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Deutsche Zusammenfassung

Die Emergenz digitaler Netzwerke ist auf die ständige Entwicklung und Transformation

neuer Informationstechnologien zurückzuführen. Dieser Strukturwandel führt zu äu-

ßerst komplexen Systemen in vielen verschiedenen Lebensbereichen. Es besteht daher

verstärkt die Notwendigkeit, die zugrunde liegenden wesentlichen Eigenschaften von

realen Netzwerken zu untersuchen und zu verstehen. In diesem Zusammenhang wird

die Netzwerkanalyse als Mittel für die Untersuchung von Netzwerken herangezogen

und stellt beobachtete Strukturen mithilfe mathematischer Modelle dar. Hierbei, wer-

den in der Regel parametrisierbare Zufallsgraphen verwendet, um eine systematische

experimentelle Evaluation von Algorithmen und Datenstrukturen zu ermöglichen.

Angesichts der zunehmenden Menge an Informationen, sind viele Aspekte der

Netzwerkanalyse datengesteuert und zur Interpretation auf e�ziente Algorithmen ange-

wiesen. Algorithmische Lösungen müssen daher sowohl die strukturellen Eigenschaften

der Eingabe als auch die Besonderheiten der zugrunde liegenden Maschinen, die sie aus-

führen, sorgfältig berücksichtigen. Die Generierung und Analyse massiver Netzwerke

ist dementsprechend eine anspruchsvolle Aufgabe für sich.

Die vorliegende Arbeit bietet daher algorithmische Lösungen für die Generierung

und Analyse massiver Graphen. Zu diesem Zweck entwickeln wir Algorithmen für

das Generieren von Graphen mit vorgegebenen Knotengraden, die Berechnung von

Zusammenhangskomponenten massiver Graphen und zerti�zierende Grapherkennung

für Instanzen, die die Größe des Hauptspeichers überschreiten. Unsere Algorithmen

und Implementierungen sind praktisch e�zient für verschiedene Maschinenmodelle:

R Abschni� 1.2

Maschinenmodelle

und bieten sequentielle, Shared-Memory parallele und/oder I/O-e�ziente Lösungen.

Struktureller Aufbau

Wir führen zunächst das External Memory Model (Emm) ein und fassen die Resultate

dieser Arbeit nachfolgend zusammen. Der Hauptteil (Kapitel 2 bis 7) ist hierbei zwei-

geteilt: Kapitel 2 bis 5 stellen den ersten Teil dar und befassen sich mit dem Problem

der Generierung von uniform zufälligen Graphen mit vorgegebenen Knotengraden;

Kapitel 6 und 7 stellen den zweiten Teil dar und befassen sich mit Algorithmen zur

Analyse und Verarbeitung von massiven Graphen.

External Memory Model

Wir verwenden das anerkannte External Memory Model (Emm) von Aggarwal und

Vitter [1]. Das Modell abstrahiert Speicherhierarchien moderner Computer in ein theo-

retisches Framework. Es modelliert eine Speicherhierarchie aus zwei Schichten, dem

schnellen Internspeicher, welches bis zu M Datenelemente umfasst, sowie dem langsa-

men Externspeicher unbegrenzter Größe. Die Ein- und Ausgabe wird im Externspeicher

gespeichert, und Daten werden zwischen den Speicherschichten mittels sogenannter

I/Os übertragen, wobei jeweils ein Block von B aufeinanderfolgenden Datenelementen

verschoben wird. Im Emm werden Berechnungen nur mit Daten im Internspeicher durch-
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geführt, und die Performanz eines Algorithmus wird in der Anzahl der durchgeführten

I/Os gemessen.

• Lesen und Schreiben von n Werten eines zusammenhängenden Bereichs benötigt

scan(n) = Θ( nB )scan(n) = Θ( nB ) I/Os I/Os.

• Vergleichsbasiertes Sortieren eines zusammenhängenden Bereichs mit n Werten

benötigt sort(n) = Θ( nB logM/B( nB ))sort(n) =

Θ( nB logM/B( nB )) I/Os

I/Os.

• Prioritätswarteschlangen können n Einfüge- und Löschoperationen in sort(n)

I/Os ausführen [14, 13].

Für praktische Werte von n,B undM ist das Sortieren vergleichbar mit nur wenigen

Scandurchläufen und wird gegenüber zufälligen I/Os stark bevorzugt. Hierbei stellt die

Sortierkomplexität eine untere Schranke für viele nicht-triviale algorithmische Probleme

im Externspeicher dar [1, 133].

Edge Switching und Global Edge Switching (Kapitel 2 und 3)

Kapitel 2 stellt EM-LFR vor, eine komplexe Pipeline mehrerer I/O-e�zienter Subroutinen

zur Generierung großer LFRLFR:

R Abschni� 2.3

Graphinstanzen, die die Größe des Hauptspeichers über-

schreiten. In EM-LFR besteht die größte Herausforderung darin, einen simplen Graphen

mit vorgegebener Gradsequenz zu generieren. Um dies zu realisieren, folgt EM-LFR dem

Fixed-Degree-Sequence-Model (FDSM) und unterteilt die Generierung in zwei Schritte

auf. Zuerst, wird deterministisch ein simpler Graph mit der vorgegebenen Gradsequenz

erzeugt. Anschließend wird der Graph mittels Edge Switching (ES) pertubiert, wobei die

Knotengrade unverändert bleiben. In der ursprünglichen Formulierung von EM-LFR

werden die Algorithmen EM-HH und EM-ESEM-HH und EM-ES:

R Abschni�e 2.4 und 2.5

verwendet um diesen Prozess zu realisieren.

Hierbei ist EM-HH ein I/O-e�zienter Generator nach Havel und Hakimi [95, 89] und

EM-ES eine I/O-e�ziente Implementierung von ES. Da die von EM-HH produzierten

Graphen einen starken Bias aufweisen, sind viele Perturbationsschritte durch Edge
Switching nötig. Wir betrachten daher eine alternative Art der Generierung mittels des

Con�guration Models (CM) und passen die Pipeline entsprechend an:

• EM-CM/ES:EM-CM/ES:

R Abschni� 2.6

Wir stellen EM-CM/ES als Alternative zu der ursprünglich vorge-

schlagenen Kombination von EM-HH und EM-ES vor. Hierfür implementieren

wir einen I/O-e�zienten Generator für das Con�guration Model und substituieren

EM-HH im ersten Schritt. Da der generierte Graph allerdings in der Regel nicht

simpel ist, passen wir EM-ES an, um Multi-Graphen verarbeiten zu können.

Um zu einem simplen Graphen zu gelangen, akzeptiert der Algorithmus alle ES
Tausche, die weder Multi-Kanten noch Eigenschleifen erzeugen. Zur Beschleuni-

gung dieses Prozesses, werden illegale Kanten gezielt häu�ger in den ES Tauschen

anvisiert.

Die so erhaltenen Graphinstanzen haben jedoch weiterhin einen Bias [5, 17]

und müssen daher weiter mit EM-ES randomisiert werden. Unsere Experimente
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zeigen, auch wenn dieser Ansatz aufwändiger ist, dass EM-CM/ES schneller zu

einem uniformen Sample konvergieren kann als durch die zuvor vorgeschlagene

Kombination von EM-HH und EM-ES.

Kapitel 3 betrachtet Shared-Memory parallele Ansätze zur Randomisierung simpler Gra-

phen. Wir implementieren einen einfachen parallelen Algorithmus für Edge Switching
Markov Chain (ES-MC), der aufgrund der in ES-MC auftretenden Abhängigkeiten nicht

gut skalieren kann. Um dieses Problem zu umgehen und mehr Parallelität zu ermögli-

chen, schlagen wir Global Edge Switching Markov Chain (G-ES-MC), eine Variante von

ES-MC mit einfacheren Abhängigkeiten, vor. Ähnlich wie bei ES-MC zeigen wir, dass

auch G-ES-MC zu einer uniformen Verteilung konvergiert. Unsere Experimente deuten

an, dass G-ES-MC höchstens die gleiche Anzahl an Tauschen benötigt wie ES-MC und

zeigen außerdem die E�zienz und Skalierbarkeit unserer implementierten Algorithmen.

• RobinES and GlobalES: Wir präsentieren RobinES und GlobalES als sequentiel-

le Lösungen von ES-MC und G-ES-MC:

R Abschni� 3.2

ES-MC und G-ES-MC. Unsere Implementierungen verwenden

Hash-Sets, die Kanteneinfügung, -löschung und Existenzabfragen in erwarteter

konstanter Zeit unterstützen, weitere Hilfsdatenstrukturen für das zufällige Zie-

hen von Kanten und Prefetching um die zufälligen I/Os auf den Hauptspeicher zu

beschleunigen.

In einem Vergleich mitNetworKit [171] undGengraph [181] zeigen wir, dass unsere

Implementierungen 15-50 Mal schneller als NetworKit und 5-10 Mal schneller als

Gengraph sind. Für große Graphen schneidet GlobalES besser ab als RobinES,

da das Permutieren der Kanten e�zienter ist als das mehrfache Ziehen einzelner

zufälliger Kanten. RobinES hingegen zeigte eine bessere Performanz für kleine

Graphen.

• EagerES and SteadyGlobalES: Wir stellen EagerES, EagerES:

R Abschni� 3.4.1

eine vereinfachte Paralle-

lisierung von ES-MC, als Performancebaseline unserer parallelen Algorithmen

vor. Der Algorithmus verwendet ein paralleles Hash-Set und setzt nur eine im-

plizite Synchronisationsstrategie ein, bei der jeder Prozessor seine ES Tausche

unabhängig ausführt. Dies führt jedoch zu einer Ausführungsreihenfolge, die vom

Prozess-Scheduler abhängig ist, und bildet daher ES-MC nicht vollkommen exakt

ab.

Für G-ES-MC entwickeln wir SteadyGlobalES, SteadyGlobalES:

R Abschni� 3.4.2

eine parallele Umsetzung, die

uniform zufällige ES Globaltausche verarbeitet. Hierbei sind ES Globaltausche so

konzipiert, dass sie im Vergleich zu ES-MC einfachere Abhängigkeiten vorweisen,

die wir in zwei Typen unterteilen: Lösch- und Einfüge-Abhängigkeiten. Ein ES
Globaltausch wird dann in mehreren Runden parallel verarbeitet. Trotz der Kom-

plexität des Algorithmus zeigen unsere Experimente, dass SteadyGlobalES nur

höchstens einen Faktor 2 langsamer als EagerES ist, obwohl das G-ES-MC exakt

abgebildet wird.

VII



Zusammenfassung

Curveball und Global Curveball (Kapitel 4)

Kapitel 4 präsentiert eine Reihe von Algorithmen für einen alternativen Randomisie-

rungsprozess, nämlich Curveball (CB) [174, 46] und Global Curveball (G-CB) [47, 48],

vor. CB geht ähnlich wie ES vor, wählt aber stattdessen zwei zufällige Knoten u 6= v

und führt einen CB Tausch aus, bei dem die Nachbarschaften von u und v randomisiert

werden. Dazu sammelt CB zunächst alle nicht-gemeinsamen Nachbarn beider beteiligten

Knoten, entfernt u und v aus dieser Liste, und verteilt sie zufällig neu ohne dabei die

Knotengrade zu verändern. Da die Nachbarschaften beider Knoten im Ganzen berück-

sichtigt werden können, führt ein einzelner CB Tausch potentiell zu einer größeren

Veränderung im Graphen im Vergleich zu einem ES Schritt.

Während CB die partizipierenden Knoten uniform zieht, fasst G-CB mehrere CB
Tausche in einen Superschritt zusammen. In diesem sogenannten Globaltausch ist jeder

Knoten genau einmal in einem CB Tausch beteiligt
1
. Wir erweitern G-CB auf ungerichte-

te Graphen und zeigen, dass auch dieser Prozess zur uniformen Verteilung konvergiert.

Darüber hinaus deuten unsere Experimente an, dass G-CB besser abschneidet als CB. Mit

weiteren Experimenten zeigen wir die E�zienz und Skalierbarkeit unserer Algorithmen,

auch für Instanzen, die die Größe des Hauptspeichers überschreiten.

• EM-CB und IM-CB: Wir präsentieren EM-CB,EM-CB:

R Abschni� 4.4.1

einen I/O-e�zienten sequentiellen

Algorithmus für CB. Da Änderungen in den Nachbarschaften der beteiligten Kno-

ten durch einen CB Tausch ebenfalls berücksichtigt werden müssen, verzichtet

EM-CB auf eine statische Graphdatenstruktur bei der gegebenenfalls unstruktu-

rierte Zugri�e durchgeführt werden. Durch die Anwendung von Time Forward
ProcessingTFP:

R Abschni� 4.2.2

(TFP) umgehen wir diese unstrukturierten Zugri�smuster und verwal-

ten den Graphen stattdessen dynamisch. Dazu interpretieren wir jeden CB Tausch

als einen Zeitpunkt in der Berechnung des Algorithmus. Zu jedem CB Tausch

werden dann nur die Nachbarschaften beider Tauschpartner benötigt, die mittels

TFP bereitgestellt werden. Um dies zu realisieren, führt EM-CB CB Tausche in

Batches durch, wobei für jeden Batch alle Tauschpartner zufällig gezogen und an-

schließend in Hilfsdatenstrukturen verwaltet werden. Diese werden dann genutzt

um TFP Nachrichten entsprechend weiterzuleiten.

Für den Fall, dass die Speicherzugri�e nicht der limitierender Faktor sind, schla-

gen wir IM-CBIM-CB:

R Abschni� 4.4.2

als schnellere Alternative zu EM-CB vor. Durch den Verzicht

auf den für TFP benötigten Datenstrukturen und Verwendung einer klassischen

Adjazenzvektor-Repräsentation, akzeptiert IM-CB die unstrukturierten Zugri�e

und zeichnet sich daher besonders bei kleinen und mittelgroßen Graphen aus.

• EM-GCB und EM-PGCB: EM-CBEM-GCB:

R Abschni� 4.4.3

ist unser I/O-e�zienter Algorithmus für ungerich-

tetes G-CB. Durch das Ausnutzen der zusätzlichen Struktur von Globaltauschen

können wir auf die Hilfsdatenstrukturen von EM-CB und IM-CB verzichten. Ge-

nauer gesagt, interpretieren wir einen Globaltausch als eine zufällige Permutation

1

Der Einfachheit halber nehmen wir an, dass die Anzahl der Knoten gerade ist; für den allgemeinen

Fall siehe Abschnitt 4.4.3.
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der Knoten und repräsentieren diesen implizit durch Verwendung geeigneter

Hash-Funktionen.

Weiteres Engineering führt zu EM-PGCB:

R Abschni� 4.4.4

EM-PGCB, einer parallelen Erweiterung von EM-

GCB. Um parallele Verarbeitung zu ermöglichen, unterteilen wir die Globaltausche

in noch kleinere sogenannte Makrochunks, die einzeln im Hauptspeicher gehalten

werden. Diese Makrochunks werden dann ebenfalls in kleinere Mikrochunks
unterteilt, deren Größe so gewählt wird, dass fast alle CB Tausche unabhängig

voneinander parallel ausgeführt werden können. In den seltenen Fällen, in denen

Abhängigkeiten auftreten, greifen wir auf Work Stealing zurück, um unnötige

Wartezeiten zu vermeiden. Wir weisen experimentell nach, dass in einigen Fällen,

EM-PGCB im Vergleich zu EM-ES um fast eine Größenordnung schneller ist und

eine vergleichbare Randomisierungsqualität erreicht.

Uniformes Generieren von Power-law Graphen (Kapitel 5)

Während in Kapitel 2 bis 4 Markow-Ketten basierende Monte-Carlo Verfahren (MCMC)

zur Generierung simpler Graphen mit vorgegebener Gradsequenz dargelegt werden

behandelt Kapitel 5 einen exakten uniformen Generator.

Wir stellen den Inc-Powerlaw Algorithmus in seiner vollständigen Beschreibung

vor. Inc-Powerlaw verbessert den Pld Algorithmus [78] durch Anwendung von in-
cremental relaxation, einer kürzlich entwickelten Technik von Arman et al. [17]. An

den Stellen, bei denen incremental relaxation verwendet wird, bestimmen wir die Rei-

henfolge, in der die relevanten Graphsubstrukturen relaxiert werden sollen, wie sie

zu zählen sind und bestimmen geeignete untere Schranken. In unserer Untersuchung

haben wir festgestellt, dass Inc-Powerlaw in der usrprünglichen Formulierung mittels

incremental relaxation zu viele Runs verwarf und daher keine lineare Laufzeit aufwies.

Um dieses Problem zu lösen, führen wir weitere Switchings zum Algorithmus ein und

weisen nach, dass die Rejection-Wahrscheinlichkeit hinreichend klein ist.

Um unsere Erkenntnisse zu veri�zieren, entwickeln wir eine Inc-Powerlaw Imple-

mentierung, die anschließend parallelisiert wird. In unserer empirischen Studie stellen

wir fest, dass Inc-Powerlaw bei kleinen Durchschnittsgraden sehr e�zient ist und bei

größeren Durchschnittsgraden höhere Konstanten aufweist. Außerdem bestätigen wir

empirisch die lineare erwartete Laufzeit von Inc-Powerlaw.

• Inc-Powerlaw: Inc-Powerlaw Inc-Powerlaw:

R Abschni� 5.2

erzeugt zunächst einen Zufallsgraph nach dem

Con�guration Model und wandelt illegale Strukturen in legale um. Dazu werden

mehr als 20 verschiedene Switchings verwendet. Um Uniformität zu gewährleisten,

wird Rejection-Sampling verwendet, so dass alle generierten Graphen uniform in

ihrer jeweiligen Klasse sind. Für jedes zufällig gezogene Switching wird gewürfelt

ob es verworfen (f-rejection oder b-rejection) wird und der Algorithmus dadurch

neugestartet wird.

Wir stellen alle notwendigen Voraussetzungen für die Wiederherstellung der

linearen Laufzeit von Inc-Powerlaw vor. In Phase 4 führt die Hinzunahme von
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incremental relaxation zur Verringerung des Rechenaufwands, die mit der Erhö-

hung der b-rejection Wahrscheinlichkeit einhergeht. Dies führte zu intolerabel

vielen Rejections des Algorithmus. Wir lösen dieses Problem durch Hinzufügen

von drei Booster-Switchings (ta, tb und tc zu dem ursprünglich verwendeten t-

Switching). Alle vier Switchings erzeugen die sogenannte triplet-Struktur und

möglicherweise zusätzliche Kanten in Abhängigkeit vom gezogenen Switching.

Durch Berechnung der entsprechenden Konstanten und unteren Schranken zeigen

wir, dass die Wahrscheinlichkeit für eine b-rejection in Phase 4 dann o(1) ist.

In ähnlicher Weise wird in Phase 5 von Inc-Powerlaw die Wahrscheinlichkeit

einer b-rejection durch Hinzunahme von incremental relaxation beeinträchtigt.

