𝒜

(E𝜑(𝑘−1)-prot.(𝒫𝑝𝑎𝜆) + 𝑒−𝑝𝑎𝜆)

− 𝑒𝜆 − ∑
𝑎∈𝒜

E𝜑(𝑘−1)-prot.(𝒫𝑝𝑎𝜆)𝑒−(1−𝑝𝑎)𝜆 (5.1)

= ∑
𝑆⊆𝒜
|𝑆|≥2

𝑒− ∑𝑏∉𝑆 𝑝𝑏𝜆 ∏
𝑎∈𝑆

E𝜑(𝑘−1)-prot.(𝒫𝑝𝑎𝜆) (5.2)

For 𝑘 = 2, the 2-protected nodes are the internal nodes that have no leaves as children.

We can thus use the inclusion-exclusion-principle to count nodes that have children that are

leaves at 𝐶 ⊆ 𝒜 places. Having multiple children makes the node automatically internal in

patricia tries. Let 𝜑∗ = 𝜑∗ be the toll function counting children that are leaves as in (4.32).
Then

𝑓𝐸,2-prot.(𝜆) = 𝑓𝐸,𝑖(𝜆) − 𝑓𝐸,∗(𝜆) + ∑
𝐶⊆𝒜
|𝐶|≥2

∏
𝑎∈𝐶

(−𝑝𝑎𝜆)𝑒−𝑝𝑎𝜆. (5.3)

This gives us the following Mellin transform:

𝑓 ∗
𝐸,2-prot.(𝑠) = 𝑓 ∗

𝐸,𝑖(𝑠) − 𝑓 ∗
𝐸,∗(𝑠) + ∑

𝐶⊆𝒜
|𝐶|>1

Γ(𝑠 + |𝐶|)
(∑𝑎∈𝐶 𝑝𝑎)𝑠+|𝐶| ∏

𝑎∈𝐶
(−𝑝𝑎), (5.4)

with the value on 𝑠 = −1 given by

𝑓 ∗
𝐸,2-prot.(−1) = 𝐽 − 𝐻 + ∑

𝐶⊆𝒜
|𝐶|>1

(|𝐶| − 2)!( ∑
𝑎∈𝐶

𝑝𝑎)
1−|𝐶|

∏
𝑎∈𝐶

(−𝑝𝑎) (5.5)

according to (4.5), (4.33) and (2.13).

Example 5.2. If 𝒜 = {0, 1}, then

𝑓 ∗
𝐸,2-prot.(−1) = 𝐻 − 𝐻 + 1 ⋅ 𝑝0𝑝1 = 𝑝0𝑝1. (5.6)

In the symmetric case, this is
1
4 . By analogue of Theorem 4.5, the proportion of 2-protected

nodes is oscillating around

𝑓 ∗
𝐸,2-prot.(−1)

𝐽 + 𝐻 = 1
8 log2 ≈ 0.18034. (5.7)

This is less than in tries (as everymerged node is 2-protected),where it is (1.25−log2)/(1+
log2) ≈ 0.32888[Jan22]. In binary search trees the proportion converges to

11
30 = 0.36
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Figure 3: Values of
𝑓 ∗
𝐸,2-prot.(−1)

𝑟 log(𝑟) in the symmetric case with 𝑟 ∶= |𝒜|.

[MW12], and in uniformly random binary trees to 33/64 = 0.515625 [DJ14].

By the inclusion-exclusion-principle, the amount of 2-protected nodes in a binary patricia
trie𝑇 isΦ𝑖(𝑇)−Φ∗(𝑇)+Φ2(𝑇), with the first two being exactly 1 apart for |𝑇|𝑒 > 1. The
variance is thus asymptotically the variance ofΦ2, given in (4.24). In the symmetric case, we

hence have

𝑓 ∗
𝑉,2-prot.(−1) = 1

4 − 2(1
4)

2
∑
𝛼

∗ 4−|𝛼|

(1 + 2−|𝛼|)3

= 1
4 − 1

4

∞
∑
𝑘=0

4−𝑘

(1 + 2−𝑘)3 + 1
32

≈ 0.28038. (5.8)

Example 5.3. In the symmetric case with 𝑟 ∶= |𝒜|, (5.5) becomes

𝑓 ∗
𝐸,𝑟(−1) = (𝑟 − 1) log( 𝑟

𝑟 − 1) − log(𝑟) +
𝑟

∑
𝑘=2

(−1)𝑘(𝑟
𝑘
)(𝑘 − 2)!