Hier fügen wir Booster-Switchings (type-III, type-IV, type-V, type-VI und type-VII

Switchings) hinzu, um eine doublet-Struktur zu erzeugen und die Wahrscheinlich-

keit einer Rejection zu verringern. Auf analoge Weise beweisen wir anschließend,

dass die Wahrscheinlichkeit für eine b-rejection erneut o(1) ist.

• Intra-Run und Inter-Run Parallelisierung: In unserer experimentellen Auswer-

tung zeigen wir, dass das Sampling des anfänglichen Multi-Graphen und die

Konstruktion der geeigneten Datenstrukturen die dominierenden Faktoren im Al-

gorithmus sind. Unsere Implementierung inkorporiert daherParallelisierung:

R Abschni� 5.4.2

Parallelisierungsstra-

tegien, um die Auswirkungen des oben genannten Flaschenhalses zu verringern.

Wir betrachten zwei orthogonale Strategien: Intra-Run und Inter-Run.

Während Intra-Run die Konstruktion des Multi-Graphen und seiner repräsen-

tativen Datenstrukturen direkt parallelisiert, startet Inter-Run mehrere Runs

und akzeptiert den ersten akzeptierenden Run. Wir verwenden Synchronisation,

um einen Bias zugunsten von schnelleren Runs zu vermeiden: alle Prozessoren

weisen ihren Runs global eindeutige Indizes zu und der akzeptierende Run mit

kleinstem Index wird zurückgegeben.

Zusammenhangskomponenten im Externspeicher (Kapitel 6)

Kapitel 6 präsentiert eine empirische Untersuchung des Problems Zusammenhangskom-

ponenten (CC) im Externspeicher zu �nden. Wir betrachten mehrere Algorithmen, die

entweder theoretisch e�zient sind oder praktisch vielversprechend erscheinen. Unsere

Experimente werden dann auf einer Vielzahl von verschiedenen Graphklassen durchge-

führt, darunter populäre Zufallsmodelle wie Gilbert Graphen, Random Geometric Graphs

(RGGs) und Random Hyperbolic Graphs (RHGs).

• Borůvka and Randomized-Borůvka: Wir liefern eine Implementierung einer

für das Externspeicher ausgelegten Variante des BorůvkaBorůvka:

R Abschni� 6.3

Algorithmus [51] als

Vergleichspunkt für weitere Externspeicher-Algorithmen. Zur Berechnung der

Zusammenhangskomponenten führt der Algorithmus wiederholt Borůvka steps
aus, die die Größe der Knotenmenge des Graphen reduziert. Der angepasste

Algorithmus weist jedoch eine erhöhte Komplexität auf, die unter anderem die

X



Verwendung zusätzlicher Datenstrukturen erfordert. Dies führt jedoch zu einer

impraktikablen Performanz in realen Anwendungen.

Um den E�ekt der zusätzlichen Datenstrukturen zu verringern, schlagen wir daher

den ähnlichen aber weniger komplizierten Algorithmus Randomized-Borůvka

Randomized-Borůvka:

R Abschni� 6.3

vor. Randomized-Borůvka funktioniert im Wesentlichen wie Borůvka, erzeugt

aber kleinere, leicht-handhabbare Subgraphen, die e�zienter kontrahiert werden

können. Beide Algorithmen können jedoch nicht mit den anderen Kandidaten

konkurrieren.

• Sibeyn: Sibeyn Sibeyn:

R Abschni� 6.3

ist ein Algorithmus zur Berechnung von minimalen Spannwäl-

dern (MSF ), der weitere Optimierungsmöglichkeiten aufweist, wenn lediglich

Zusammenhangskomponenten berechnet werden müssen. Die Simplizität von

Sibeyn ermöglichte eine entsprechende Umsetzung, die zu unserer hoche�zi-

enten Implementierung führt. Der Algorithmus lässt dazu wiederholt Knoten

eine beliebige inzidente Kante wählen, die anschließend kontrahiert wird. Dieser

Prozess wird durch Time Forward Processing (TFP) realisiert und erzeugt dabei in

der Praxis vergleichsweise kleine I/O-Volumen.

In unseren Experimenten betrachten wir verschiedene Strategien der Kanten-

auswahl und eine Vielzahl von Möglichkeiten, die Kontraktionen durchzuführen.

Dazu zählt das etwaige Verwenden von Prioritätswarteschlangen oder Buckets.

• Karger-Klein-Tarjan: Wir betrachten den bekannten Algorithmus Karger-Klein-Tarjan:

R Abschni� 6.3

von Karger,

Klein und Tarjan [108] für dasMSF-Problem in einem generellen Framework. Auch

für den Externspeicher existiert eine entsprechende Variante; die wiederum auf

das Finden von Zusammenhangskomponenten übertragen werden kann. Unser

Framework geht rekursiv vor und erfordert einige Subroutinen: das Reduzieren der

Knotenmenge durch Kontraktionen, die Berechnung von zufälligen Stichproben

der Kanten und die Zusammenführung rekursiv berechneter Teillösungen des

CC-Problems. Aufgrund der erhöhten Variabilität sind wir in der Lage eine große

Bandbreite an Parameterkombinationen für Karger-Klein-Tarjan in Betracht

zu ziehen. Dazu zählt unter anderem das Verwenden von Borůvka, Randomized-

Borůvka und Sibeyn zur Kontraktion des Graphen und adaptives Samplen der

Kanten.

Obwohl Karger-Klein-Tarjan der theoretisch e�zienteste Algorithmus ist, ist

für eine praktische Implementierung viel Tuning nötig. Dies ist zum Teil auf die re-

kursive Natur des Algorithmus und die zusätzlich benötigten Hilfsdatenstrukturen

zurückzuführen.

In unseren Experimenten haben wir festgestellt, dass Sibeyn aufgrund seiner Sim-

plizität eine gute Wahl ist. Die Implementierung erfordert im Wesentlichen nur die

Verwendung einer einzigen Externspeicher-Prioritätswarteschlange. Daher kann ein

konkurrierender Algorithmus nur wenige Operationen durchführen, bevor er gegen

Sibeyn verliert. Karger-Klein-Tarjan ist dennoch ein kompetitiver Algorithmus; mit
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den richtigen Subroutinen und Parametern bietet der Algorithmus eine robuste und

vergleichbar gute Lösung.

Zertifizierende Grapherkennung im Externspeicher (Kapitel 7)

Kapitel 7 stellt I/O-e�ziente zerti�zierende Algorithmen zur Erkennung von verschiede-

nen Graphklassen vor. Für einen Graphen mit n Knoten undm Kanten benötigen unsere

Algorithmen O(sort(n+m)) I/Os im worst-case oder mit hoher Wahrscheinlichkeit

für bipartite und Bipartite-Chain-Graphen. Im Falle der Zugehörigkeit zur Graphklasse,

wird ein YES-Zerti�kat zurückgegeben, das die Graphklasse charakterisiert. Im Ge-

gensatz dazu wird im Fall der Nicht-Zugehörigkeit ein O(1) großes NO-Zerti�kat für

alle Graphklassen bis auf den bipartiten Fall zurückgegeben. Wir passen die für den

Internspeicher ausgelegten Algorithmen von Heggernes und Kratsch [96] an das Extern-

speicher an. Dazu verwenden wir Standardtechniken wie das Time Forward Processing
und Euler-Tour Berechnungen. Für alle Graphklasesen nutzen wir ihre wichtigsten

strukturellen Eigenschaften aus, um I/O-e�ziente Algorithmen zu entwickeln.

• Split-Graphen: Split-GraphenZertifizieren von

Split-Graphen:

R Abschni� 7.2.1

sind Graphen, deren Knotenmenge in (K, I) parti-

tioniert werden können, sodass K eine Clique und I eine unabhängige Menge ist.

Wir nutzen folgende weitere Erkenntnisse aus: (i) die maximale Clique besteht

aus Knoten mit den höchsten Knotengraden; und (ii) jede nicht-abnehmende

Knotengradordnung eines Split-Graphen bildet eine sogenannte pefect eliminati-
on ordering. Die Berechnung dieser Ordnung und das entsprechende Relabeling

des Graphen erleichtert weitere notwendige Subroutinen des Algorithmus, unter

anderem, obK tatsächlich eine Clique und I tatsächlich eine unabhängige Menge

ist.

• Threshold-Graphen:Zertifizieren von

Threshold-Graphen:

R Abschni� 7.2.2

Threshold-Graphen sind Split-Graphen mit der weiteren

Eigenschaft, dass die unabhängige Menge I eine sogenannte nested neighborhood
ordering hat. Sie sind zusätzlich durch den folgenden Graphgenerierungspro-

zess gekennzeichnet: füge wiederholt universelle oder isolierte Knoten zu einem

ursprünglich leeren Graphen hinzu. Durch das Relabeling können wir diese Eigen-

schaft in umgekehrter Reihenfolge I/O-e�zient überprüfen, indem wir wiederholt

universelle und isolierte Knoten aus dem Eingabegraphen entfernen.

• Trivially-Perfect-Graphen:Zertifizieren von

Trivially-Perfect-Graphen:

R Abschni� 7.2.3

Trivially-Perfect-Graphen sind Graphen bei denen

die Größe der unabhängigen Menge jedes induzierten Subgraphens mit der An-

zahl nicht-erweiterbaren Cliquen übereinstimmt. Ähnlich wie bei Split-Graphen

nutzen wir, dass Trivially-Perfect-Graphen eine besondere Eigenschaft in ihren

Knotengraden haben: Jede nicht-zunehmende Knotengradordnung ist eine soge-

nannte universal-in-a-component-ordering. Mit Time Forward Processing übersetzen

wir das iterative Labelingschema von Heggernes und Kratsch [96] und veri�zieren

diese Eigenschaft I/O-e�zient.

• Bipartite Graphen und Bipartite-Chain-Graphen:Zertifizieren von bipartiten

Graphen sowie

Bipartite-Chain-Graphen:

R Abschni� 7.2.4

Bipartite-Chain-Graphen sind

bipartite Graphen in denen die Partitionen eine nested neighbood ordering auf-
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weisen. Wir entwickeln daher zunächst einen I/O-e�zienten Zerti�zierungsalgo-

rithmus für die Erkennung von bipartiten Graphen. Anstelle von Graphtraversie-

rungsalgorithmen verwenden wir Spannwälder und Stapelverarbeitung um einen

I/O-e�zienten Algorithmus für bipartite Graphen zu realisieren. Durch die Kom-

bination dieses und des entwickelten Algorithmus für Threshold-Graphen präsen-

tieren wir außerdem einen Algorithmus für den Fall von Bipartite-Chain-Graphen,

der ebenfalls O(sort(n+m)) I/Os mit hoher Wahrscheinlichkeit benötigt.
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1Introduction

The emergence of digital networks is rooted in the ever on-going advance-

ment and transformation of new information technologies. This structural

change gives rise to deeply complex systems in many di�erent areas in

life. As such, a necessity to study and understand the underlying key

properties of real-world networks persists. In this context, network analy-

sis is regarded as a methodological perspective for the study of networks

and depicts the observed entities using mathematical models. Commonly,

random graphs are used to provide an adjustable and controllable means

to obtain synthetic data to enable systematic experimental evaluations of

algorithms and data structures.

Nowadays, with the explosion of data, many aspects of network analy-

sis are data-driven and rely on e�icient algorithms to make sense of the

information at hand. Algorithmic solutions, therefore, need to carefully

consider both the structural properties of the input and the peculiarities of

the underlying machines that execute them. The generation and analysis

of massive networks is therefore a challenging task in and of itself.

The present thesis, thus, provides algorithmic solutions to generate and

analyze graphs at scale. To this end, we develop algorithms for the sampling

of graphs with prescribed degrees, the computation of connected compo-

nents of massive graphs and certifying graph recognition for instances

exceeding the size of main memory. Our algorithms and implementations

are practically e�icient for various machine models providing sequential,

shared-memory parallel and I/O-e�icient solutions.



Introduction

1.1 Motivation

Networks have an exceptional impact on science, technology, and society [22]. They

lie at the heart of complex systems that are used to e�ectively model many aspects

of human life. In order to make sense of these systems and understand their intricate

features, a careful systematic investigation and interpretation is crucial. This fueled the

emergence of a new scienti�c discipline called network science which concerns itself

with the study of relational data [40]. Its methodological approach, almost inherently, is

interdisciplinary and applicable to many other �elds.

In this domain, network analysis emerged from the study of graphs and provides a

collection of techniques assisting in the investigation of networks. It provides a means

to analyze and depict the relations of the entities in question. There are many insights

that can be gained; among these, global metrics that quantify some information of the

network as a whole, importance features of the contained entities and many more. With

the ever growing volume of network data, however, processing networks e�ciently

becomes increasingly di�cult. As such, designing and implementing e�cient algorithms

for larger scales is of pivotal importance to enable the analysis of massive networks. This,

in part, requires algorithmic solutions to carefully consider both the structural properties

of the given network and the peculiarities of the underlying machines that execute them.

To further enhance these considerations and improve performance predictions for the

designed algorithms, network models are used to generate supplemental synthetic data

that can be incorporated into experimental campaigns.

In this context, random graphs commonly serve as a model for networks. They are

subject to many design decisions in an attempt to depict and reproduce the observed

features of real-world networks. To this end, many popular models are parameterized

and provide a certain degree of �exibility to enable a large variety of generatable

instances. This, therefore, motivates the development of e�cient algorithms for the

generation of random graphs at scale.

1.1.1 Goals

This thesis studies algorithmic aspects of network analysis, in particular for large

processing scales. While network analysis expresses itself in many directions and can

be considered through multiple di�erent lenses, we aim to provide algorithmic means to

study and understand networks at hand. In addition to designing and implementing tools

for the examination of any given network, we also aim to develop methods to reliably

generate comparable and controllable synthetic network data which are typically rooted

in random graph models.

To this end, we study Connected Components and certifying graph recognition

algorithms, and consider the generation of uniform simple graphs with prescribed

degrees as a popular synthetic random graph model. In order to cover a variety of

applications, ourComprehensive Summary:

R Chapter 8

algorithms are designed according to di�erent models of computation

providing sequential, shared-memory parallel and/or I/O-e�cient solutions.

2



Algorithm Engineering

1.1.2 Outline

We organize the present thesis as follows:

• Section 1.2 provides the foundations of this thesis, discusses algorithm engineering
as our design methodology and presents the used machine models thereafter.

• Sections 1.3 to 1.5 brie�y describe the context of the covered topics of this thesis.

• Chapters 2 to 7 constitute the main part of the present thesis. We provide a brief

overview in Section 1.6.

The main part is divided into two larger sections: Chapters 2 to 5 present the

�rst part and deal with the problem of uniformly sampling simple graphs with

prescribed degrees; Chapters 6 and 7 present the second part and deal with

experimental algorithms for external memory.

• Chapter 8 summarizes the results of the main part of the thesis and concludes

with further directions for future research.

1.2 Algorithm Engineering

This dissertation adopts the algorithm engineering methodology [161, 162] which ad-

dresses the apparent gap between algorithm theory and practical applications. Algo-

rithm engineering proposes a feedback loop of design, analysis, implementation and

experiments combining algorithm theory and experimental algorithmics.

Aiming at practicality, applications motivate the use of abstract models to provide a

simple but adequate representation of real machines. This enables su�cient tractability

to perform theoretical analyses and derive provable performance guarantees of the

algorithms. Following implementations are then evaluated using systematic experiments

to provide new insights that potentially inspire incremental improvements in both

implementation and algorithm design.

As any problem is generally speci�ed by its application domain, one-�ts-all algo-

rithmic solutions do not su�ce and may require the use of more advanced models of

computation (Sections 1.2.1 and 1.2.2). This can be illustrated by the classical unit-cost
Random-Access Machine (unit-cost Ram) unit-cost Rammodel which, depending on the application, fails

to capture the complexity of real machines. It assumes a single processor containing

multiple registers, which can perform elementary operations in one unit of cost. Due to

its basic formulation, its main strengths are its simplicity and universal applicability.

The model, however, clearly does not re�ect real costs of operations, as it assumes an

equal cost for memory accesses and basic arithmetic instructions. This contradicts the

fact that modern machines have a memory hierarchy to provide cost-e�cient trade-o�s

in size and speed leading to non-trivial penalties.

Additionally, the unit-cost Ram, by design, does not incorporate advanced features of

modern computers and therefore fails to bene�t from natural optimization opportunities

such as parallelism. To accommodate both of these features, we introduce two related

3
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advanced models of computation, the External Memory Model and the Parallel Random-
Access Machine.

1.2.1 External Memory Model

We use the commonly accepted ExternalMemoryModel (Emm)External Memory Model by Aggarwal and Vitter [1],

a theoretical framework that abstracts memory hierarchies to an idealized setting. The

model consists of a memory hierarchy of two layers, the fast internal memory which

can hold up to MM : internal memory size data items and the slow external memory of unbounded size. The

input and output are stored in external memory and data is moved between layers using

so-called I/Os, each of which moves a block of BB: block size consecutive items at a time. In the

Emm, computation is only performed on data in internal memory, and an algorithm’s

performance is measured in the number of I/Os it performs. Common basic primitives

and their I/O-complexities are:

• Reading or writing n contiguous items requires scan(n) = Θ( nB )scan(n) = Θ( nB ) I/Os I/Os.

• Comparison-based sorting of n items requires sort(n) = Θ( nB logM/B( nB ))sort(n) =

Θ( nB logM/B( nB )) I/Os

I/Os.

• Pushing and removing n items from a priority-queue requires sort(n) I/Os [14, 13].

For all realistic values of n, B, and M sorting is comparable to only very few

scanning rounds and is strongly preferred over random I/Os. Its complexity constitutes

a lower bound for many non-trivial algorithmic tasks in external memory [1, 133].

The actual implementation of external memory algorithms is quite demanding

however. There exist, for this reason, two open-source libraries that e�ciently imple-

ment external memory algorithms and data structures for general purpose use, namely

STXXL [60] and TPIE [179, 16].

1.2.2 Parallel Random-Access Machine

In the advent of substantial improvements in multiprocessing systems and multi-core

machines, parallel algorithms gain an increasing amount of traction both in theory and

practice. In this context, the most commonly used parallel machine model, the Parallel
Random-Access MachinePRam (PRam) [103], is an abstract model to capture shared-memory

parallel systems.

The model consists of P sequential processing units (PUs), which each have a small

number of local registers, and a globally shared memory. Communication between PUs

is not modeled explicitly but can be achieved by utilizing the shared memory. Typically,

PUs are clocked synchronously, meaning computation proceeds in synchronized fashion.

In this case, however, concurrent read and write con�icts can occur, and are only solved

by using a PRam subtype that explicitly designates which concurrent access patterns

are allowed and how to resolve them.

4
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1.3 Uniform Sampling of Simple Graphs with Prescribed Degrees

Network science provides tools and guidelines for the modeling, analysis and under-

standing of complex systems. To this end, many network models have been proposed to

represent real-world systems and capture their respective features. In this context, the

use of null models became increasingly popular as they reveal and quantify network

properties of the studied system at hand. Roughly speaking, null models consist of

a collection of networks that match an observed network in some selected structural

aspects, while being random in others. By using null models, observed networks can

then be compared within a reasonable frame of reference.

Depending on the application and its requirements, it can be varyingly di�cult to

realize the null models in question. As such, an appropriately chosen null-model has to

strike a balance between capturing structural properties and computational tractability.

In this context, a commonly accepted method is to consider random simple graphs with

matching degrees, as it captures non-trivial properties while still enabling potentially

e�cient realizations. It is therefore no coincidence that the generation of such graphs is

a classical problem in theoretical computer science.

A common solution is to use Markov-Chain-Monte-Carlo (MCMC) methods, a

notable example for this is the Fixed-Degree-Sequence-

Model:

R Chapters 2 and 3

Fixed-Degree-Sequence-Model. It �rst generates a biased

deterministic graph using the Havel-Hakimi algorithm which is then perturbed using an

Edge Switching (ES) Markov chain process. The process repeatedly performs so-called

ES switches where the incident nodes of two uniformly at random selected edges are

exchanged – skipping any illegal switch that produces self-loops or multi-edges. It

converges to a uniform simple graph with matching degrees if su�ciently many steps

are performed. Its rate of convergence is quanti�ed by the Markov chain’s mixing

time but practical upper bounds, despite intensive research, remain elusive. Though, in

practice, usually a small multiple of the number of edges su�ces.

A structurally similar and more recent process is Curveball (CB). In each step, the

process proceeds by performing a CB trade that shu�es the neighborhoods of two

nodes while �xing their degrees. As the neighborhoods may be considered in their

entirety, each step of this process can in�ict larger changes as compared to ES that may

be re�ected in the mixing times [46, 174, 180]. Global Curveball (G-CB) is a variant of CB
that groups multiple CB trades into a single superstep. Each superstep consists of n/2

CB trades and targets each node exactly once allowing for bene�ts in the implementation

and its analysis.

Besides MCMC based approaches that generate an approximately uniform graph,

there exist exact uniform generators. They are often based on the Con�guration Model
and use switching mechanisms to exchange illegal structures to legal counterparts.

Their use cases, however, are either limited by restrictions in the degrees or speci�ed

for certain types of graph classes.

This thesis therefore presents E�icient MCMC

Algorithms:

R Chapters 2 to 4

a variety of e�cient algorithms for ES, CB and G-CB
for various machine models. To accomodate parallel settings, we additionally explore

further variants of ES that may enable better parallelism. Apart from straight-forward

5
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performance measures, we additionally incorporate the mixing time of the considered

Markov chains in our experiments. TowardExact Uniform Power-law

Generator:

R Chapter 5

exact uniform generators, we consider and

implement the recently developed Inc-Powerlaw algorithm [17] for the exact uniform

generation of power-law graphs.

1.4 Connected Components in External Memory

The study of graphs majorly comprises many areas of both computer science and

mathematics. Their use cases, however, certainly exceeds the scope of both these �elds.

In applications, graphs lend themselves as a convenient tool for the modeling of many

complex structures and phenomena especially when entities and their relationships

are the points of interest. Natural examples include but are not limited to social or

communication networks. As such, vast amounts of research has been conducted for the

study and development of algorithms for the analysis of graphs. This, in part, includes

the examination and computation of certain structural properties. In this context, simple

features that may be of interest are connectivity (is the underlying graph connected) or

the actual computation of the Connected Components (CC).

For small scales, this task is trivially solvable by applying standard traversal algo-

rithms like breadth-�rst or depth-�rst search. Both algorithms take linear time in the

unit-cost Ram and compute further properties that go beyond the CC of the given graph.

In the same vein, computing the Minimum Spanning Forest (MSF ) may be regarded as a

related problem, as any spanning tree constitutes a connected component of a graph.

While there exists a randomized expected linear time algorithm for the MSF problem by

Karger, Klein, andKarger-Klein-Tarjan:

R Section 6.3

Tarjan [108], it is a long standing open problem whether the same

complexity can be achieved deterministically. In the deterministic case, the problem can

be optimally solved by an algorithm described by Pettie and Ramachandran [151] but

the exact upper bound for this algorithm is not known. The closest upper bound that is

known is O(mα(m,n)) [50] where α is the inverse Ackermann function.

Large graphs that cannot be kept in main memory, however, do not lend themselves

to the same algorithmic treatment. In the presence of a multi-level memory hierarchy,

data transfers typically become the dominating factor in an algorithm’s execution time.

Hence, straight-forward applications of internal memory algorithms to this large-scale

setting are prohibitively costly and unusable in practice. To alleviate this apparent gap,

many algorithms for the External Memory Model have been designed. In this context,

even simple graph problems become signi�cantly harder to solve e�ciently. This can

already be seen, when considering the aforementioned problem of computing breadth-

�rst search traversals. By utilizing structural properties of the iteratively computed

breadth-�rst search levels, Munagala and Ranade [142] provide a O(n+ sort(m)) I/Os

algorithm, that later, Mehlhorn and Meyer [129] improve upon by adding clustering as a

preprocessing step to achieve anO
(√

n(n+m)/B + sort(n+m)
)

I/Os algorithm for

undirected graphs. Buchsbaum et al. [42] propose a di�erent algorithm that is applicable

to directed graphs and relies on utilizing I/O-e�cient bu�ered repository trees and

I/O-e�cient priority-queues (e.g. [13, 99]) instead. All of these algorithms, however, are

6
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very involved and therefore not suited to solve the CC problem in practice.

Instead of relying on graph traversals, algorithms that are designed for the MSF prob-

lem seem more promising. Deterministically, algorithms that are based on Borůvka’s

Borůvka:

R Section 6.3

algorithm provide the best upper bounds. In its classical formulation, Borůvka’s algo-

rithm repeatedly performs so-called Borůvka steps in which the algorithm contracts

nodes along their lightest incident edges. A Borůvka step, considered as a whole,

therefore selects a subset of the edges and contracts the corresponding subgraphs in a

subsequent step, reducing the overall number of nodes. When implemented as is, this

leads to a simpleO(log(n/M) sort(m)) I/Os algorithm that can be further optimized to

O(log log(nB/m) sort(m)) I/Os as shown by Arge et al. [15]. Despite the theoretically

e�cient I/O-complexity, implementations are, to the best of our knowledge, basically

non-existent due to the high constants that would occur in an actual implementation.

Therefore, a simpler algorithm by Sibeyn Sibeyn:

R Section 6.3

et al. [61] that uses an easier node contraction

scheme based on Time Forward Processing [123] is favorable for use in practice, even

though it has a worse I/O-complexity of O(log(n/M) sort(m)) I/Os.

Similar to Borůvka’s algorithm, Karger-Klein-Tarjan’s algorithm can also be

considered for the external memory setting. Its translation leads to a randomized

O(sort(m)) I/Os MSF algorithm which again may incur high constants in an actual

implementation. However, solving the CC problem potentially enables signi�cant

optimizations to all aforementioned algorithms; this seems especially true for Karger-

Klein-Tarjan. Therefore, in practice, it is not clear which algorithm to use in which

circumstances and whether there is a clear-cut winner.

This thesis therefore presents an extensive experimental study Experimental Study:

R Chapter 6

for the Connected
Components problem in the external memory setting. We provide e�cient implemen-

tations for most available algorithms and execute them on a variety of graph classes.

With these results, we shed light on how to e�ciently perform CC computations for

networks at scale.

1.5 Certifying Algorithms

The theory of algorithms strongly relies on mathematics and logical reasoning for the

design and analysis of algorithms. Proving correctness and estimating the running

time of algorithms for all possible inputs is undoubtedly an essential and necessary

task. However, providing actual implementations of algorithms depends on a variety

of additional factors. An often overlooked aspect in this regard is the raw complexity

of the algorithms at hand, which can signi�cantly increase when considering more

advanced models of computation. While an algorithm may have been proven to be

correct, its implementation may contain errors that can be very subtle and di�cult

to notice. Therefore, a lot of e�ort in software engineering is required to capture any

errors that come with the implementation of algorithms that are used in supposedly

reliable practical applications.

This motivates the study of certifying algorithms in an attempt to remove the afore-

mentioned uncertainties. While there is no guarantee that any piece of software is

7
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bug-free, designing algorithms with software reliability in mind may already alleviate

the issue signi�cantly. To this end, a certifying algorithm is an algorithm that pro-

duces with each output a certi�cate that the returned output has not been compromised,

i.e., evidence that can be used to authenticate the correctness of the answer. In order

to validate the algorithm’s output, the certi�cate is inspected using an authentication
algorithm that takes the input, output, and certi�cate and returns whether the output

is correct. As the use of the authentication algorithm is indispensable, it should be

relatively simple to allow for a bug-free implementation.

To illustrate the e�ectiveness of certifying algorithms, we present a common toy

example. Consider the problem of recognizing whether a given graph is bipartite, i.e., if

there exists a bipartition of its nodes such that all edges have an endpoint in both

partitions. A regular non-certifying algorithm will either return whether the graph is

bipartite or not. At this point, however, the user has to simply trust the algorithm’s

execution as no more information is provided. In this context, a certifying algorithm will

additionally return an appropriate certi�cate that proves its output to be correct. For

our toy example, a certi�cate for bipartiteness is the actual bipartition of the nodes and

contrary, in the case of non-bipartiteness an odd-length cycle. Verifying the algorithm’s

output now is straight-forward using the input and the provided certi�cate.

Naturally, certifying algorithms appear in a variety of di�erent areas including graph

recognition, combinatorial optimization, computational geometry, linear algebra and

many more. Some of these sub�elds provide not only algorithms in theory but also lead

to actual implementations; a prominent example for this is the LEDA project [130, 131]

that provides implementations of many certifying algorithms. We note, however, that

most of the present literature is concerned with algorithms for the unit-cost Ram and

that to the best of our knowledge, external memory certifying algorithms have not been

addressed in a structured way. Considering that practical applications that require the

use of external memory generally have longer execution times, it is needless to say that

certifying algorithms for larger processing scales are even more justi�ed.

This thesisExternal Memory

Certifying Graph

Recognition:

R Chapter 7

aims to pave the �rst steps in this direction by considering external

memory certifying graph recognition algorithms. We provide I/O-e�cient algorithms

and implementations that recognize whether a graph belongs to either of the considered

graph classes and thus enable new means to classify networks at scale.

1.6 Articles Included in the Present Thesis

This section contains a brief overviewComprehensive Summary:

R Chapter 8

of the papers in Chapters 2 to 7 selected for the

present thesis. The remaining chapters discuss algorithmic and engineering contribu-

tions of practical algorithms to uniformly sample simple graphs with prescribed degrees

and further novel algorithms and considerations for the external memory setting with a

focus on network analysis.

8



Articles Included in the Present Thesis

Edge Switching and Global Edge Switching

Chapters 2 and 3, based on our articles [90, 6], are concerned, in part, with Markov-Chain-

Monte-Carlo (MCMC) processes for the randomization of graphs, namely Edge Switching
(ES) and Global Edge Switching (GES). We provide algorithms for various machine

models including sequential schemes over I/O-e�cient algorithms to shared-memory

parallel solutions. In Chapter 2 we present EM-LFR, a complex assembly of several I/O-

e�cient subroutines to generate large graphs following the LFR community detection

benchmarks. Its most involving component is EM-ES, an I/O-e�cient implementation

of the Edge Switching process. In Chapter 3 we consider parallel implementations of

Edge Switching, and in doing so develop Global Edge Switching, an alternative Markov

chain process which exposes less dependencies in its execution allowing for improved

parallelization.

[90] R Chapter 2M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. I/O-e�cient gen-

eration of massive graphs following the LFR benchmark. ACM J. of Experimental
Algorithmics, 23, 2018. doi:10.1145/3230743 .

[6] R Chapter 3D. Allendorf, U. Meyer, M. Penschuck, and H. Tran. Parallel global edge switching

for the uniform sampling of simple graphs with prescribed degrees. In IEEE
Int. Parallel and Distributed Processing Symp. IPDPS, pages 269–279. IEEE, 2022.

doi:10.1109/IPDPS53621.2022.00034 .

Curveball and Global Curveball

Chapter 4, based on our article [48], presents a variety of algorithms realizing the Curve-
ball (CB) and Global Curveball (G-CB) MCMC randomization process. Due to the nature

of CB type processes, more data locality can be exposed leading to practical I/O-e�cient

algorithms that in some cases can outperform ES type processes. Additionally, since G-
CB operates slightly di�erently in comparison to CB, further algorithmic optimizations

are possible.

[48] R Chapter 4C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. Par-

allel and I/O-e�cient randomisation of massive networks using Global Curveball

trades. In Y. Azar, H. Bast, and G. Herman, editors, European Symp. on Algorithms
ESA, volume 112 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.11 .

Exactly Uniform Sampling of Power-law Graphs

Chapter 5, based on our article [9], presents Inc-Powerlaw an exactly uniform sampler

for power-law graphs with a degree exponent γ ' 2.88. It highlights all necessary ad-

justments applied to the Pld algorithm [78] by adding incremental relaxation [17]. In par-

ticular, additional so-called booster switchings are introduced to ensure Inc-Powerlaw’s

expected linear runtime.
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[9]R Chapter 5 D. Allendorf, U. Meyer, M. Penschuck, H. Tran, and N. Wormald. Engineering

uniform sampling of graphs with a prescribed power-law degree sequence. In

C. A. Phillips and B. Speckmann, editors, Proceedings of the Symp. on Algorithm
Engineering and Experiments ALENEX, pages 27–40. Society for Industrial and

App. Math. SIAM, 2022. doi:10.1137/1.9781611977042.3 .

Connected Components in External Memory

Chapter 6, based on our article [41], provides an extensive experimental study of several

external memory algorithms for the Connected Components problem. It provides tuned

implementations of the considered algorithms and performs a comparison for a multitude

of di�erent graph classes.

[41]R Chapter 6 G. S. Brodal, R. Fagerberg, D. Hammer, U. Meyer, M. Penschuck, and H. Tran. An

experimental study of external memory algorithms for connected components.

In D. Coudert and E. Natale, editors, Int. Symp. on Experimental Algorithms SEA,

volume 190 of LIPIcs, pages 23:1–23:23. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2021. doi:10.4230/LIPIcs.SEA.2021.23 .

Certifying Graph Recognition in External Memory

Chapter 7 is based on our article [134], and presents several I/O-e�cient certifying recog-

nition algorithms for a variety of graph classes. The algorithms incur O(sort(n+m))

I/Os for a graph with n nodes and m edges for the recognition of split, threshold and

trivially perfect graphs in the worst-case and with high probability for bipartite and

bipartite chain graphs.

[134]R Chapter 7 U. Meyer, H. Tran, and K. Tsakalidis. Certifying induced subgraphs in large

graphs. In C. Lin, B. M. T. Lin, and G. Liotta, editors, WALCOM: Algorithms
and Computation - 17th Int. Conference and Workshops, WALCOM 2023, Hsinchu,
Taiwan, March 22-24, 2023, Proceedings, volume 13973 of Lecture Notes in Computer
Science, pages 229–241. Springer, 2023. doi:10.1007/978-3-031-27051-2_20 .

Publications Not Included

While preparing the present thesis, I additionally contributed to the following articles.

[28] P. Berenbrink, D. Hammer, D. Kaaser, U. Meyer, M. Penschuck, and H. Tran.

Simulating population protocols in sub-constant time per interaction. In European
Symp. on Algorithms ESA, volume 173 of LIPIcs, pages 16:1–16:22. Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.16 .

[7] D. Allendorf, U. Meyer, M. Penschuck, and H. Tran. Parallel and I/O-e�cient

algorithms for non-linear preferential attachment. In G. Navarro and J. Shun,

editors, Proceedings of the Symposium on Algorithm Engineering and Experiments,
ALENEX 2023, Florence, Italy, January 22-23, 2023, pages 65–76. SIAM, 2023.

doi:10.1137/1.9781611977561.ch6 .
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[8] D. Allendorf, U. Meyer, M. Penschuck, and H. Tran. Parallel global edge switching

for the uniform sampling of simple graphs with prescribed degrees. J. Parallel
Distributed Comput., 174:118–129, 2023. doi:10.1016/j.jpdc.2022.12.010 .
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2
I/O-E�icient Generation of Massive Graphs

Following the LFR Benchmark

joint work with M. Hamann, U. Meyer, M. Penschuck, and D. Wagner

LFR is a popular benchmark graph generator used to evaluate community detec-

tion algorithms. We present EM-LFR, the first external memory algorithm able

to generate massive complex networks following the LFR benchmark. Its most

expensive component is the generation of random graphs with prescribed degree

sequences which can be divided into two steps: the graphs are first materialized de-

terministically using the Havel-Hakimi algorithm, and then randomized. Our main

contributions are EM-HH and EM-ES, two I/O-e�icient external memory algorithms

for these two steps. We also propose EM-CM/ES, an alternative sampling scheme

using the Configuration Model and rewiring steps to obtain a random simple graph.

In an experimental evaluation we demonstrate their performance; our implementa-

tion is able to handle graphs with more than 37 billion edges on a single machine,

is competitive with a massively parallel distributed algorithm, and is faster than a

state-of-the-art internal memory implementation even on instances fi�ing in main

memory. EM-LFR’s implementation is capable of generating large graph instances

orders of magnitude faster than the original implementation. We give evidence that

both implementations yield graphs with matching properties by applying clustering

algorithms to generated instances. Similarly, we analyze the evolution of graph

properties as EM-ES is executed on networks obtained with EM-CM/ES and find

that the alternative approach can accelerate the sampling process.

This chapter is based on the peer-reviewed journal article [90] extending [91]:

[91] M. Hamann, U. Meyer, M. Penschuck, and D. Wagner. I/O-e�cient generation of

massive graphs following the LFR benchmark. In S. P. Fekete and V. Ramachandran,

editors,Workshop onAlgorithm Engineering and Experiments ALENEX, pages 58–72.

Society for Industrial and App. Math. SIAM, 2017. doi:10.1137/1.9781611974768.5 .

[90] M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. I/O-e�cient gen-

eration of massive graphs following the LFR benchmark. ACM J. of Experimental
Algorithmics, 23, 2018. doi:10.1145/3230743 .

My contribution

The journal version adds new algorithmic ideas related to the Con�guration Model based

on work of Manuel Penschuck and myself. I do not claim authorship for the preceding

work in [91].

https://doi.org/10.1137/1.9781611974768.5
https://doi.org/10.1145/3230743


Massive Graphs Following the LFR Benchmark

2.1 Introduction

Complex networks, such as web graphs or social networks, usually contain communities,

also called clusters, that are internally dense but externally sparsely connected. Finding

these clusters, which can be disjoint or overlapping, is a common task in network

analysis. A large number of algorithms trying to �nd meaningful clusters have been

proposed (see [69, 94, 71] for an overview). Commonly, synthetic benchmarks are

used to evaluate and compare these clustering algorithms, since for most real-world

networks it is unknown which communities they contain and which of them are actually

detectable through structure [19, 71]. The LFR benchmark [116, 114] has become a

standard benchmark for such experimental studies, both for disjoint and for overlapping

communities [63].