𝑟𝑘𝑘−1 . (5.9)

We do not know the asymptotics of that last sum, but we can compare it to the trie. The same

principle as in (5.3) can be applied to tries, with 𝑓𝐸,𝑖(𝜆) replaced by 1 − 𝑒𝜆 − 𝜆𝑒𝜆, the
function counting internal nodes in the trie. TheMellin transform of this function at 𝑠 = −1
is 1, see [Jan22, (4.5)]. Let ̃𝑓𝐸,𝑟 be the 𝑓𝐸-function for 2-protected nodes in the trie. Then we
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have

𝑓 ∗
𝐸,𝑟(−1) = ̃𝑓 ∗

𝐸,𝑟(−1) − 1 + 𝐽. (5.10)

Janson shows that ̃𝑓 ∗
𝐸,𝑟(−1) ∼ 1

2𝑟[Jan22, 4.15], but the second term has 1 − 𝐽 ∼ 1
2𝑟 , too,

what leaves us with

𝑓 ∗
𝐸,𝑟(−1) = 𝑜(1

𝑟 ). (5.11)

This shows that the 2-protected nodes in tries are asymptotically dominated by those which

have only one child and therefore do not show up in the patricia trie. Figure 3 suggests that

𝑓 ∗
𝐸,𝑟(−1) could be Θ((𝑟 log 𝑟)−1).

For 𝑘 > 2, we need to calculate E𝜑(𝑘−1)-prot.(𝒫𝜆) in (5.1). By conditioning on the con-

tracted edges 𝛼 in the root (the common prefix of all strings), we get

E𝜑(𝑘−1)-prot.(𝒫𝜆) = ∑
𝛼∈𝒜∗

𝑒−(1−𝑝𝛼)𝜆𝑓𝐸,(𝑘−1)-prot.(𝑝𝛼𝜆). (5.12)

Putting this into (5.1) gives us multiple sums over 𝛼 ∈ 𝒜∗ even for 𝑘 = 3, so we do not
pursue this further.

5.2 Independence and matching number
Matching number and independence number are two similar measures of graphs, which as

additive functionals have toll functions defined by similar recursion equations.

Let 𝐺 = (𝑉, 𝐸) be a graph. A matching is a set 𝑀 ⊂ 𝐸 such that every node 𝑣 ∈ 𝑉 has

at most one edge 𝑒 ∈ 𝑀 with 𝑣 ∈ 𝑒. An independent set is a set 𝑆 ⊂ 𝑉 such that no vertices

in 𝑆 are neighbors. Matching number 𝜈(𝐺) and (node) independence number 𝛼(𝐺) are the
maximum cardinalities of matchings respectively independent sets.

On a tree 𝑇, these functionals can be calculated recursively. Let Φ(𝑇) be either 𝛼(𝑇) or

𝜈(𝑇). Both independence number andmatching number only grow by atmost 1 after adding

anode. For every subtree𝑇𝛽, 𝛽 ∈ 𝒜∗ wecan check if𝜑(𝑇𝛽) ∶= Φ(𝑇𝛽)−Φ(𝑇𝛽\{𝛽}) ∈
{0, 1} is one, that is if the root is necessary in a maximummatching / independent set. Such

nodes are called essential.

In the case of independent set, the root can only be added if all of its children are not in

the set, that is if all children are not essential. For a matching, the root can only be matched

if some child is not essential. These conditions are just the inverse of each other, so we can

see that 𝜑𝛼 + 𝜑𝜈 = 1 and 𝛼(𝑇) + 𝜈(𝑇) = |𝑇|. Therefore, we can now mainly consider

independence number. For a more detailed description see e.g. [Jan20].