With the emergence of massive networks that cannot be handled in the main

memory of a single computer, new clustering schemes have been proposed for advanced

models of computation [43, 185]. Since such algorithms typically use hierarchical input

representations, quality results of small benchmarks may not be generalizable to larger

instances [63, 92]. Often though, the quality is only evaluated on small benchmark

graphs as currently available graph clustering benchmark generators are unable to

generate the necessary graphs [20, 43]. Instead, computationally inexpensive random

graph models such as R-MAT are used [152] to generate huge graphs. Using those models,

it is however not possible to evaluate whether the clustering algorithm is actually able

to detect communities on such a large graph as there is no ground truth community

structure to compare against. Filling this gap, we propose a generator in the external

memory (EM) model following the LFR benchmark in order to produce clustering

benchmark graph instances exceeding main memory. We implement the variants of

the LFR benchmark for unweighted, undirected graphs with either overlapping or non-

overlapping communities. Our proposed graph benchmark generator has already been

used to evaluate the clustering quality of distributed clustering algorithms on graphs

with up to 512 million nodes and 76.6 billion edges [92].

The distributed CKB benchmark [54] is a step into a similar direction, however,

it considers only overlapping clusters and uses a di�erent model of communities. In

contrast, our approach is a direct realization of the established LFR benchmark and

supports both disjoint and overlapping clusters.

2.1.1 Random Graphs from a Prescribed Degree Sequence

The LFR benchmark uses theFDSM Fixed-Degree-Sequence-Model (FDSM), also known as edge

switching Markov chain algorithm (e.g., [137]), to obtain a random graph following a

previously computed degree sequence. In preliminary studies, we identi�ed this task as

the main issue when transferring the LFR benchmark into an EM setting; both in terms

of algorithmic complexity and runtime.

FDSM consists of two steps, namely (i) generating a deterministic graph from a

prescribed degree sequence and (ii) randomizing this graph using random edge switches.

For each edge switch, two edges are chosen uniformly at random and two of the
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endpoints are swapped if the resulting graph is still simple (see Section 2.5). Each

edge switch can be seen as a transition in a Markov chain. This Markov chain is

irreducible [62], symmetric and aperiodic [81] and therefore converges to the uniform

distribution. It also has been shown to converge in polynomial time if the maximum

degree is not too large compared to the number of edges [86]. However, the current

analytical bounds of the mixing time are impractically high even for small graphs.

Experimental results on the occurrence of certain motifs in networks [137] suggest

that 100m steps should be more than enough where m is the number of edges. Further

results for random connected graphs [81] suggest that the average and maximum

path length and link load converge between 2m and 8m swaps. More recently, further

theoretical arguments and experiments showed that 10m to 30m steps are enough [154].

A faster way to realize a given degree sequence is the Con�guration Model which

allows multi-edges and self-loops. In the Erased Con�guration Model these illegal edges

are deleted. Doing so, however, alters the graph properties and does not properly realize

the skewed degree distributions required for LFR [164]. In this context the question

arises whether edge switches starting from the Con�guration Model can be used to

uniformly sample simple graphs at random.

2.1.2 Our Contribution

We introduce EM-LFR
1
, the �rst I/O-e�cient LFR variant, and study the FDSM in

the external memory model. After de�ning our notation, we summarize the original

LFR benchmark in Section 2.3. As illustrated in Figure 2.1, EM-LFR consists of several

algorithmic building blocks which we discuss in Section 2.7. Here, the focus lies on FDSM
consisting of (i) generating a deterministic graph from a prescribed degree sequence

(cf. EM-HH, Section 2.4) and (ii) randomizing this graph using random edge switches

(cf. EM-ES, Section 2.5). For EM-HH, we describe a streaming algorithm whose internal

data structure only has an I/O complexity linear in the number of di�erent degrees

if a monotonous degree sequence is provided. To execute a number of edge switches

proportional to the number m of edges, EM-ES triggers O(sort(m)) I/Os. For EM-LFR,

the I/O complexity is the same as it is dominated by the edge randomization step. In

Section 2.6, we additionally describe EM-CM/ES, an alternative to FDSM . It generates

uniform random non-simple graphs using the Con�guration Model in O(sort(m)) I/Os

and then obtains a simple graph by applying edge rewiring steps.

We conclude with an experimental evaluation of our algorithms and demonstrate

that our EM version of the FDSM is faster than an existing state-of-the-art implemen-

tation even for instances still �tting into RAM. It scales well to large networks, as we

demonstrate by handling a graph with 37 billion edges on a desktop computer, and

almost an order of magnitude more e�cient than an existing distributed parallel al-

gorithm. Further, we compare EM-LFR to the original LFR implementation and show

that EM-LFR is signi�cantly faster while producing equivalent networks in terms of

1

The implementation is freely available at h�ps://massive-graphs.org/extmem-lfr. Among others, it

contains encapsulated implementations of EM-ES and EM-CM/ES easily reusable for novel application.
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community detection algorithm performance and graph properties.

A LFR benchmark graph with more than 1 · 1010
edges can be generated in 17 h on

a single server with 64 GB RAM and 3 SSDs. We also investigate the mixing time of

EM-ES and EM-CM/ES and give evidence that our alternative sampling scheme quickly

yields uniform samples and that the number of swaps suggested by the original LFR
implementation can be kept for EM-LFR.

2.2 Preliminaries and Notation

In this section, we highlight important de�nitions and notations used through the

document, and give an introduction to the external memory model as well as Time
Forward Processing, a crucial design-principle used in EM-ES.

2.2.1 Notation

We de�ne the short-hand [k] := {1, . . . , k} for k ∈ N>0, and write [xi ]bi=a for an

ordered sequence [xa, xa+1, . . . , xb].

Graphs and degree sequences. A graph G = (V,E) has n = |V | sequentially

numbered nodes V = {v1, . . . , vn} and m = |E| edges. Let deg(vi) denote the degree

(i.e. number of neighbors) of node vi. D = [ di ]ni=1 is a degree sequence of graph G i�

∀vi ∈ V : deg(vi) = di. Unless stated di�erently, graphs are assumed to be undirected

and unweighted. A graph is called simple if it contains neither multi-edges nor self-loops.

To obtain a unique representation of an undirected edge {u, v} ∈ E, we use ordered
edges [u, v] ∈ E implying u ≤ v; in contrast to a directed edge, the ordering is used

algorithmically but does not carry any meaning. Unless stated di�erently, our EM

algorithms represent a graph G = (V,E) as a sequence containing for every ordered

edge [u, v] ∈ E only the entry (u, v).

Randomization and Distributions. Pld ([a, b), γ) denotes an integer Powerlaw

Distribution with exponent −γ ∈ R for γ ≥ 1 and values from the interval [a, b);

let X be an integer random variable drawn from Pld ([a, b), γ) then P[X=k] ∝ k−γ

(proportional to) if a ≤ k < b and P[X=k] = 0 otherwise. For X = [xi ]ni=1, we

de�ne the mean 〈X〉 :=
∑n

i=1 xi/n and the second moment 〈X2〉 :=
∑n

i=1 x
2
i /n of the

sequence X . A statement depending on some x > 0 is said to hold with high probability
if it is satis�ed with probability at least 1− 1/xc for some constant c ≥ 1.

Also refer to Section 2.A (Appendix) for a summary of commonly used de�nitions.

2.2.2 External Memory Model

In contrast to classic models of computation, such as the unit-cost RAM, modern com-

puters contain deep memory hierarchies ranging from fast registers, caches and main

memory to solid-state drives (SSDs) and hard disks. Algorithms unaware of these

properties may face performance penalties of several orders of magnitude. We use

the commonly accepted external memoryEM: external memory (EM) model by Aggarwal and Vitter [1] to
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Algorithm 1: Compute Fibonacci numbers using Time Forward Processing

1 PQ.push((key = 2, val = 0), (key = 2, val = 1)) // Send base cases x0 & x1 to v2
2 for i← 2, . . . , n do
3 sum← 0

4 while PQ.min.key == i do
5 sum← sum + PQ.removeMin().val // Receive all messages for xi

6 print(xi = sum)

7 PQ.push((key = i+1, val = sum), (key = i+2, val = sum))

v2

x0+x1

x2=1

v3

x1+x2

x3=2

v4

x2+x3

x4=3

v5

x3+x4

x5=5

v6

x4+x5

x6=8

v7

x5+x6

x7=13

reason about the in�uence of data locality in memory hierarchies. The model fea-

tures two memory types with fast internal memory IM: internal memory(IM) which may hold up to M

data items, and a slow disk of unbounded size. M : main memory sizeThe input and output of an algorithm

are stored in EM while computation is only possible on values in IM. The measure

of an algorithm’s performance is the number of I/Os required. Each I/O transfers a

block of B : block sizeB consecutive items between memory levels. Reading or writing n contigu-

ous items from or to disk requires scanscan(n) = Θ(n/B) I/Os. Sorting n contiguous

items uses sortsort(n) = Θ((n/B) · logM/B(n/B)) I/Os. For realistic values of n, B and

M , scan(n) < sort(n) � n. Sorting complexity often constitutes a lower bound for

intuitively non-trivial tasks [1, 133].

2.2.3 TFP: Time Forward Processing

Time Forward Processing (TFP) is a generic technique to manage data dependencies in

external memory algorithms [123]. Consider an algorithm computing values x1, . . . , xn
where the calculation of xi requires previously computed values. One typically models

these dependencies using a directed acyclic graph G=(V,E). Every node vi ∈ V

corresponds to the computation of xi, and an edge (vi, vj) ∈ E indicates that the

value xi is necessary to compute xj . As an example consider the Fibonacci sequence

x0 = 0, x1 = 1, xi = xi−1 + xi−2 ∀i ≥ 2. Here, each node vi with i ≥ 2 depends on

its two direct predecessors (see Algorithm 1).

In general, an algorithm needs to traverse G according to some topological order

≺T of nodes V and also has to ensure that each vj can access values from all vi with

(vi, vj) ∈ E. The TFP technique achieves this as follows: as soon as xi has been

calculated, messages of form 〈vj , xi〉 are sent to all successors (vi, vj) ∈ E. These

messages are kept in a minimum priority queue sorting the items by their recipients

according to ≺T . By de�nition, the algorithm only starts the computation vi once all

predecessors vj ≺T vi are completed. Since these predecessors already removed their

messages from the PQ, items addressed to vi (if any) are currently the smallest elements

in the data structure and can be dequeued. Using a suited EM PQ [14, 160], TFP incurs

O(sort(k)) I/Os, where k is the number of messages sent.
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Figure 2.1: The EM-LFR pipeline: A�er randomly sampling the node degrees and community sizes, nodes are assigned

into suited communities by EM-CA (Section 2.7). The global (inter-community) graph and each community graph is then

generated independently by first materializing biased graphs using EM-HH (Section 2.4) followed by a randomization using

EM-ES or EM-CM/ES (Sections 2.5 and 2.6). The global graph may contain edges between nodes of the same community which

would decrease the mixing µ and are hence rewired using EM-GER (Section 2.8.1). Similarly, two overlapping communities

can have identical edges which are rewired by EM-CER (Section 2.8.2).

2.3 The LFR Benchmark

In this section we introduce the properties and features of the LFR benchmark, outline

important algorithmic challenges, and address each of them by proposing a suited EM

algorithm in the following chapters (refer to Figure 2.1 for an overview).

The LFR benchmark [116] describes a generator for random graphs featuring node

degrees and community sizes both following powerlaw distributions. The produced

networks also contain a planted community structure against which the performance

of detection algorithms is measured. A revised version [114] additionally introduces

weighted and directed graphs with overlapping communities and changes the sampling

algorithm even for the original settings.

we consider unweighted

and undirected LFR and

support overlapping

communities

We consider the modern generator, which

is also used in the author’s implementation, and focus on the most common variants

for unweighted, undirected graphs and optionally overlapping communities. All its

parameters are listed in Section 2.A (Appendix) and are fully supported by EM-LFR.

LFR starts by randomly sampling the degreesD, di : node degrees D = [ di ]ni=1 of all nodes, the numbers

[ νi ]ni=1
νi : memberships node i of clusters they are members in, and community sizes S = [ sξ ]Cξ=1 such that∑C

ξ=1 sξ =
∑n

i=1 νi according to the supplied parameters.S, sξ : community sizes During this process the

number of communities CC : num. of communities follows endogenously and is bounded by C=O(n) even if

nodes are members in ν=O(1) communities.
2

Depending on the mixing parameter 0 < µ < 1µ : mixing parameter , every node vi ∈ V is incident to

dext

i = µ · di inter-community edges and din

i = (1−µ) · di edges within its communities.

2

Under the realistic assumption that the maximal community size grows with smax = Ω(nε) for some

ε > 0, the bound improves to C=o(n) whp. due to the powerlaw distributed community sizes.
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Sample intra- and inter-
community edges

Degrees, community sizes
and memberships

Remove (rewire)
illegal edges

Intra-community edge Inter-community edge Community

Figure 2.2: Le�: Sample node degrees and community sizes from two powerlaw distributions.

The mixing parameter µ determines the fraction of the inter-community edges. Then, assign

each node to su�iciently large communities. Center: Sample intra-community graphs and

inter-community edges independently. This may lead to illegal intra-community edges in

the global graph as shown here in bold. Right: Lastly, remove illegal inter-community edges

respective to the global graph.

In the case of overlapping communities, the internal degree is evenly split among all

communities of the node. Both the computation of din

i and the division din

i /νi into several

communities use non-deterministic rounding to avoid biases. LFR assigns every node vi
to either νi = 1 or νi = ν communities at random such that the requested community

sizes and number of communities per node are realized. It further ensures that the

desired internal degree din

i /νi is strictly smaller than the size sξ of its community ξ.

As illustrated in Figure 2.2, the LFR benchmark then generates the inter-community

graph using FDSM on the degree sequence [ dext

i ]ni=1. In order not to violate the mixing

parameter µ, rewiring steps are applied to the global inter-community graph to replace

edges between two nodes sharing a community. Analogously, an intra-community

graph is sampled for each community. In the overlapping case, rewiring steps may

be necessary to remove edges that exist in multiple communities and would result in

duplicate edges in the �nal graph.

2.4 EM-HH: Deterministic Edges from a Degree Sequence

In this section, we address the issue of generating a graph from prescribed degrees and

introduce an EM-variant of the well known Havel-Hakimi scheme. It takes a positive

non-decreasing degree sequence D = [ di ]ni=1 and, if possible, outputs a graph GD
realizing these degrees.

3
EM-LFR uses this algorithm (cf. Figure 2.1) to �rst obtain a

legal but biased graph following D and then randomizes GD in a subsequent step.

A sequence D is called graphical graphical degree sequenceif a matching simple graph GD exists. Havel

and Hakimi independently gave inductive characterizations of graphical sequences

which directly lead to a graph generator [95, 89]: given D, connect the �rst node

v1 with degree d1 (minimal among all nodes) to d1-many high-degree vertices by

emitting edges { {v1, vn−i} | 0 ≤ i < d1 }. Then obtain an updated sequence D′ by

3

EM-LFR directly generates a monotonic degree sequence by �rst sampling a monotonic uniform

sequence [27, 183] and then applying the inverse sampling technique (carrying over the monotonicity) for

a powerlaw distribution. Thus, no additional sorting steps are necessary for the inter-community graph.
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Figure 2.3: Graph with Dk = (1, 1, 2, 2, . . . , k, k) maximizes EM-HH’s memory consumption

asymptotically as D(Dk) = k = Θ(n). Node are labeled with their degrees.

removing d1 from D and decrementing the remaining degree of every new neighbor

{vn−i | 0 ≤ i < d1}.4 Subsequently, remove zero-entries and sort D′ while keeping

track of the original positions to be able to output the correct node indices. Finally,

recurse until no more positive entries remain. After every iteration, the size of D is

reduced by at least one resulting in O(n) rounds.

For an implementation, it is non-trivial to keep the sequence ordered after decre-

menting the neighbors’ degrees. Internal memory solutions typically employ priority

queues optimized for integer keys, such as bucket-lists [171, 181]. This approach incurs

Θ(sort(n+m)) I/Os using a naïve EM PQ since every edge triggers an update to the

pending degree of at least one endpoint.

We hence propose the Havel-Hakimi variant EM-HH which, for virtually all realistic

powerlaw degree distributions, avoids accesses to disk besides writing the result. The

algorithm emits a stream of edges in lexicographical order which can be fed to any

single-pass streaming algorithm without a round trip to disk. Thus, we consider only

internal I/Os and emphasize that storing the output —if necessary by the application—

requires O(m) time and O(scan(m)) I/Os where m is the number of edges produced.

Additionally, EM-HH may be used to test in time O(n) whether a degree sequence D is

graphical or to drop problematic edges yielding a graphical sequence (Section 2.6).

2.4.1 Data Structure

Instead of maintaining the degree of every node in D individually, EM-HH compacts

nodes with equal degrees into a group, yielding D(D) := |{di | 1 ≤ i ≤ n}|D(D) : number of unique

degrees

groups.

Since D is monotonic, such nodes have consecutive ids and the compaction can be

performed in a streaming fashion.
5

The sequence is then stored as a doubly linked list

L = [gj ]1≤j≤D(D)L and gj where group gj = (bj , nj , δj) encodes that the nj nodes [ vbj+i ]
nj−1
i=0

have degree δj . At the beginning of every iteration of EM-HH, L satis�es the following

invariants which guarantee a compact representation:

(I1) The groups contain strictly increasing degrees, i.e. δj < δj+1 ∀1 ≤ j < |L|

(I2) There are no gaps in the node ids, i.e. bj + nj = bj+1 ∀1 ≤ j < |L|
4

This variant is due to [89]; in [95], the node of maximal degree is picked and connected.

5

While direct sampling of the group’s multinomial distribution is not bene�cial in LFR, it may be used

to omit the compaction phase for other applications.
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These invariants allow us to bound the memory footprint in two steps: �rst observe

that a list L of size D(D) describes a graph with at least

∑D(D)
i=1 i/2 edges due to (I1).

Thus, materializing an arbitrary L of size |L| = Θ(M) emits Ω(M2) edges.

Remark 2.1. in practice EM-HH’s state

can be kept in IM

With as little as 2 GB RAM, this amounts to an edge list exceeding 1 PB

in size.
6

Therefore, even in the worst-case the whole data structure can be kept in IM for

all practical scenarios. On top of this, a probabilistic argument applies: while there exist

graphs with D(D) = Θ(n) as illustrated in Figure 2.3, Lemma 2.2 gives a sub-linear

bound on D(D) if D is sampled from a powerlaw distribution. J

Lemma 2.2. LetD be a degree sequence of n nodes sampled from Pld ([1, n), γ). Then,

there are O
(
n1/γ

)
unique degrees D(D) = |{di | 1 ≤ i ≤ n}| whp.. J

Proof. Consider random variables (X1, . . . , Xn) sampled i.i.d. from Pld ([1, n), γ) as

an unordered degree sequence. Fix an index 1≤j≤n. Due to the powerlaw distribution,

Xj is likely to have a small degree. Even if all degrees 1, . . . , n1/γ
were realized, their

occurrences would be covered by the claim. Thus, it su�ces to bound the number of

realized degrees larger than n1/γ
.