The function 𝜑 is already the toll function for Φ, and it is bounded. Furthermore, Φ is

increasing, so we can apply Theorem 3.3:

Theorem 5.4. The central limit theorem Theorem 3.3 applies to the independence number 𝛼
and the matching number 𝜈 of random tries 𝒯𝑛 and of random patricia tries 𝒫𝑛. We have for
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Figure 4: Two patricia tries of size 5, with different independence numbers. (independent set

marked in red)𝜑𝛼 is zero for both, thus showing that𝛼(𝒫5) is random evenwhen

conditioned on 𝜑𝛼(𝒫5) = 0.

example

𝛼(𝒫𝑛) − E [𝛼(𝒫𝑛)]
√𝑛

𝑑
≈ 𝒩(0, �̂�2

𝛼(𝑛)) (5.13)

𝜈(𝒫𝑛) − E [𝜈(𝒫𝑛)]
√𝑛

𝑑
≈ 𝒩(0, �̂�2

𝜈(𝑛)) (5.14)

with constant (𝑑𝑝 = 0) or at least bounded functions �̂�2
𝛼(𝑛), �̂�2

𝜈(𝑛).

For Theorem 3.3iv) we have to show that Var𝛼(𝒫𝑛) = Ω(𝑛), but we cannot use Lemma

3.4 since 𝜑𝛼(𝒯𝑛) is not deterministic for big 𝑛. We use Lemma 3.5 with 𝜑′ = 𝜑𝛼. The
essentiality 𝜑𝛼 of a node only depends on the essentiality of its children, so if we know the

essentiality of the buckets in the bucket trie, we know the essentiality of its internal children.

What is left is to find a 𝑏 ≥ 2, such that Var(𝛼(𝒫𝑏) ∣ 𝜑𝛼(𝒫𝑏) is not always zero. This is the
case for 𝑏 = 5: See Figure 4 for the two [patricia] tries of size 5 with different independence
numbers and same 𝜑𝛼. Thus, Var𝛼(𝒫𝑛) = Ω(𝑛), and we also have

𝛼(𝒫𝑛) − E [𝛼(𝒫𝑛)]
√Var(𝛼(𝒫𝑛))

𝑑
→ 𝒩(0, 1), (5.15)

𝜈(𝒫𝑛) − E [𝜈(𝒫𝑛)]
√Var(𝜈(𝒫𝑛))

𝑑
→ 𝒩(0, 1). (5.16)

Note that the same argument also holds for tries, so we can replace 𝒫𝑛 with 𝒯𝑛 in (5.15) and

(5.16).

We already know that
𝛼(𝒫𝑛)

𝑛 converges to𝐻−1𝑓 ∗
𝐸,𝛼(−1)+1 a.s. in the asymmetric case ac-

cording to Theorem 3.9, but we cannot calculate 𝑓𝐸,𝛼 like before. This is because𝜑𝛼 basically

depends on the entire trie structure and the recursion only relates 𝑓𝐸,𝛼(𝜆) to 𝑓𝐸,𝛼(𝑝𝑎𝜆) for
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𝑎 ∈ 𝒜. E.g. for the symmetric, binary case, we have for tries

̃𝑓𝐸,𝛼(𝜆) = E[𝜑𝛼(𝒯𝜆)] − P(𝑁𝜆 = 1)
= E[(1 − 𝜑𝛼(𝒯 0

𝜆))(1 − 𝜑𝛼(𝒯 1
𝜆))] + P(𝑁𝜆 = 1) − P(𝑁𝜆 = 1)

= (1 − ̃𝑓𝐸,𝛼(𝜆
2 ) − 𝜆

2 𝑒−𝜆/2)
2
. (5.17)

We guess that 𝑓𝐸,𝛼(𝜆) itself already has log(𝜆)-periodic oscillations.
We can nevertheless approximate 𝑓𝐸,𝛼 by conditioning on the size of fringe trees and cal-

culate 𝛼𝑛 ∶= E[𝜑𝛼(𝒫𝑛)] for 0 ≤ 𝑛 ≤ 𝑁 until some big integer 𝑁 ∈ N. Then E [𝛼(𝒫𝑛)]
can be bounded by