We �rst show that their total probability mass is small. Then we can argue that

D(D) is asymptotically una�ected by their rare occurrences:

P[Xj > n1/γ ] =
n−1∑

i=n1/γ+1

P[Xj = i] =

∑n−1
i=n1/γ+1

i−γ∑n−1
i=1 i

−γ
(i)
=

∑n−1
i=n1/γ+1

i−γ

ζ(γ)−∑∞i=n i−γ
(ii)

≤
∫ n−1
n1/γ x−γ dx

ζ(γ)−
∫∞
n x−γ dx

=

1
1−γ

[
(n−1)1−γ − n1/γ/n

]
ζ(γ) + 1

1−γn
1−γ

=
n1/γ/n− (n− 1)1−γ

(γ − 1)ζ(γ)− n1−γ = O
(
n1/γ/n

)
,

where (i) ζ(γ) =
∑∞

i=1 i
−γ

is the Riemann zeta function which satis�es ζ(γ) ≥ 1 for

all γ ∈ R, γ ≥ 1. In step (ii), we exploit the series’ monotonicity to bound it in between

the two integrals

∫ b+1
a x−γ dx ≤∑b

i=a i
−γ ≤

∫ b
a−1 x

−γ dx.

In order to bound the number of occurrences, de�ne Boolean indicator variables

Yi with Yi = 1 i� Xi>n
1/γ

and observe that they model Bernoulli trials Yi ∈ B(p)

with p = O
(
n1/γ/n

)
. Thus, the expected number of high degrees is E[

∑n
i=1 Yi] =∑n

i=1 P[Xi>n
1/γ ] = O

(
n1/γ

)
. Cherno�’s inequality gives an exponentially decreasing

bound on the tail distribution of the sum which thus holds with high probability. �

Remark 2.3. Experiments in Section 2.10.2 indicate that the hidden constants in

Lemma 2.2 are small for realistic γ. J

6

A single item of L can be naïvely represented by its three values and two pointers, i.e. a total of

5·8 = 40 bytes per item (assuming 64 bit integers and pointers). Just 2 GB of IM su�ce for storing 5 · 107

items, which result in at least 6.25 · 1014
edges, i.e. storing just two bytes per edge would require more

than one Petabyte. Observe that standard tricks, such as exploiting the redundancy due to (I2), allow to

reduce the memory footprint of L.
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2.)

[
(2, 1, 1), (3, 3, 2), (6, 1, 3)
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(4, 2, 1), (6, 1, 2)

]
5.)

[
(5, 2, 1)

]

1 1 2 2 3 3

1 2 2 2 3

2 2 2 2

1 1 2

1 1

d−1

group gi

d

group gj

d−1

group gi

d−1
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d−2 d−1

d−1

group gi
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Initial situation

Splitting at gi (front) Splitting at gj (back)

Figure 2.4: Le�: EM-HH on D = (1, 1, 2, 2, 3, 3). L and D in row i indicate the state at the begin iteration i. The number

next to an edge-to symbol indicates the new degree. A�er these updates, spli�ing and merging takes place. For instance, in

the initial round the first node v1 is extracted from g1 and connected to the first node v5 of the last group. Hence group g3 of

nodes with degree 3 is split, into node v5 with now deg(v5) = 2 and v6 remaining at deg(v6) = 3. Since group g2 of nodes

{v3, v4} has also degree 2 it is merged with the new group of v5.

Right: Consider two adjacent groups gi, gj with degrees d−1 and d. A split of gi (le�) or gj (right) directly triggers a merge,

so the number of groups remains the same.

Corollary 2.4. Graphs with m = O
(
M2γ

)
edges and a powerlaw degree distribution

are processed without I/O whp.. J

Proof. Due to Lemma 2.2 the number of unique degrees D(D) is bounded by O
(
n1/γ

)
with high probability. Consequently, a list of size D(D) �lling the whole IM supports

n = O(Mγ) many nodes and thusm = O
(
M2γ

)
many edges with high probability. �

2.4.2 Algorithm

EM-HH works in n rounds, where every iteration corresponds to a recursion step of the

original formulation. Each time it extracts node vb1 with the smallest available id and

with minimal degree δ1. The extraction is achieved by incrementing the lowest node id

(b′1 ← b1+1) of group g1 and decreasing its size (n′1 ← n1−1). If the group becomes

empty (n′1 = 0), it is removed from L at the end of the iteration; Figure 2.4 illustrates

this situation in step 2. We now connect node vb1 to δ1 nodes from the end of L. Let gj
be the group of smallest index to which vb1 connects to. Then there are two cases:

(C1)(C1): connect to all nodes

in the group gj

If node vb1 connects to all nodes in gj , we directly emit all relevant edges

{[vb1 , x] | n−δ1 < x ≤ n} and decrement the degrees of all groups gj , . . . , g|L|
accordingly. Since degree δj−1 remains unchanged, it may now match the decre-

mented δj . This violation of (I1) is resolved by merging both groups. Due to

(I2), the union of gj−1 and gj contains consecutive ids and it su�ces to grow

nj−1 ← nj−1+nj and to delete group gj (see Figure 2.4 step 2 in which the degree

of g3 is reduced to d3 = 2 triggering a merge with g2).

(C2)(C2): connect to some
nodes in the group gj

If vb1 connects only to a number a < nj of nodes in group gj , we split gj into

two groups g′j and g′′j containing nodes [ vbj+i ]a−1
i=0 and [ vbj+i ]

nj
i=a respectively.

We then connect node u to all a nodes in the �rst fragment g′j and hence need to
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decrease its degree. Thus, a merge analogous to (C1) may be required if degree

δj−1 matches the decreased degree of group g′j (see Figure 2.4 step 1 in which

group g3 is split into two fragments with degrees d3′ = 2 and d3 = 3 respectively,

triggering a merge between group g2 and fragment g3′ ). Afterwards, the degrees

of groups gj+1, . . . , g|L| are decreased wholly as in (C1).

If the requested degree δ1 cannot be met (i.e., δ1 >
∑|L|

k=1 nk), the input is not

graphical [89]. However, a su�ciently large random powerlaw degree sequence contains

at most very few nodes that cannot be materialized as requested since the vast majority

of nodes have low degrees. Thus, we do not explicitly ensure that the sampled degree

sequence is graphical and rather correct the negligible inconsistencies later on by

ignoring the unsatis�able requests.

2.4.3 Improving the I/O Complexity

In EM-HH’s current formulation, it requires O(m) time which is already optimal in

case edges have to be emitted. Testing whether D is graphical however is sub-optimal.

We thus introduce a simple optimization, which also yields optimality for these tests,

improves constant factors and gives I/O-optimal accesses.

Observe that only groups in the vicinity of gj can be split or merged; we call these

the active frontier. In contrast, the so-called stable groups gj+1, . . . , gD(D) keep their

relative degree di�erences as the pending degrees of all their nodes are decremented by

one in each iteration. Further, they will become neighbors to all subsequently extracted

nodes until group gj+1 eventually becomes an active merge candidate. Thus, we do

not have to update the degrees of stable groups in every round, but rather maintain

a single global iteration counter I and count how many iterations a group remained

stable: when a group gk becomes stable in iteration I0, we annotate it with I0 by adding

δk ← δk+I0. If gk has to be activated again in iteration I > I0, its updated degree is

δk ← δk−I . The degree δk remains positive since (I1) enforces a timely activation.

Lemma 2.5. The optimized EM-HH needs O(scan(D(D))) I/Os if L is an EM list. J

Proof. An external memory list requires O(scan(k)) I/Os to execute any sequence

of k sequential read, insertion, and deletion requests to adjacent positions (i.e. if no

seeking is necessary) [123]. We will argue that EM-HH scans L roughly twice, starting

simultaneously from the front and back.

Every iteration starts by extracting a node of minimal degree. Doing so corresponds

to accessing and eventually deleting the list’s �rst element gi. If the list’s head block is

cached, we only incur an I/O after deleting Θ(B) head groups, yieldingO(scan(D(D)))

I/Os during the whole execution. The same is true for accesses to the back of the

list: the minimal degree increases monotonically during the algorithm’s execution

until the extracted node has to be connected to all remaining vertices. In a graphical

sequence, this implies that only one group remains and we can ignore the simple base
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Figure 2.5: A swap is de-

fined by the two edge ids

(rank inEL), and a direc-

tion bit. Swap σ1 is ille-

gal as it adds the already

present edge {a, c}.

a b

c d
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c d
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fst(σ1) snd(σ1)
fst(σ2)snd(σ2)

Input σ1 = σ(〈1, 2〉, false) σ2 = σ(〈1, 2〉, true)

illegal (creates multi-edge)

case asymptotically. Neglecting splitting and merging, the distance between the list’s

head and the active frontier decreases monotonically triggering O(scan(D(D))) I/Os.

Asmerging described before, it may be necessary to reactivate stable groups, i.e. to reload

the group behind the active frontier (towards L’s end). Thus, we not only keep the

block F containing the frontier cached, but also block G behind it. It does not incur

additional I/O, since we are scanning backwards through L and already read G before

F . The reactivation of stable groups hence only incurs an I/O when the whole block G

is consumed and deleted. Since this does not happen before Ω(B) merges take place,

reactivations may trigger O(scan(D(D))) I/Os in total.

Splittingspli�ing does not in�uence EM-HH’s asymptotic I/O complexity: Only an active

group of degree d can be split yielding two fragments of degrees d−1 and d respectively.

A second split of one of these fragments does not increase the number of groups since

two of the three involved fragments have to be merged (cf. Figure 2.4). As a result

splitting can at most double L’s size. �

2.5 EM-ES: I/O-e�icient Edge Switching

EM-ES implements an external memory edge switching algorithm to randomize net-

works. Following LFR’s original usage of FDSM , EM-ES is crucial in EM-LFR to randomize

the inter-community graph as well as all communities independently (cf. . Figure 2.1),

and additionally functions as a building block to rewire illegal edges (cf Sections 2.6

and 2.8). As discussed in Section 2.10.6, the algorithm also has applications as a stan-

dalone tool in network analysis.

EM-ES applies a sequence S = [σs ]ks=1 of edge swaps σs to a simple graph G =

(V,E), where the parameter k is typically chosen as k ∈ [1m, 100m]. The graph is

represented by a lexicographically ordered edge list EL = [ ei ]mi=1 which contains for

every ordered edge [u, v] ∈ E (i.e. u < v) only the entry (u, v) and omits (v, u). We

encode a swap σ(〈a, b〉, d) as a three-tuple with a direction bit d and the two indices

a, b of the edges ea, eb ∈ EL that are supposed to be swapped.

As illustrated in Figure 2.5, a swap simply exchanges one of the two incident nodes

of each edge where d selects which one. More formally, we denote the two resulting

24



EM-ES: I/O-e�icient Edge Switching

edges as fst(σ(〈a, b〉, d)) and snd(σ(〈a, b〉, d)) with

fst(σ(〈a, b〉, d)) :=

{
{α1, β1} if d = false

{α1, β2} if d = true

, and

snd(σ(〈a, b〉, d)) :=

{
{α2, β2} if d = false

{α2, β1} if d = true

,

where [α1, α2] = ea and [β1, β2] = eb are the edges at ranks a and b in the edge list EL.

In unambiguous cases, we shorten the expressions to fst(σ) and snd(σ) respectively.

The swap’s constituents a and b are typically drawn independently and uniformly at

random. Thus, the sequence can contain illegal swaps that would introduce either

multi-edges or self-loops. Such illegal swaps are simply skipped. In order to do so, the

following tasks have to be addressed for each σ(〈a, b〉, d):

(T1) Gather the nodes incident to edges ea and eb.

(T2) Compute fst(σ) and snd(σ) and skip if a self-loop arises.

(T3) Verify that the graph remains simple, i.e. skip if edge fst(σ) or snd(σ) already

exist in EL.

(T4) Update the graph representation EL.

If the whole graph �ts in IM, a hash set per node storing all neighbors can be used

for adjacency queries and updates in expected constant time (e.g., VL-ES [181]). Then,

(T3) and (T4) can be executed for each swap in expected time O(1). However, in the

EM model this approach incurs Ω(1) I/Os per swap with high probability for a graph

with m ≥ cM and any constant c > 1.

We address this issue by processing the sequence of swaps S batchwise in chunks of

size r = Θ(m) which we call runs. As illustrated in Figure 2.6, EM-ES executes several

phases for each run. While they roughly correspond to the four tasks outlined above,

the algorithm is more involved as it has to explicitly track data dependencies between

swaps within a batch. There are two types: A source edge dependency occurs if (at least)

two swaps share the same edge id as source. In this case, successfully executing the �rst

swap will replace the edge by another one. This update has to be communicated to all

later swaps involving this edge id. Target edge dependencies exist because swaps must

not introduce multi-edges. Therefore each swap has to assert that none of its new edges

(target edges) are already present in the graph. For this reason, EM-ES has to inform a

swap about the creation or deletion of target edges that occurred earlier in the run.

2.5.1 EM-ES for Independent Swaps

For simplicity’s sake, we �rst assume that all swaps are independent, i.e. that there are

neither source edge nor target edge dependencies in a run. Section 2.5.6 contains the

algorithmic modi�cations necessary to account for dependencies.
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Figure 2.6: Data flow of EM-ES. Communication between phases is uses EM sorters, self-loops use a PQs (TFP). Brackets within

a phase indicate the elements iterated over. If multiple input streams are used, they are joined with this key. Independent

swaps as in Section 2.5.1 require only communication via sorters as shown on the upper half.

The design of EM-ES is driven by the intuition that there are three types of cross-

referenced data, namely (i) the sequence of swaps ranked in the order they were issued,

(ii) edges addressed by their indices (e.g., to load and store their incident nodes) and (iii)

edges referenced by their constituents (in order to query their existence). To resolve

these unstructured references, the algorithm is decomposed into several phases and

iterates in each phase over one of these data types in order. There is no pipelining, so a

new phase only starts processing when the previous is completed. Similarly to Time
Forward Processing, phases communicate by sending messages addressed to the key of

the receiving phase. The messages are pushed into a sorter
7

to later be processed in the

order dictated by the data source of the receiving end. EM-ES uses the following phases:

2.5.2 Phases Request nodes and load nodes

The goal of these two phases is to load the constituents of the edges referenced by the

run’s swaps. We iterate over the sequence S of swaps. For the s-th swap σ(〈a, b〉, d), we

push two messages edge_req(a, s, 0) and edge_req(b, s, 1) into the sorter EdgeReq.

A message’s third entry encodes whether the request is issued for the �rst or second

edge of a swap. This information only becomes relevant when we allow dependencies.

EM-ES then scans in parallel through the edge list EL and the requests EdgeReq,

which are now sorted by edge ids. If there is a request edge_req(i, s, p) for an edge

ei = [u, v], the edge’s node pair is sent to the requesting swap by pushing a message

edge_msg(s, p, (u, v)) into the sorter EdgeMsg.

Additionally, for every edge we push a bit into the sequence InvalidEdge indicating

whether an edge received a request. Such edges will be deleted when updating the graph

in Section 2.5.5. Since both phases produce only a constant amount of data per input

7

The term sorter refers to a data structure with two modes of operation: items are �rst pushed into the

write-only sorter in an arbitrary order by some algorithm. After an explicit switch, the �lled data structure

becomes read-only and the elements are provided as a lexicographically non-decreasing stream. It can

be rewound at any time. While a sorter is functionally equivalent to sorting an EM vector, the restricted

access model reduces constant factors in the implementation’s runtime and I/O complexity [24].
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element, we obtain an I/O complexity of O(sort(r) + scan(m)).

2.5.3 Phases Simulate swaps and load existence

The two phases gather all information required to decide whether a swap is legal. EM-ES

scans through the sequence S of swaps and EdgeMsg in parallel: For the s-th swap

σ(〈a, b〉, d), there are exactly two messages edge_msg(s, 0, ea) and edge_msg(s, 1, eb)

in EdgeMsg. This information su�ces to compute the switched edges fst(σ) and snd(σ),

but not to test for multi-edges.

It remains to check whether the switched edges already exist; we push the existence

requests exist_req(fst(σ), s) and exist_req(snd(σ), s) into the sorter ExistReq. Ob-

serve that for request nodes we use the node pairs rather than edge ids, which are not

well de�ned here. Afterwards, a parallel scan through the edge list EL and ExistReq is

performed to answer the requests. Only if an edge e requested by swap id s is found,

the message exist_msg(s, e) is pushed into the sorter ExistMsg. Both phases hence

incur a total of O(sort(r) + scan(m)) I/Os.

2.5.4 Phase Perform swaps

We rewind the EdgeMsg sorter and jointly scan through the sequence of swaps S and

the sorters EdgeMsg and ExistMsg. As described in the simulation phase, EM-ES

computes the switched edges fst(σ) and snd(σ) from the original state ea and eb. The

swap is considered illegal if a switched edge is a self-loop or if an existence info is

received via ExistMsg. If σ is legal we push the switched edges fst(σ) and snd(σ) into

the sorter EdgeUpdates, otherwise we propagate the unaltered source edges ea and eb.

This phase requires O(sort(r)) I/Os.

2.5.5 Phase Update edge list

The new edge listE′L is obtained by merging the original lexicographic increasing listEL
and the sorted updated edges EdgeUpdates, triggering O(scan(m)) I/Os. During this

process, we skip all edges in EL that are �agged invalid in the bit stream InvalidEdge.

The result is a sorted new E′L with |E′L| = m edges that can be fed into the next run.

2.5.6 Phase Inter-Swap Dependencies

In this section, we introduce the modi�cations necessary due to dependencies between

swaps within a run. In its �nal version, EM-ES produces the same result as a sequential

processing of S. Source edge dependencies are detected during the load nodes phase

since multiple requests for the same edge id arrive. We record these dependencies as

an explicit dependency chain along which intermediate updates can be propagated.

Target edge dependencies surface in the load existence phase since multiple existence

requests and noti�cations arrive for the same edge. Again, an explicit dependency chain

is computed. During the perform swaps phase, EM-ES uses both dependency chains to

forward the source edge states and existence updates to successor swaps.
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2.5.7 Target Edge Dependencies

Consider the case where a swap σs1(〈a, b〉, d) changes the state of edges ea and eb to

fst(σ1) and snd(σ1) respectively. Later, a second swap σ2 inquires about the existence

of either of the four edges which has obviously changed compared to the initial state. We

extend the simulation phase to track such edge modi�cations and not only push messages

exist_req(fst(σ1), s1) and exist_req(snd(σ1), s1) into sorter EdgeReq, but also report

that the original edges may change (during simulation phase it is unknown whether

the swap has to be skipped). To this end, we push the messages exist_req(ea, s1,

may_change) and exist_req(eb, s1, may_change) into the same sorter.