0 ≤ E [𝛼(𝒫𝑛)] − (𝑛 +
𝑁

∑
𝑘=2

E[𝜑𝛼(𝒫𝑘)]E [Φ𝑘(𝒫𝑛)]) ≤ E [Φ>𝑁(𝒫𝑛)] . (5.18)

Using the results from Section 4.2, we can use the simultaneous convergence of Φ𝑖 and
Φ𝑘; 2 ≤ 𝑘 ≤ 𝑁 in the asymmetric case. For Φ>𝑁 we use Φ>𝑁 = Φ𝑖 − ∑𝑁

𝑘=2 Φ𝑘 and the

fact that the limits of E[Φ𝑘]; 𝑘 ≥ 2 sum up to the limit of E[Φ𝑖] and get:

0 ≤ lim
𝑛→∞

E [𝛼(𝒫𝑛)]
𝑛 − (1 +

𝑁
∑
𝑘=2

(1 − 𝜌(𝑘))𝛼𝑘
𝑘(𝑘 − 1)𝐻 ) ≤

∞
∑

𝑘=𝑁+1

1 − 𝜌(𝑘)
𝑘(𝑘 − 1)𝐻

≤ 1
𝑁𝐻. (5.19)

We could also divide by |𝒫𝑛| and get statements about the proportion of essential nodes, as

in Theorem 4.5. This approach to approximate the mean can also be used for other bounded

additive functionals. For the symmetric, binary case, the 𝛼𝑛 are given by

𝛼𝑛 =
𝑛−1
∏
𝑘=1

(𝑛
𝑘

)
(1 − 𝛼𝑘)(1 − 𝛼𝑛−𝑘)

2𝑛 − 2 (5.20)

for 𝑛 ≥ 2 and 𝛼1 = 1, 𝛼0 = 0. See Figure 5 for a plot of the first values of 𝛼. Calculating
these values up to 𝑁 = 800 (higher values gave overflows in double-precision floats) gives

the bounds

0.60225 ≤
𝑓 ∗
𝐸,𝛼(−1)

2𝐻 ≤ 0.60316 (5.21)

for the asymptotic mean of the proportion of essential nodes.

5.3 Amount of children
For an alphabet 𝒜 bigger than 2, one might be interested in how many children the nodes

have and count how many nodes have exactly 𝑘 children, for 2 ≤ 𝑘 ≤ |𝒜|. Call this additive
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Figure 5: The first values of𝛼𝑛 ∶= E𝜑𝛼(𝒫𝑛), on a normal and a logarithmic 𝑥 scale, showing
the oscillations.

functional Φ𝑘 for this section. As every node with more than one child is also in the patricia

trie, this is the same amount as in the trie; we have Φ𝑘 = Φ̃𝑘 and 𝜑𝑘 = 𝜑𝑘.
The mean function is given by

𝑓𝐸,𝑘(𝜆) = ∑
𝐼⊆𝒜
|𝐼|=𝑘

∏
𝑎∉𝐼

𝑒−𝑝𝑎𝜆 ∏
𝑎∈𝐼

(1 − 𝑒−𝑝𝑎𝜆)

= ∑
𝐼⊆𝒜
|𝐼|≤𝑘

(−1)𝑘+|𝐼|(𝑛 − |𝐼|
𝑘 − |𝐼|

) ∏
𝑎∉𝐼

𝑒−𝑝𝑎𝜆 (5.22)

and its Mellin transform thus by

𝑓 ∗
𝐸,𝑘(𝑠) = ∑

𝐼⊆𝒜
|𝐼|≤𝑘

(−1)𝑘+|𝐼|(𝑛 − |𝐼|
𝑘 − |𝐼|

)Γ(𝑠) ∏
𝑎∉𝐼

𝑝−𝑠
𝑎 . (5.23)

The value at 𝑠 = −1 can be calculated using the usual methods, and is

𝑓 ∗
𝐸,𝑘(−1) = ∑

𝐼⊆𝒜
|𝐼|≤𝑘

(−1)𝑘+|𝐼|(𝑛 − |𝐼|
𝑘 − |𝐼|

) ∏
𝑎∉𝐼

𝑝𝑎 log(∏
𝑎∉𝐼

𝑝𝑎). (5.24)

We now explore the asymptotics of this term in the symmetric case for 𝑛 ∶= |𝒜| → ∞.

The term then becomes

𝑓 ∗
𝐸,𝑘(−1) = (𝑛

𝑘
)

𝑘
∑
𝑗=1

(−1)𝑘+𝑗(𝑘
𝑗
)(1 − 𝑗

𝑛) log(1 − 𝑗
𝑛) (5.25)
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These kinds of alternating sums with binomial coefficients are studied for example in [FS95].

The terms of the sums can be expressed as residues of a meromorphic function, which gives

asymptotics by calculating or estimating terms contributed by other singularities.

If we had polynomials in above sum instead of the logarithm, following would happen: For

𝑚 ≥ 0, we have
𝑘

∑
𝑗=0

(−1)𝑘+𝑗(𝑘
𝑗
)(𝑗)𝑚 = (𝑘)𝑚

𝑘
∑
𝑗=𝑚

(−1)𝑘+𝑗(𝑘 − 𝑚
𝑗 − 𝑚

) = (𝑘)𝑚𝛿𝑘𝑚, (5.26)

so to find the sum for apolynomial,wehave to find the coefficient of(𝑗)𝑘 in the basis((𝑗)𝑘)𝑘≥0.
Also, this term is always zero for polynomials of degree lower than 𝑘. For 𝑗𝑘 it is 1, and for

𝑗𝑘+1, it is (𝑘
2
), since (𝑗)𝑘+1 = 𝑗𝑘+1 − (𝑘

2
)𝑗𝑘 + 𝑂(𝑗𝑘−1). The coefficients of this polynome

are the Stirling numbers of first kind.

For fixed 𝑘, we can use the Taylor series of (1 − 𝑥) log(1 − 𝑥) = −𝑥 + ∑𝑚≥1
𝑥𝑚

𝑚(𝑚−1) ,

which converges absolutely since
𝑗
𝑛 ≤ 𝑘

𝑛 < 1.

𝑓 ∗
𝐸,𝑘(−1) = (𝑛

𝑘
) ∑

𝑚≥𝑘

1
𝑚(𝑚 − 1)

𝑘
∑
𝑗=1

(−1)𝑘+𝑗(𝑘
𝑗
)( 𝑗

𝑛)
𝑚

= (𝑛
𝑘

) 𝑘!𝑛−𝑘

𝑘(𝑘 − 1) + (𝑛
𝑘

)𝑘!𝑘(𝑘 + 1)
𝑘(𝑘 + 1)2 𝑛−𝑘−1 + 𝑂(𝑛−2)

= 1
𝑘(𝑘 − 1) − 𝑘(𝑘 − 1)

2𝑘(𝑘 − 1)𝑛−1 + 1
2𝑛−1 + 𝑂(𝑛−2)

= 1
𝑘(𝑘 − 1) + 𝑂(𝑛−2) (5.27)

Not unsurprisingly, we have asymptotically as many nodes with 𝑘 children as nodes with 𝑘
strings, if the amount of letters goes to infinity.

If we set 𝑘 = 𝑛 and change the order of summation, we get

𝑓 ∗
𝐸,𝑛(−1) = 1

𝑛

𝑛
∑
𝑘=1

(𝑛
𝑘

)(−1)𝑘𝑘 log
𝑘
𝑛

= 1
𝑛

𝑛
∑
𝑘=1

(𝑛
𝑘

)(−1)𝑘𝑘 log
𝑘

log𝑛,

where we could replace 𝑛 with log𝑛 because the sum over linear functions is zero for 𝑛 ≥ 2,
as seen before. This sum can be estimated similarly to [FS95, Example 6]. We leave out the

details and only roughly sketch the method used. The terms of the sum are the residues of
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𝜔𝑛(𝑠) log(𝑠 log𝑛), with

𝜔𝑛(𝑠) =
𝑛

∏
𝑘=1

𝑘
𝑘 − 𝑠. (5.28)