In case of dependencies, multiple messages are received for the same edge e during

the load existence phase. If so, only the request of the �rst swap involved is answered

as before. Also, every swap σs1 is informed about its direct successor σs2 (if any) by

pushing the message exist_succ(s1, e, s2) into the sorter ExistSucc, yielding the

aforementioned dependency chain. As an optimization, may_change requests at the

end of a chain are discarded since no recipient exists.

During the perform swaps phase, EM-ES executes the same steps as described earlier.

The swap may receive a successor from every edge it sent an existence request to, and

—in turn— send each successor swapped edge state.

2.5.8 Source Edge Dependencies

Consider two swaps σs1(〈a1, b1〉, d1) and σs2(〈a2, b2〉, d2) with s1<s2 which share a

source edge id, i.e. {a1, b1}∩{a2, b2} is non-empty. This dependency is detected during

the load nodes phase since requests edge_req(ei, s1, p1) and edge_req(ei, s2, p2) arrive

for edge id ei. In this case, we answer only the request of s1 and build a dependency

chain as before using messages id_succ(s1, p1, s2, p2) pushed into the sorter IdSucc.

During the simulation phase, EM-ES cannot yet decide whether a swap is legal.

Thus, s1 sends for every con�icting edge its original state as well as the updated state

to the p2-th slot of s2 using a PQ. If a swap receives multiple edge states per slot, it

simulates the swap for all possible combinations.

During the perform swaps phase, EM-ES operates as described in the independent

case: it computes the swapped edges and determines whether the swap has to be skipped.

If a successor exists, the new state is not pushed into the EdgeUpdates sorter but rather

forwarded to the successor in a TFP fashion. This way, every invalidated edge id receives

exactly one update in EdgeUpdates and the merging remains correct.

2.5.9 Complexity

Due to source edge dependencies, EM-ES’s complexity increases with the number of

swaps that share the same edge id. This number is low in case r = O(m): let Xi

be a random variable expressing the number of swaps that reference edge ei. Since

every swap constitutes two independent Bernoulli trials towards ei, the indicator Xi

is binomially distributed with p = 1/m, yielding an expected chain length of 2r/m.

Also, for r = m/2 swaps, max1≤i≤n(Xi) = O(ln(m)/ ln ln(m)) holds with high
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Degree sequence D = (1, 1, 2, 2, 2, 4)

[1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6]

[6, 6, 4, 5, 4, 5, 6, 1, 3, 2, 3, 6]

[6, 6] [4, 5] [4, 5] [1, 6] [2, 3] [3, 6]

1

6 3 2

4 5

1. Input

2. Materialized multiset of stubs

3. Shu�led sequence Resulting graph

4. Paired stubs forming edges

Figure 2.7: Possible execution path of Configuration Model with the degree sequence D = (1, 1, 2, 2, 2, 4) as input.

probability based on a balls-into-bins argument [141]. Thus, we can bound the largest

number of edge states simulated with high probability by O(poly log(m)), assuming

non-overlapping dependency chains. Further observe that Xi converges towards an

independent Poisson distribution for large m. Then the expected state space per edge

is O(1). The experiments in Section 2.10.3 suggest that this bound also holds for

overlapping dependency chains.

In order to keep the dependency chains short, EM-ES splits the sequence of swaps S

into runs of equal size. Our experimental results show that a run size of r = m/8 is a

suitable choice. For every run, the algorithm executes the six phases as described before.

Each time the graph is updated, the mapping between an edge and its id may change.

The switching probabilities, however, remain unaltered due to the initial assumption of

uniformly distributed swaps. Thus EM-ES triggers O(r/m sort(m)) I/Os in total whp..

2.6 EM-CM/ES: Sampling Graphs with Prescribed Degree Sequence

In this section, we propose an alternative approach to generate a graph from a prescribed

degree sequence. In contrast to EM-HH which generates a highly biased but simple

graph, we use the Con�guration Model to sample a random but in general non-simple

graph. Thus, the resulting graph may contain self-loops and multi-edges which we

then rewire to obtain a simple graph. As experimental data suggests (cf. Section 2.6.2),

this still results in a biased realization of the degree sequence requiring additional edge

switching randomization steps.

2.6.1 Configuration Model

Let D = [ di ]ni=1 be a degree sequence with n nodes. The Con�guration Model builds a

multiset of node ids which can be thought of as half-edges (or stubs). It produces a total

of di half-edges labeled vi for each node vi. The algorithm then chooses two half-edges

uniformly at random and creates an edge according to their labels. It repeats the last

step with the remaining half-edges until all are paired. A naïve implementation of this

algorithm requires with high probability Ω(m) I/Os if m ≥ cM and any constant c > 1.

It is therefore impractical in the fully external setting.

We rather materialize the multiset as a sequence in which each node appears di
times similar to the approach of [113]. Subsequently, the sequence is shu�ed to obtain

a random permutation with O(sort(m)) I/Os by sorting the sequence according to a
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uniform variate drawn for each half-edge
8
. Finally, we scan over the shu�ed sequence

and match pairs of adjacent half-edges into edges.

As illustrated in Figure 2.7, the Con�guration Model gives rise to self-loops and

multi-edges which then need to be rewired, cf. section 2.6.2. Consequently, the rewiring

process depends on the number of introduced illegal edges. In the following lemma, we

bound their number from above.

Lemma 2.6. Let D be drawn from Pld ([a, b), 2). The expected number of self-loops

and multi-edges are bound by:

E[#self-loops] ≤ 1

2

(
b− a+ 1

ln(b+ 1)− ln(a)

)
E[#multi-edges] ≤ 1

2

(
b− a+ 1

ln(b+ 1)− ln(a)

)2

J

Proof. For an arbitrary degree sequence D, [12] and [144] derive expectation values in

terms of D’s mean 〈D〉 and its second moment 〈D2〉. For n→∞, the authors show:

E[#self-loops(D)] =
〈D2〉 − 〈D〉
2(〈D〉 − 1

n)
−→ 〈D

2〉 − 〈D〉
2〈D〉 (2.1)

E[#multi-edges(D)] ≤ 1

2

(
(〈D2〉 − 〈D〉)2

(D − 1
n)(D − 3

n)

)
−→ 1

2

(〈D2〉 − 〈D〉
〈D〉

)2

(2.2)

We now bound 〈D〉 and 〈D2〉 in the case that D is drawn from the powerlaw distri-

bution Pld ([a, b), γ). Since each entry in D is independently drawn, it su�ces to

bound the expected value and the second moment of the underlying distribution. Let

CD =
∑b

i=a i
−γ

, then they follow as:

〈D〉 =

b∑
i=a

i−γ+1/CD and 〈D2〉 =

b∑
i=a

i−γ+2/CD

Both numerators are sandwiched between

∫ b+1
a xq dx ≤∑b

i=a i
q ≤

∫ b
a−1 x

q dx where

q = 1− γ or q = 2− γ, respectively. In the case of γ = 2, the second moment hence

simpli�ed to 〈D2〉 = (
∑b

i=a 1)/CD = (b−a+1)/CD. Applying this identity and the

lower bound (
∫ b+1
a x−1 dx)/CD ≤ 〈D〉 to Section 2.6.1, directly yields the claim. �

2.6.2 Edge Rewiring for Non-Simple Graphs

Graphs generated using the Con�guration Model may contain multi-edges and self-

loops. In order to obtain a simple graph we need to detect these illegal edges and rewire

them. After sorting the edge list lexicographically, illegal edges can be detected in a

single scan. For each self-loop we issue a swap with a randomly selected partner edge.

Similarly, for each group of parallel edges, we generate swaps with random partner

8

IfM >
√
mB(1+o(1))+O(B) this can be improved toO(scan(m)) I/Os [159] which does however

not a�ect the total complexity of our pipeline.
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edges for all but one multi-edge. Subsequently, we execute the provisioned swaps using

a variant of EM-ES (see below). The process is repeated until all illegal edges have

been removed. To accelerate the endgame, we double the number of swaps for each

remaining illegal edge in every iteration.

Since EM-ES is employed to remove parallel edges based on targeted swaps, it needs

to process non-simple graphs. Analogous to the initial formulation, we forbid swaps

that introduce multi-edges even if they would reduce the multiplicity of another edge

(cf. [186]). Nevertheless, EM-ES requires slight modi�cations for non-simple graphs.

Consider the case where the existence of a multi-edge is inquired several times.

Since EL is sorted, the initial edge multiplicities can be counted while scanning EL
during the load existence phase. In order to correctly process the dependency chain, we

have to forward the (possibly updated) multiplicity information to successor swaps. We

annotate the existence tokens exist_msg(s, e,#(e)) with these counters where #(e)

is the multiplicity of edge e.

More precisely, during the perform swaps phase, swap σ1 = σ(〈a, b〉, d) is informed

(among others) of multiplicities of edges ea, eb, fst(σ1) and snd(σ1) by incoming exis-

tence messages. If σ1 is legal, we send requested edges and multiplicities of the swapped

state to any successor σ2 of σ1 provided in ExistSucc. Otherwise, we forward the edges

and multiplicities of the unchanged initial state. As an optimization, edges which have

been removed (i.e. have multiplicity zero) are omitted.

2.7 EM-CA: Community Assignment

In the LFR benchmark, every node belongs to one (non-overlapping) or more (over-

lapping) communities. EM-CA �nds such a random assignment subject to the two

constraints that all communities get as many nodes as previously determined (see Fig-

ure 2.1) and that for a node vi all its assigned communities have enough other members

to satisfy the node’s intra-community degree din

i /νi.

For the sake of simplicity, we �rst restrict ourselves to the non-overlapping case, in

which every node belongs to exactly one community. Consider a sequence of community

sizes S = [ sξ ]Cξ=1 with n =
∑C

ξ=1 sξ and a sequence of intra-community degrees

D = [ din

i ]ni=1. Let S andD be non-decreasing and positive. The task is to �nd a random

surjective assignment χ : V→[C] with:

(R1) Every community ξ is assigned sξ nodes as requested, with

sξ :=
∣∣{v | v ∈ V ∧ χ(v)=ξ}

∣∣
.

(R2) Every node v ∈ V becomes member of a su�ciently large community χ(v) with

sχ(v) > din

v .

Observe that χ can be interpreted as a bipartite graph where the partition classes are

given by the communities [C] and nodes [ vi ]ni=1 respectively, and each edge corresponds

to an assignment.

31



Massive Graphs Following the LFR Benchmark

2.7.1 A Simple, Iterative, But not yet Complete Algorithm

To ease the description of the algorithm, let us also ignore (R2) for now, and discuss

the changes needed in Section 2.7.2. Then the assignment graph can be sampled in the

spirit of the Con�guration Model (cf. Section 2.6). To do so, we draw a permutation π

of nodes uniformly at random, and assign nodes [ vπ(i) ]
xξ+sξ
i=xξ+1 to community ξ where

xξ :=
∑ξ−1

i=1 si is the number of slots required for communities with indices below ξ.

To ease later modi�cations, we prefer an equivalent iterative formulation: while there

exists a yet unassigned node u, draw a community X with probability proportional

to the number of its remaining free slots (i.e. P[X=ξ] ∝ sξ). Assign node u to X ,

reduce the community’s probability mass by decreasing sX ← sX − 1 and repeat.

By construction, the �rst scheme is unbiased and the equivalence of both approaches

follows as a special case of Lemma 2.7 (see below).

We implement the random selection process e�ciently based on a binary tree where

each community corresponds to a leaf with a weight equal to the number of free slots

in the community. Inner nodes store the total weight of their left subtree. In order to

draw a community, we sample an integer Y ∈ [0,WC) uniformly at random where

WC :=
∑C

ξ=1 sξ is the tree’s total weight. Following the tree according to Y yields the

leaf corresponding to community X . An I/O-e�cient data structure [132] based on lazy

evaluation for such dynamic probability distributions enables a fully external algorithm

with O
(
n/B · logM/B(C/B)

)
= O(sort(n)) I/Os. However, if C < M , we can store

the tree in IM, allowing a semi-external algorithm which only needs to scan through D,

triggering O(scan(n)) I/Os.

2.7.2 Enforcing Constraint on Community Size (R2)

To enforce (R2), we additionally ensure that all nodes are assigned to a su�ciently large

community such that they �nd enough neighbors to connect to. We exploit that S and

D are non-decreasing and de�ne pv := max{ξ | sξ > din

v } as the index of the smallest

community node v may be assigned to. Since [ pv ]v is therefore monotonic itself, it can

be computed online with O(1) additional IM and O(scan(n)) I/Os in the fully external

setting by scanning through S and D in parallel. To restrict the random sampling to

the communities {1, . . . , pv}, we reduce the aforementioned random interval to [0,Wv)

where the partial sum Wv :=
∑pv−1

ξ=1 sξ is available while computing pv . We generalize

the notation of uniform assignments subject to (R2) as follows:

Lemma 2.7. Given S = [ sξ ]Cξ=1 and D, let u, v ∈ V be two nodes with the same

constraints pu = pv and let c be an arbitrary community. Further, let χ be an assignment

generated by EM-CA. Then, P[χ(u)=c] = P[χ(v)=c]. J

Proof. Without loss of generality, assume that pu = p1, i.e. u is one of the nodes with

the tightest constraints. If this is not the case, we just execute EM-CA until we reach

a node u′ which has the same constraints as u does (i.e. pu′ = pu), and apply the

Lemma inductively. This is legal since EM-CA streams through D in a single pass, and
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is oblivious to any future values. In case c > p1, neither u nor v can become a member

of c. Therefore, P[χ(u)=c] = P[χ(v)=c] = 0 and the claim follows trivially.

Now consider the case c ≤ p1. Let sc,i be the number of free slots in community c at

the beginning of round i ≥ 1 andWi =
∑C

j=1 sj,i their sum at that time. By de�nition,

EM-CA assigns node u to community cwith probability P[χ(u)=c] = sc,u/Wu. Further,

the algorithm has to update the number of free slots. Thus, initially we have s,1c = sc
and for iteration 1 < i ≤ n it holds that

s,ic =

{
s

(i−1)
c − 1 if vi−1 was assigned to c

s
(i−1)
c otherwise

.

The number of free slots is reduced by one in each stepWi =W1−i+1 =
(∑C

j=1 Sj

)
−

i+ 1. The claim follows by transitivity if we show P[χ(u)=c] = sc,u/Wu = sc,1/W1.

For u = 1 it holds by de�nition. Now, consider the induction step for u > 1:

P[χ(u)=c]

= sc,u/Wu = P[χ(u−1)=c]
sc,u−1 − 1

Wu
+ P[χ(u−1)6=c]sc,u−1

Wu

=
sc,u−1

Wu−1

sc,u−1 − 1

Wu
+

(
1− sc,u−1

Wu−1

)
sc,u−1

Wu

=
sc,u−1 · Wu−1 − sc,u−1

Wu−1 · Wu
=

sc,u−1(Wu−1 − 1)

Wu−1 · (Wu−1 − 1)

=
sc,u−1

Wu−1

Ind. Hyp.

=
sc,1
W1

�

2.7.3 Assignment with Overlapping Communities

In the overlapping case, the weight of S increases to account for nodes with multiple

memberships. There is further an additional input sequence [ νi ]ni=1 corresponding to the

number of memberships node vi shall have, each of which has din

i /νi intra-community

neighbors. We then sample not only one community per node vi, but νi di�erent ones.

Since the number of memberships νv � M is small, a duplication check during

the repeated sampling is easy in the semi-external case and does not change the I/O

complexity. However, it is possible that near the end of the execution there are less

free communities than memberships requested. We address this issue by switching to

an o�ine strategy for the last Θ(M) assignments and keep them in IM. As ν = O(1),

there are Ω(ν) communities with free slots for the last Θ(M) vertices and a legal

assignment exists with high probability. The o�ine strategy proceeds as before until

it is unable to �nd ν di�erent communities for a node. In that case, it randomly picks

earlier assignments until swapping the communities is possible.

In the fully external setting, the I/O complexity grows linearly in the number

of samples taken and is thus bounded by O(ν sort(n)). However, the community

memberships are obtained lazily and out-of-order which may assign a node several times

to the same community. This corresponds to a multi-edge in the bipartite assignment

graph. It can be removed using the rewiring technique detailed in Section 2.6.2.
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2.8 EM-GER/EM-CER: Merging Intra- and Inter-Community Graphs

As illustrated in Figure 2.1, LFR samples the inter-community graph and all intra-

community graphs independently. As a result, they may exhibit minor inconsistencies

which EM-LFR resolves in accordance with the original version by applying additional

rewiring steps which are discussed in this section.

2.8.1 EM-GER: Global Edge Rewiring

The global graph is materialized without taking the community structure into account.

As illustrated in Figure 2.2 (center), it therefore can contain edges between nodes that

share a community. Those edges have to be removed as they decrease the mixing

parameter µ. We rewire these edges by performing an edge swap for each forbidden

edge with a randomly selected partner. Since it is unlikely that such a random swap

introduces another illegal edge (if su�ciently many communities exist), this probabilistic

approach e�ectively removes forbidden edges. We apply this idea iteratively and perform

multiple rounds until no forbidden edges remain.

To detect illegal edges, EM-GER considers the community assignment’s output which

is a lexicographically ordered sequence χ of (v, ξ)-pairs containing the community ξ

for each node v. For nodes that join multiple communities several such pairs exist.

Based on this, we annotate every edge with the communities of both incident vertices

by scanning through the edge list twice: once sorted by source nodes and once by target

nodes. For each forbidden edge, a swap is generated by drawing a random partner edge

id and a swap direction. Subsequently, all swaps are executed using EM-ES which now

also emits the set of edges involved. It su�ces to restrict the scan for illegal edges to

this set since all edges not contained are legal by construction.

Complexity. Each round requiresO(sort(m)) I/Os for selecting the edges and exe-

cuting the swaps. The number of rounds is usually small but depends on the community

size distribution: the probability that a randomly placed edge lies within a community

increases with the size of the community.

2.8.2 EM-CER: Community Edge Rewiring

In the case of overlapping communities, the same edge can be generated as part of

multiple communities. We iteratively apply semi-random swaps to remove those parallel

edges similarly to Sections 2.6.2 and 2.8. The selection of random partners is however

more involved for EM-CER as it has to ensure that all swaps take place between two

edges of the same community. This way, the rewired edges keep the same memberships

as their sources and the community sizes do not change. The rewiring itself is easy to

achieve by considering all communities independently.

Unfortunately, EM-CER needs to process all communities conjointly to detect forbid-

den edges: we augment each edge [ui, vi] with its community id ci and concatenate these

lists into one annotated graph possibly containing multi-edges. During a scan through

the lexicographically sorted and annotated edge list [ (ui, vi, ci) ]i, parallel edges are
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easily found as they appear next to each other. We select all but one from each group

for rewiring. Each partner is selected by a uniform edge id eb addressing the eb-th edge

of the community at hand. In a fully external setting, it su�ces to sort the selected

candidates, their partners and the edge list by community to gather all information

required to invoke EM-ES.