With the residue theorem, this sum can be calculated by integrating along a path that encir-

cles 1, … 𝑛 in a big circle, extending left, but avoiding the singularity atR≤0. Because 𝜔𝑛(𝑠)
tends to zero, only a small part𝒞0 around 0 is relevant. The rest is smaller than any negative

power of log𝑛. This part is the path between − log
− 1

2 𝑛 ± (log−1 𝑛)𝑖, at a constant distance
of log−1 𝑛 to R≤0.
By Stirling’s formula one has the approximation

𝜔𝑛(𝑠) = 𝑛𝑠Γ(1 − 𝑠)(1 + 𝑂( log𝑛
𝑛 )) (5.29)

which is valid uniformly over 𝒞0 and the integral over the error term is again small. With a

change of variables 𝜁 = 𝑠 log𝑛, with 𝒟0 = log𝑛𝒞0, we have

𝑓 ∗
𝐸,𝑛(−1) ≈ 1

2𝜋𝑖𝑛 ∫𝒞0
𝑛𝑠Γ(1 − 𝑠) log(𝑠 log𝑛)d𝑠

= 1
2𝜋𝑖𝑛 log𝑛 ∫𝒟0

𝑒𝜁Γ(1 − 𝜁
log𝑛) log(𝜁)d𝜁

= 1
𝑛 log𝑛 ∑

𝑚≥0
(−1)𝑚 Γ(𝑚)(1)

𝑚! log𝑚 𝑛
1

2𝜋𝑖 ∫𝒟0
𝑒𝜁𝜁𝑚 log𝜁d𝜁 (5.30)

by expanding Γ(1 − 𝜁
log𝑛) and interchanging the order of integration and summation. The

path 𝒟0 can be extended back towards −∞ with a small error term, forming the path ℒ.

The integrals of 𝑒𝜁𝜁𝑚 along ℒ are known, see [WW21, 12.22].

1
2𝜋𝑖 ∫ℒ 𝑒𝜁𝜁𝑚 log𝜁d𝜁 = 𝑑

𝑑𝑚
1

2𝜋𝑖 ∫ℒ 𝑒𝜁𝜁𝑚d𝜁

= 𝑑
𝑑𝑚

1
Γ(−𝑚)

= (−1)𝑚𝑚! (5.31)

Combining (5.30) and (5.31), we get

𝑓 ∗
𝐸,𝑛(−1) = 1

𝑛 log𝑛 ∑
𝑚≥0

Γ(𝑚)(1)
log𝑚 𝑛 + 𝑂( 1

𝑛 log𝑅 𝑛
) (5.32)

for 𝑅 an arbitrary large integer.
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5.4 Shape parameter
The shape parameter of a tree is the logarithm of the product of all fringe tree sizes, it is thus

the additive functional to the toll function𝜑(𝑇) ∶= log|𝑇|. The shape parameterwas studied

by Fill [Fil96] for binary search trees, where it is the probability mass. For a fixed binary

search tree𝑇with𝑛 nodes and𝐵𝑛 a random binary search tree with𝑛 nodes,P(𝐵𝑛 = 𝑇)−1

is the shape of 𝑇. It can be shown that this parameter is smallest for balanced trees, this is

why this parameter is regarded a crude measure for “shape”.

The shape functional is increasing, but the toll function is not bounded. However, the proof

of Theorem 3.3 shows that the assumption of boundedness can be relaxed to the moment

conditions in Theorem 3.1 for 𝜑, 𝜑+ and 𝜑−[Jan22, Remark 3.8] and the condition (3.30) for

higher centralized moments. We can use Lemma 3.5 (with 𝜑′ = 𝜙 and 𝑏 = 4) to show that

Var(Φ(𝒫𝑛)) = Ω(𝑛). For patricia tries 𝒫𝜆, we have log|𝒫𝜆| ≤ log(2𝑁𝜆), so the moment

condition is fulfilled. We still have to prove condition

Theorem 5.5. Theorem 3.3 holds for the shape parameter on patricia tries. We have, for ex-

ample,
Φ(𝒫𝑛) − EΦ(𝒫𝑛)