EM-CER avoids the expensive step of sorting all edges if we can store O(1) items

per illegal edge in IM (which is almost certainly the case since there are typically few

illegal edges). It then sorts the edge ids of partners for every community independently

and keeps pointers to the smallest requested partner edge id of each community. While

scanning through the concatenated edge list, we count for each community the number

of edges seen so far. When the counter matches the smallest requested id of the current

edge’s community, we load the edge and advance the pointer to the next request.

Complexity. The fully external rewiring requires O(sort(m)) I/Os for the initial

step and each following round. The semi-external variant triggers only O(scan(m))

I/Os per round. The number of rounds is usually small and the overall runtime spent on

this step is insigni�cant. Nevertheless, the described scheme is a Las-Vegas algorithm

and there exist (unlikely) instances on which it will fail.
9

To mitigate this issue, we allow

a small fraction of edges (e.g., 10−3
) to be removed if we detect a slow convergence.

To speed up the endgame, we also draw additional swaps uniformly at random from

communities which contain a multi-edge.

2.9 Implementation

We implemented the proposed algorithms in C++ based on the STXXL library [60],

providing implementations of EM data structures, a parallel EM sorter, and an EM

priority queue. Among others, we applied the following optimizations for EM-ES:

• Most message types contain both a swap id and a �ag indicating which of the

swap’s edges is targeted. We encode both of them in a single integer by using all but

the least signi�cant bit for the swap id and store the �ag in there. This signi�cantly

reduces the memory volume and yields a simpler comparison operator since the

standard integer comparison already ensures the correct lexicographic order.

• Instead of storing and reading the sequence of swaps several times, we exploit

the implementation’s pipeline structure and directly issue edge id requests for

every arriving swap. Since this is the only time edge ids are read from a swap,

only the remaining direction �ag is stored in an e�cient EM vector, which uses

one bit per �ag and supports I/O-e�cient writing and reading. Both steps can be

overlapped with an ongoing EM-ES run.

• Instead of storing each edge in the sorted external edge list as a pair of nodes, we

only store each source node once and then list all targets of that node. This still

9

Consider a node which is a member of two communities in which it is connected to all other nodes. If

only one of its neighbors also appears in both communities, the multi-edge cannot be rewired.
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supports sequential scan and merge operations which are the only operations we

need. This almost halves the I/O volume of scanning or updating the edge list.

• During the execution of several runs we can delay the updating of the edge list

and combine it with the load nodes phase of the next run. This reduces the number

of scans per additional run from three to two.

• We use asynchronous stream adapters for tasks such as streaming from sorters

or the generation of random numbers. These adapters run in parallel in the

background to preprocess and bu�er portions of the stream in advance and hand

them over to the main thread.

Besides parallel sorting and asynchronous pipeline stages, the current EM-LFR

implementation facilitates parallelism during the generation and randomization of intra-

community graphs which can be computed without any synchronization. While the

algorithms themselves are sequential, this pipelining and parallelization of independent

tasks within EM-LFR leads to a consistent utilization of available threads in our test

system (cf. Section 2.10).

2.10 Experimental Results

2.10.1 Notation and Setup

The number of repetitions per data point (with di�erent random seeds) is denoted with S.

Error bars correspond to the unbiased estimation of the standard deviation. For LFR we

perform experiments based on two di�erent scenarios:

• lin — The maximal degrees and community sizes scale linearly as a function of

n. For a particular n and ν the parameters are chosen as: µ ∈ {0.2, 0.4, 0.6},
dmin=10ν, dmax=nν/20, γ=2, smin=20, smax=n/10, β=1, O=n.

• const — We keep the community sizes and the degrees constant and consider

only non-overlapping communities. The parameters are chosen as: dmin=50,

dmax=10,000, γ=2, smin=50, smax=12,000, β=1, O=n.

Real-world networks have been shown to have increasing average degrees as they

become larger [119]. Increasing the maximum degree as in our �rst setting lin increases

the average degree. Having a maximum community size of n/10 means, however, that

a signi�cant proportion of the nodes belongs to huge communities which are not very

tightly knit due to the large number of nodes of low degree. While a more limited

growth is probably more realistic, the exact parameters depend on the network model.

Our second parameter set const shows an example of much smaller maximum

degrees and community sizes. We chose the parameters such that they approximate the

degree distribution of the Facebook network in May 2011 when it consisted of 721 million

active users as reported in [178]. The same study however found that strict powerlaw

models are unable to accurately mimic Facebook’s degree distribution. Further, the
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of edge configurations they receive during the simulation phase (cf. Section 2.10.3).

authors show that the degree distribution of the U.S. users (removing connections to

non-U.S. users) is very similar to the one of the Facebook users of the whole world,

supporting our use of just one parameter set for di�erent graph sizes.

The minimum degree of the Facebook network is 1, but such small degrees are

signi�cantly less prevalent than a powerlaw degree sequence would suggest, which

is why we chose a value of 50. Our maximum degree of 10,000 is larger than the one

reported for Facebook (5000 which is an arbitrarily enforced limit by Facebook). The

expected average degree of this degree sequence is 264, which is slightly higher than

the reported 190 (world) or 214 (U.S. only). Our parameters are chosen such that the

median degree is approximately 99 matching the worldwide Facebook network. Similar

to the �rst parameter set, we chose the maximum community size slightly larger than

the largest degree.

2.10.2 EM-HH’s State Size

In Lemma 2.2, we bound EM-HH’s internal memory consumption by showing that a

sequence of n numbers randomly sampled from Pld ([1, n), γ) contains only O
(
n1/γ

)
distinct values with high probability.

In order to support Lemma 2.2 and to estimate the hidden constants, samples of

varying size between 103
and 108

are taken from distributions with exponents γ ∈
{1, 2, 3}. Each time, the number of unique elements is computed and averaged over

S = 9 runs with identical con�gurations but di�erent random seeds. The results

illustrated in Figure 2.8 support the predictions with small constants and negligible

deviations. For the commonly used exponent 2, we �nd 1.38
√
n distinct elements in a

sequence of length n.

2.10.3 Inter-Swap Dependencies

Whenever multiple swaps target the same edge, EM-ES simulates all possible states

to be able to retrieve con�icting edges. In Section 2.5.9, we argue that the number of
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dependencies and the state size remains manageable if the sequence of swaps is split into

su�ciently short runs. We found that for m edges and k swaps, 8k/m runs minimize

the runtime for large instances of lin. As indicated in Figure 2.8, in this setting 78.7 %

of swaps receive the two requested edge con�gurations with no additional overhead

during the simulation phase. Less than 0.4 % consider more than four additional states

(i.e. more than six messages in total). Similarly, 78.6 % of existence requests remain

without dependencies.

2.10.4 Test Systems

Runtime measurements were conducted on the following systems:

SysAinexpensive server Intel E5-2630 v3 (8 core, 2.4GHz), 64 GB RAM, 3× Samsung 850 PRO SATA SSD

SysBcommodity hardware Intel Core i7 970 (6 core, 3.2GHz), 12 GB RAM, 1× Samsung 850 PRO SATA SSD

Since edge switching scales linearly in the number of swaps (in case of EM-ES in the

number of runs), some of the measurements beyond 3 h runtime are extrapolated from

the progress until then. We veri�ed that errors stay within the indicated margin using

reference measurements without extrapolation.

2.10.5 Performance of EM-HH

OurEM-HH:

R Section 2.4

implementation of EM-HH produces 180(5) million edges per second on SysA up to

at least 2 · 1010
edges. Here, we include the computation of the input degree sequence,

EM-HH’s compaction step, as well as the writing of the output to external memory.

2.10.6 Performance of EM-ES

Figure 2.9 presents the runtime required on SysB to process k = 10m swaps in an input

graph with m edges and for the average degrees d̄ ∈ {100, 1000}. For reference, we

include the performance of the existing internal memory edge swap algorithm VL-ES
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based on the authors’ implementation [181].
10

VL-ES slows down by a factor of 25 if

the data structure exceeds the available internal memory by less than 10 %. We observe

an analogous behavior on machines with larger RAM. EM-ES:

R Section 2.5

EM-ES is faster than VL-ES for

all instances with m > 2.5 · 108
edges; those graphs still �t into main memory.

FDSM has applications beyond synthetic graphs, and is for instance used on real

data to assess the statistical signi�cance of observations [164]. In that spirit, we execute

EM-ES on an undirected version of the crawled ClueWeb12 graph’s core [176] which

we obtain by deleting all nodes corresponding to uncrawled URLs.
11

Performing k = m

swaps on this graph with n ≈ 9.8 · 108
nodes and m ≈ 3.7 · 1010

edges is feasible in

less than 19.1 h on SysB.

Bhuiyan et al. propose a distributed edge switching algorithm and evaluate it on a

compute cluster with 64 nodes each equipped with two Intel Xeon E5-2670 2.60GHz

8-core processors and 64GB RAM [30]. The authors report to perform k = 1.15 · 1011

swaps on a graph with m = 1010
generated in a preferential attachment process in less

than 3 h. We generate a preferential attachment graph using an EM generator [132]

matching the aforementioned properties and carried out edge swaps using EM-ES on

SysA. We observe a slowdown of only 8.3 on a machine with 1/128 the number of

comparable cores and 1/64 of internal memory.

2.10.7 EM-CM/ES’s Performance and Mixing Comparison with EM-ES

In Section 2.6, we describe an alternative graph sampling method. Instead of seeding

EM-ES with a highly biased graph using EM-HH, we employ the Con�guration Model

to generate a non-simple random graph and then obtain a simple graph using several

10

Here we report only on the edge swapping process excluding any precomputation. To achieve

comparability, we removed connectivity tests, �xed memory management issues, and adopted the number

of swaps. Further, we extended counters for edge ids and accumulated degrees to 64 bit integers in order

to support experiments with more than 230
edges.

11

We consider such vertices atypically simple as they have degree 1 and account for ≈84 % of nodes.
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EM-ES runs in a Las-Vegas fashion.

Since EM-ES scans through the edge list in each iteration, runs with very few

swaps are ine�cient. For this reason, we start the subsequent Markov chain to further

randomize the graph early: First identify all multi-edges and self-loops and generate

swaps with random partners. In a second step, we then introduce additional random

swaps until the run contains at least m/10 operations.
12

ForEM-CM/ES:

R Section 2.6

an experimental comparison between EM-ES and EM-CM/ES, we consider the

runtime until both yield a su�ciently uniform random sample. Of course, the uniformity

is hard to quantify; similarly to related studies (cf. Section 2.1.1), we estimate the mixing

times of both approaches as follows.

Starting from a common seed graphG(0)
, we generate an ensemble {G(k)

1 , . . . , G
(k)
S }

of S � 1 instances by applying independent random sequences of k � m swaps each.

During this process, we regularly export snapshots G
(jm)
i of the intermediate instances

j ∈ [k/m] of graph Gi. For EM-CM/ES, we start from the same seed graph, apply the

algorithm and then carry out k swaps as described above.

For each snapshot, we compute several metrics, such as the average local clustering

coe�cient (ACC), the number of triangles, and degree assortativity.
13

We then investi-

gate how the distribution of these measures evolves within the ensemble as we carry out

an increasing number of swaps. We omit results for ACC since they are less sensitive

compared to the other measures (see Section 2.10.8).

As illustrated in Figure 2.10 and Section 2.C (Appendix), all proxy measures converge

within 5m swaps with a very small variance. No statistically signi�cant change can be

observed compared to a Markov chain with 30m operations (which was only computed

for a subset of each ensemble due to its computational cost). EM-HH generates biased

instances with special properties, such as a high number of triangles and correlated

node degrees, while the features of EM-CM/ES’s output nearly match the converged

ensemble. This suggests that the number of swaps to obtain a su�ciently uniform

sample can be reduced for EM-CM/ES.

Due to computational costs, the study was carried out on multiple machines execut-

ing several tasks in parallel. Hence, absolute running times are not meaningful, and we

rather measure the computational costs in units of time required to carry out 1m swaps

by the same process. This accounts for the o�set of EM-CM/ES’s �rst data point.

The number of rounds required to obtain a simple graph depends on the degree

distribution. For const with n = 1 · 105
and µ = 1, a fraction of 5.1 % of the edges

produced by the Con�guration Model are illegal. EM-ES requires 18(2) rewiring runs

in case a single swap is used per round to rewire an illegal edge. In the default mode of

operation, 5.0 rounds su�ce as the number of rewiring swaps per illegal edge is doubled

in each round. For larger graphs with n = 1 · 107
, only 0.07 % of edges are illegal and

need 2.25(40) rewiring runs.

12

Chosen to yield execution times similar to the m/8-setting of EM-ES on simple graphs.

13

In preliminary experiments, we also included spectral properties (such as extremal eigenvalues of the

adjacency/Laplacian matrix) and the closeness centrality of �xed nodes. As these are more expensive to

compute and yield qualitatively similar results, we decided not to include them in the larger trials.
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1 · 105 ≤ n ≤ 1 · 107 and µ = 0.4 (le�) and µ = 0.6 (right). Due to computational costs, the ensemble size is reduced from

S > 100 to S > 10 for large graphs.

2.10.8 Convergence of EM-ES

In a similar spirit to the previous section, we indirectly investigate the Markov chain’s

mixing time as a function of the number of nodes n. To do so, we generate ensembles as

before with 1 · 105 ≤ n ≤ 1 · 107
and compute the same graph metrics. For each group

and measure, we then search for the �rst snapshot p in which the measure’s mean is

within an interval of half the standard deviation of the �nal values and subsequently

remains there for at least three phases. We then interpret p as a proxy for the mixing

time. As depicted in Figure 2.11, no measure shows a systematic increase over the two

orders of magnitude considered. It hence seems plausible not to increase the number of

swaps performed by EM-LFR compared to the original implementation.

2.10.9 Performance of EM-LFR

Figure 2.9 reports the runtime of the original LFR implementation and EM-LFR as

a function of the number of nodes n and ν = 1. EM-LFR is faster for graphs with

n ≥ 2.5 · 104
nodes which feature approximately 5 · 105

edges and are well in the

IM domain. Further, the implementation is capable of producing graphs with more

than 1 · 1010
edges in 17 h.

14
Using the same time budget, the original implementation

generates graphs more than two orders of magnitude smaller.

2.10.10 �alitative Comparison of EM-LFR

When designing EM-LFR, we closely followed the LFR benchmark such that we can ex-

pect it to produce graphs following the same distribution as the original LFR benchmark.

To con�rm this experimentally, we generated graphs with identical parameters using

the original LFR implementation and EM-LFR. For disjoint clusters we also compare it

with the implementation of NetworKit [171].

14

Roughly 1.5 h are spend in the end-game of the Global Rewiring (at that point less than one edge out

of 106
is invalid). In this situation, an algorithm using random I/Os may yield a speedup. Alternatively, we

could simply discard the insigni�cant fraction of remaining invalid edges.
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Figure 2.12: Adjusted rand of Infomap or Louvain and ground truth at µ=0.6 with disjoint clusters, smin=10, smax=n/20.

For disjoint clusters, we evaluate the results of theInfomap and Louvain Infomap [158] and the Lou-

vain [36] algorithm. The Louvain algorithm optimizes the famous modularity mea-

sure [145] while Infomap optimizes the map equation [158]. Both are formalizations

of the intuitive principle that clusters should be internally dense but externally sparse.

Modularity is directly based on this principle. Its value is based on the fraction of edges

inside clusters, the so-calledcoverage coverage. However, just optimizing coverage would mean

that a single cluster with all nodes is optimal. As a remedy, the expected coverage

of the clustering in a graph with the same nodes and degrees, but edges distributed

randomly according to the Con�guration Model, is subtracted from the actual coverage.

The map equation, on the other hand, optimizes the expected length of the description

of a random walk. In the non-hierarchical version we employ here, this expected length

is calculated for a two-level code with global code words for clusters and then local

code words for the nodes inside every cluster. The basic idea is that in a good clustering,

random walks tend to stay within a cluster and thus such a clustering leads to shorter

code words in expectation.

The Infomap and the Louvain algorithm are quite similar in their basic structure.

They start with a clustering where every node is in its own cluster. Then they apply

two principles alternately: local moving and contraction. The idea of local moving is to

move a node into a cluster of one of its adjacent nodes if this improves the clustering

quality. This is repeatedly applied to all nodes in a random order until no improvement

is possible anymore. In the contraction phase, the nodes of each cluster are contracted

into a single node while combining duplicate edges. The Infomap algorithm extends

this basic scheme by introducing additional local moving phases on parts of the graph

where clusters can be split again to improve the quality.

Higher modularity and lower map equation values indicate better clusterings. How-

ever, sometimes higher modularity values can also be achieved by merging small but

actually clearly distinct clusters. This e�ect is called resolution limit [70]. The map equa-

tion has a resolution limit, too, but in practice it is orders of magnitudes smaller [109].

The Louvain algorithm as well as Infomap were found to achieve high-quality results

on LFR benchmark graphs while being fast [115]. In particular the Louvain method is

also among the most frequently used community detection algorithms [71, 63].
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Figure 2.13: NMI of OSLOM and ground truth at µ = 0.4 with 2/4 overlapping clusters per node.

For overlapping clusters, we evaluate the results of OSLOMOSLOM [117]. OSLOM aims to

�nd clusters that are statistically signi�cant. Given a cluster C and a node u, it analyzes

whether u has statistically signi�cantly many connections to nodes in C relative to a

Con�guration Model graph. For a single cluster, OSLOM considers both adding and

removing nodes based on this criteria.

To cluster a whole graph, clusters are expanded starting from single nodes and

then evaluated by testing if repeatedly adding and removing nodes leads to an empty

cluster. Repeatedly encountered clusters are considered signi�cant. The algorithm stops

when it starts detecting similar clusters over and over again. OSLOM is one of the best-

performing algorithms for overlapping community detection [43, 71]. We compare the

clusterings of the algorithms to LFR’s ground truth using the Adjusted Rand Measure

and NMI

adjusted rand measure [98]

for disjoint clusters and NMI [67] for both disjoint and overlapping clusters.

Further, we examine the average local clustering coe�cient. As it measures the

fraction of closed triangles, it shows the presence of locally denser areas as expected

in communities [106]. We report these measures for graphs ranging from 103
to 106

nodes and present a selection of results in �gures 2.12 to 2.14; all of them can be found

in Section 2.B (Appendix). There are only small di�erences within the range of random

noise between the graphs generated by EM-LFR and the other two implementations.

Note that due to the computational costs above 105
edges, there is only one sample for

the original implementation causing the outliers in Figure 2.12.

Similar to the results in [63], we also observe that the performance of clustering

algorithms drops signi�cantly as the graph’s size grows. For Louvain, this is partially

due to the resolution limit that prevents the detection of small communities in huge

graphs. Due to the di�erent powerlaw exponents, the average community size grows

much faster than the average degree as the size of the graphs is increased. Therefore,

in particular the larger clusters become sparser and thus more di�cult to detect with

increasing graph size. On the other hand, small clusters become easier to detect as the

graph size grows because outgoing edges are distributed among more nodes and are thus

easier to distinguish from intra-cluster edges. This might explain why the performance

of OSLOM �rst improves as the graph size grows. Apart from that, currently used

heuristics might also just be unsuited for large graphs with nodes of very di�erent

degrees. Results on LFR graphs with one million nodes in [92] show that both Louvain
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Figure 2.14: Average local clustering coe�icient with mixing of µ = 0.6 and disjoint clusters.

and Infomap are unable to detect the ground truth on LFR graphs with higher values of

µ even though the ground truth has a better modularity or map equation score than the

found clustering. Such behavior clearly demonstrates the necessity of EM-LFR for being

able to study this phenomenon on even larger graphs and develop algorithms that are

able to handle such instances.