√𝑛
𝑑
≈ 𝑁(0, �̂�(𝑛)) (5.33)

with all moments. In the binary case with 𝑑𝑝 = 0, the mean converges:

EΦ(𝒫𝑛)
𝜆 → 1

𝐻 ∑
𝑘≥2

(1 − 𝜌(𝑘)) log(2𝑘 − 1)
𝑘(𝑘 − 1) . (5.34)

Proof. In the binary case, the size of a tree with 𝑘 leaves is 2𝑘 − 1 deterministically. By con-

ditioning on the amount of leaves, we have

𝑓𝐸,sh(𝜆) = ∑
𝑘≥2

log(2𝑘 − 1)𝑓𝐸,𝑘(𝜆). (5.35)

Since the Mellin transform is basically an integral, monotone convergence gives

𝑓 ∗
𝐸,sh(𝑠) = ∑

𝑘≥2
log(2𝑘 − 1)𝑓 ∗

𝐸,𝑘(𝑠). (5.36)

The term at 𝑠 = −1 is then, using (4.21):

∑
𝑘≥2

(1 − 𝜌(𝑘)) log(2𝑘 − 1)
𝑘(𝑘 − 1) . (5.37)
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6 Proofs of Lemmas
Proof of Lemma 3.5. This uses the basic idea from the proof of Lemma 3.4. We condition on

the bucket trie 𝒯 ′
𝑛 ∶= buc𝑏(𝒯𝑛) for bucket size 𝑏 and additionally on 𝜑′

𝛼(𝒯 𝑣
𝑛 ) for each

bucket 𝑣. Call this condition 𝐴. Using ()𝑖 for the internal and ()𝑒 for the external nodes, the
additive functional then splits into

Φ(𝒯𝑛) = ∑
𝑣∈(𝒯 ′

𝑛)𝑖

𝜑(𝒯 𝑣
𝑛 ) + ∑

𝑣∈(𝒯 ′
𝑛)𝑒

Φ(𝒯 𝑣
𝑛 ), (6.1)

where the first part is dependent on our condition𝐴 and the second consists of small patricia

tries, independent of 𝒯 ′
𝑛 . Now we can bound the variance by only looking at buckets with 𝑏

strings and have

EVarΦ(𝒯𝑛) ≥ EVar(Φ(𝒯𝑛) ∣ 𝐴)
= E ∑

𝑣∈(𝒫 ′
𝑛)𝑒

Var(Φ(𝒯 𝑣
𝑛 ) ∣ 𝜑′(𝒫 𝑣

𝑛 ))

≥ E [Φ̃𝑏(𝒯𝑛)]E [Var(Φ(𝒯𝑏) ∣ 𝜑′(𝒯𝑏))] , (6.2)

using the independence of the small tries conditioned on 𝒯 ′
𝑛 and that the Φ̃𝑏 counts the

amount of buckets of size 𝑏. We have seen in section 4.2 in (4.21) that E[Φ̃𝑏(𝒯𝑛)] = Θ(𝑛)
and because E [Var(Φ(𝒯𝑏) ∣ 𝜑′(𝒯𝑏))] > 0, we have also E[VarΦ(𝒯𝑛)] = Ω(𝑛).

7 Conclusion and open questions
The central limit theorem on tries could be extended to patricia tries rather easily in Propo-

sition 2.2. For most applications, including the size of the patricia trie and the size of fringe

trees, the mean functions 𝑓𝐸 were not much more complicated than in the trie case, while

the variance functions including the sizeΦ𝑖 often had lengthy terms. There were often sums

over all strings 𝛼 ∈ 𝒜∗, so it would make sense to study the characteristics of these sums,

especially to make long terms like (4.14) more approachable.

The recursive nature of 𝑘-protected nodes and the independence number made studying

the mean harder, especially the question for the asymptotic proportion of 𝑘-protected nodes
for 𝑘 → ∞ stays open.

Another open question would be if there are other tree models where one can use this

approach of comparing with the trie. Digital search trees are a lot like tries and can also be

constructed from tries, but they have no correspondence of fringe trees.
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