The quality of the community assignments used by LFR and EM-LFR is assessed in

terms of the modularity QG(C) scores [145] achieved by the generated graph G and

ground truth C . In general QG(C) takes values in [−1, 1], but for large n and bounded

community sizes, the modularity of a LFR graph approaches Q → 1−µ as the coverage

corresponds to 1−µ while the expected coverage approaches 0. For each con�guration

n ∈ {103, . . . , 106} and µ ∈ {0.2, 0.4, 0.6}, we generate S ≥ 10 networks for each

generator and compute their mean modularity score. In all cases, the relative di�erences

between the two generators is below 10−2
and for small µ typically another order of

magnitude smaller.

2.11 Outlook and Conclusion

We propose the �rst I/O-e�cient graph generator for the LFR benchmark and the FDSM ,

which is the most challenging step involved that dominates the running time: EM-HH

materializes a graph based on a prescribed degree distribution without I/O for virtually

all realistic parameters. Including the generation of a powerlaw degree sequence and the

writing of the output to disk, our implementation generates 1.8 · 108
edges per second

for graphs exceeding main memory. EM-ES randomizes graphs with m edges based on

k edge switches using O(k/m · sort(m)) I/Os for k = Ω(m).

We demonstrate that EM-ES is faster than the internal memory implementation [181]

even for large instances still �tting in main memory and scales well beyond the limited

main memory. Compared to the distributed approach by [30] on a cluster with 128 CPUs,

EM-ES exhibits a slowdown of only 8.3 on one CPU and hence poses a viable and cost-

e�cient alternative. Our EM-LFR implementation is orders of magnitude faster than the

original LFR implementation for large instances and scales well to graphs exceeding main
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memory while the generated graphs are equivalent. Graphs with more than 1 · 1010

edges can be generated in 17 h. We further give evidence that commonly accepted

parameters to derive the length of the edge switching Markov chain remain valid for

graph sizes approaching the external memory domain and that EM-CM/ES can be used

to accelerate the process.

This provides the basis for the development and evaluation of clustering algorithms

for graphs that exceed main memory. The necessity for such an evaluation has already

been demonstrated by �rst results in [92] that show that the behavior of algorithms on

large graphs is not necessarily the same as on small graphs even when cluster sizes do

not change. Comparison measures such as NMI or the adjusted rand index typically

do not consider the graph structure, therefore they can usually still be computed in

internal memory even for graphs that exceed main memory. However, for graphs where

even the number of nodes exceeds the size of the internal memory, there is the need to

develop memory-e�cient algorithms also for comparing clusterings.
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Appendix 2.A Summary of Definitions

Table 2.1: Definitions used

in this paper.

Symbol Description

[k] [k] := {1, . . . , k} for k ∈ N+ (Sec. 2.2)

[u, v] Undirected edge with implication u ≤ v (Sec. 2.2)

〈X〉 The mean 〈X〉 :=
∑n
i=1 xi/n

〈X2〉 The second moment 〈X2〉 :=
∑n
i=1 x

2
i /n

B Number of items in a block transferred between IM and EM (Sec. 2.2.2)

dmin, dmax Min/max degree of nodes in LFR benchmark (Sec. 2.3)

din

v din

v = (1−µ) · dv , intra-community degree of node v (Sec. 2.3)

D D = (d1, . . . , dn) with di ≤ di+1∀i. Degree sequence of a graph (Sec. 2.4)

D(D) D(D) =
∣∣{di : 1 ≤ i ≤ n}

∣∣
where D = (d1, . . . , dn) (Sec. 2.4)

n Number of vertices in a graph (Sec. 2.2)

m Number of edges in a graph (Sec. 2.2)

µ Mixing parameter in LFR benchmark, i.e. ratio of neighbors that shall be in

other communities (Sec. 2.3)

M Number of items �tting into internal memory (Sec. 2.2.2)

Pld ([a, b), γ) Powerlaw distribution with exponent −γ on the interval [a, b) (Sec. 2.2)

smin, smax Min/max size of communities in LFR benchmark (Sec. 2.3)

scan(n) scan(n) = Θ(n/B) I/Os, scan complexity (Sec. 2.2.2)

sort(n) sort(n) = Θ((n/B) · logM/B(n/B)) I/Os, sort complexity (Sec. 2.2.2)

Table 2.2: Parameters of

overlapping LFR. The typi-

cal values are based on the

suggestions by [114].

Parameter Meaning

n Number of nodes to be produced

Pld ([dmin, dmax), γ) Degree distribution of nodes, typically γ = 2

0 ≤ O ≤ n, ν ≥ 1 O random nodes belong to ν communities; remainder has one

membership

Pld ([smin, smax), β) Size distribution of communities, typically β=1

0 < µ < 1 Mixing parameter: fraction of neighbors of every node u that

shall not share a community with u
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Appendix 2.B Comparing LFR Implementations
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Figure 2.15: Comparison of the original LFR implementation, the NetworKit implementation and our EM solution for values

of 103 ≤ n ≤ 106, µ∈{0.2, 0.4, 0.6}, γ=2, β=1 dmin=10, dmax=n/20, smin=10, smax=n/20. Clustering is performed using

Infomap and Louvain and compared to the ground truth emi�ed by the generator using AdjustedRandMeasure (AR) and

Normalized Mutual Information (NMI); S ≥ 8. Due to the computational costs, graphs with n ≥ 105 have a reduced

multiplicity. In case of the original implementation it may be based on a single run which accounts for the few outliers.
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Figure 2.16: Comparison of the original LFR implementation and our EM solution for values values of 103 ≤ n ≤ 106,

µ ∈ {0.2, 0.4, 0.6}, ν ∈ {2, 3, 4}, O = n, γ = 2, β = 1 dmin = 10, dmax = n/20, smin = 10ν, smax = ν · n/20. Clustering

is performed using OSLOM and compared to the ground truth emi�ed by the generator using a generalized Normalized

Mutual Information (NMI); S ≥ 5.

49



Massive Graphs Following the LFR Benchmark

Appendix 2.C Comparing EM-ES and EM-CM/ES
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Figure 2.17: Triangle count and degree assortativity of a graph ensemble obtained by applying random swaps/the Configuration

Model to a common seed graph. Refer to section 2.10.7 for experimental details.
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3
Parallel Global Edge Switching for the

Uniform Sampling of Simple Graphs

with Prescribed Degrees

joint work with D. Allendorf, U. Meyer, and M. Penschuck

The uniform sampling of simple graphs matching a prescribed degree sequence is an

important tool in network science, e.g., to construct graph generators or null-models.

Here, the Edge Switching Markov Chain (ES-MC) is a common choice. Given an

arbitrary simple graph with the required degree sequence, ES-MC carries out a

large number of small changes involving at most four edges to eventually obtain

a uniform sample. In practice, reasonably short runs e�iciently yield approximate

uniform samples.

We first engineer a simple sequential ES-MC implementation representing the

graph in a hash-set. Despite its simplicity and to the best of our knowledge, our

implementation significantly outperforms all openly available solutions.

Secondly, we propose the Global Edge Switching Markov Chain (G-ES-MC) and show

that it, too, converges to a uniform distribution. We provide empirical evidence that

G-ES-MC requires not more switches than ES-MC (and o�en fewer).

Thirdly, we engineer shared-memory parallel algorithms for ES-MC and G-ES-MC;

we find that they benefit from the easier dependency structure of the G-ES-MC. In

an empirical evaluation, we demonstrate the scalability of our implementations.

This chapter is based on the peer-reviewed conference article [6]:

[6] D. Allendorf, U. Meyer, M. Penschuck, and H. Tran. Parallel global edge switching

for the uniform sampling of simple graphs with prescribed degrees. In IEEE
Int. Parallel and Distributed Processing Symp. IPDPS, pages 269–279. IEEE, 2022.

doi:10.1109/IPDPS53621.2022.00034 .

My contribution

Daniel Allendorf, Manuel Penschuck and I are main authors of this paper. Together, we

contributed most of the algorithms and their implementations.
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3.1 Introduction

In network science there are various measures, so-called centralities, to quantify the

importance of nodes [37]. The degree centrality, for instance, suggests that a node’s

importance is proportional to its degree, i.e., the number of neighbors it has (see also

[22]). This leads to the natural question whether graphs with matching degrees share

structural properties. While this is not the case in general, a reoccurring task in practice

is to quantify the statistical signi�cance of some property observed in a network. Given

an observed graph with degrees D, a popular null-model is the uniform distribution

over all simple graphs G(D) with matching degrees [55, 102, 163].

In this context, the Edge Switching Markov Chain (ES-MC) is a common choice

to obtain an approximate uniform sample from G(D). In each so-called edge switch,

two edges are selected uniformly at random and modi�ed by exchanging their edges’

endpoints. This process preserves the degrees of all nodes involved. We further keep

the graph simple by rejecting all edge switches that introduce non-simple edges.

There exist di�erent variants of ES-MC catering to various graph classes (e.g.,

Carstens [46] considers directed/undirected graphs, with/without loops, with/with-

out multi-edges). Here, we focus on simple and undirected graphs. It is, however,

straight-forward to adopt our �ndings to the other cases (some of which even lead to

easier algorithms).

3.1.1 Related Work

Various methods to obtain a graph from a prescribed degree sequence have been stud-

ied [150].

Havel [95] and Hakimi [89] independently lay the foundation for a deterministic

linear time generator. The algorithm, however, does not yield random graphs; while

randomizations (e.g., [35, 32]) are available, they produce non-uniform samples.

The Chung-Lu Model [52] constructs graphs that match the prescribed degrees

only in expectation. Under reasonable assumptions [150] it can be sampled in linear

time [140].

Configuration Model:

R Section 2.6.1

The Con�guration Model [26] outputs a random, but possibly non-simple, graph in

linear time; adding rejection-sampling yields simple graphs in polynomial time if the

maximum degree is O
(√

log n
)

(cf. [25, 144, 38, 39]).

E�cient and exact uniform generators can be obtained by adding a repair step

between the Con�guration Model and the rejection-sampling to boost the acceptance

probability. Such algorithms are available for several degree sequences classes including

bounded regular graphs or power-law sequences with su�ciently large exponents [128,

75, 17].

(Global) Curveball:

R Chapter 4

Further a plethora of Markov Chain Monte-Carlo (MCMC) algorithms have been

proposed and analyzed (e.g. [105, 56, 81, 85, 107, 122, 170, 174, 180, 181]). In comparison

to the aforementioned exactly uniform generators,Inc-Powerlaw:

R Chapter 5

these algorithms allow for larger

families of degree sequences, topological restrictions (e.g., connected graphs [81, 181]),

or more general characterizations (e.g., joint degrees [170, 122]). Unfortunately, to the
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best of our knowledge, rigorous bounds on their mixing times either remain elusive or

impractical (c.f. [56, 66, 86, 65, 11, 76]).

3.1.2 Our Contributions

We engineer a fast sequential ES-MC implementation as a baseline to quantify further

speed-ups. This algorithm has expected linear running-time, and to the best of our

knowledge, outperforms all freely available ES-MC implementations.

Next, we consider a simple parallelization of ES-MC, but show that it may deviate

from the intended Markov Chain depending on the scheduler. We then consider a more

involved parallelization that avoids deviations by taking into account the dependencies

between edge switches. As we discuss, however, this parallelization is unlikely to scale

well due to the complex nature of the dependencies.

For this reason, we propose the Global Edge Switching Markov Chain (G-ES-MC) and

show that it too converges to a uniform distribution on G(D). This ES-MC variant is

designed with parallel algorithms in mind and exhibits easier dependencies between

edge switches. We then present an e�cient parallel algorithm for G-ES-MC.

In an experimental section, we provide empirical evidence that G-ES-MC uses the

same number of edge switches (or even fewer) as the standard ES-MC, and measure the

e�ciency and scalability of our algorithms.

3.2 Preliminaries

3.2.1 Notation and Definitions

De�ne the short-hands [k..n] := {k, . . . , n} and [n] := [1..n]. A graph G = (V,E)

has n nodes V = {v1, . . . , vn} and m undirected edges E. We assume that edges are

indexed (e.g., by their position in an edge list) and denote the i-th edge of a graph as

E[i]. Given an undirected edge e = {vi, vj} we denote a directed representation as

~e. We treat both as the same object and de�ning one implies the other; we default to

the canonical orientation ~e = (vmin(i,j), vmax(i,j)) whenever the direction is ambiguous.

An edge (v, v) is called a loop at v; an edge that appears more than once is called a

multi-edge. A graph is simple if it contains neither multi-edges nor loops.

Given a graph G = (V,E) and a node v ∈ V , de�ne the degree deg(·) : degreedeg(v) =

|{u : {u, v} ∈ E}| as the number of edges incident to node v. Let D = (d1, . . . , dn) ∈
Nn be a degree sequence and denote G(D) as the set of simple graphs on n nodes with

deg(vi) = di for all vi ∈ V . The degree sequence D is graphical if G(D) is non-empty. graphical degree sequence

A commonly considered class of graphs are power-law graphs where the degrees

follow a power-law distribution. To this end, let Pld([a..b], γ) refer to an integer Power-

law Distribution with exponent −γ ∈ R for γ ≥ 1 and values from the interval [a..b];

let X be an integer random variable drawn from Pld([a..b], γ) then P[X = k] ∝ k−γ
(proportional to) if a ≤ k ≤ b and P[X = k] = 0 otherwise.
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Figure 3.1: Edge Switch on an undirected graph G = (V,E). To avoid ambiguity, we indicate

for each e ∈ E the orientation ~e used in Definition 3.1.

3.2.2 The Edge Switching Markov Chain (ES-MC)

Definition 3.1 (Edge Switch, ES-MC). Let G = (V,E) ∈ G(D) be a simple undirected

graph. We represent an edge switch σ = (i, j, g) by two indices i, j ∈ [m] and a direction

bit g. Then, we compute G′ ∈ G(D) based on σ as follows:

1. Let e1 = E[i] and e2 = E[j].

2. Compute new edges (~e3, ~e4) = τ(~e1, ~e2, g) where

τ
(
(a, b), (x, y), g

)
=

{(
(a, x), (b, y)

)
if g = 0(

(a, y), (b, x)
)

if g = 1

.

3. Reject if either of e3 or e4 is a loop or already exists in E; otherwise accept and

set E[i]← e3 and E[j]← e4.

The Edge Switching Markov Chain (ES-MC) transitions from state G to state G′ ∈ G(D)

by sampling i, j, and g uniformly at random. J

Observation 3.2. Any edge switch σ = (i, j, g) that translatesG intoG′ can be reversed

in a single step, i.e., there exists an inverse edge switch σ̃ that translates G′ back into G.

If σ is rejected, it does not alter the graph (G = G′). Thus the claim trivially holds with

σ̃ = σ. For an accepted edge switch σ, it is easy to verify that σ̃ = (i, j, 0) reverses the

e�ects of σ. Further observe that the probability of choosing σ in state G equals the

probability of choosing σ̃ in state G′ [76]. J

3.3 Global Edge Switching Markov Chain (G-ES-MC)

Hamann et al. [90] consider the out-of-order execution of a batch consisting of ` edge

switches. To this end, they classify the dependencies within the batch that arise if the

switches were executed in-order. We adopt this characterization distinguishing between

source- and target dependencies:

Definition 3.3 (Source/target dependencies). Two switches σ1 = (i1, j1, ·) and σ2 =

(i2, j2, ·) are source dependentsource dependency if they share at least one source index, i.e., {i1, j1} ∩
{i2, j2} 6= ∅. Two switches (e1, f1) ← σ(·, ·, ·) and (e2, f2) ← σ(·, ·, ·) have a target
dependencytarget dependency if they try to produce at least one common edge, i.e., {e1, f1}∩{e2, f2} 6= ∅;
this dependency is counted even if one or both edge switches are rejected. J
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Source dependencies can be modelled by a balls-into-bins process where edges

correspond to bins and each edge switch throws a linked pair of balls into two bins

chosen uniformly at random. A source dependency arises whenever a ball falls into

a non-empty bin. Czumaj and Lingas [59] analyse this process in a di�erent context.

Interpreted for ES-MC, they show that for ` = m the longest source dependency chain

has an expected length of Θ(logm/ log logm). The distribution of target dependencies,

on the other hand, depends on the graph’s degree sequence as the probability that a

random edge switch produces the edge {u, v} is proportional to deg(u) · deg(v).

From an algorithmic point of view, source dependencies are more di�cult to deal

with if we want to process edge switches out-of-order (e.g., for parallel execution). Since

each previous edge switch may or may not change the edge associated with the colliding

edge index, the number of possible assignments may grow exponentially in the length

of the dependency chain (if multiple chains cross). Consequently, we need to either

serialize such edge switches or accommodate all possible assignments. In contrast, target

dependencies only imply a binary predicate, namely whether a previous edge switch

already introduced the target edge.

In a quest for more e�cient parallel algorithms, we de�ne a global switch — a batch

of up to bm/2c edge switches without any source dependencies; conceptually, we place

all edges into an urn and iteratively draw without replacement a pair of edges until the

urn is empty; each pair implies an edge switch. It is folklore to encode such a process in

a permutation that captures the order of edges drawn [150].

Similarly to techniques of [47, 48], our proof of Theorem 3.5 requires a small positive

probability that any global switch collapses into a single switch. We implement this by

independently rejecting each switch with probability PL.

Definition 3.4 (Global Switch, G-ES-MC). Let G = (V,E) be a simple undirected

graph. A global switch is represented by Γ = (π, `) where π is a permutation of [m]

and ` an integer with 0 ≤ ` ≤ bm/2c. The global switch Γ consists of ` edge switches

σ1, . . . , σ` that are executed in sequence, where σk = (π(2k − 1), π(2k), gk) and

gk = 1π(2k−1)<π(2k), and where 1 denotes the indicator function.

The Global Edge Switching Markov Chain (G-ES-MC) transitions from graph G

using a random global switch Γ = (π, `). To this end, π is drawn uniformly from all

permutations on [m] and ` is drawn from a binomial distribution of bm/2c trails with

success probability 0 < PL < 1. J

By selecting ` from a binomial distribution and executing the �rst ` edge switches

of a random permutation, we simulate bm/2c edge switches that are each executed

only with probability 1− PL. Also note, that the direction bits gk = 1π(2k−1)<π(2k) are

independent and unbiased random bits because the permutation π is drawn uniformly

at random.

Theorem 3.5. LetG ∈ G(D) be a simple undirected graph with degree sequenceD. The

Global Edge Switching Markov Chain started atG converges to the uniform distribution

on G(D). J

Proof. Any Markov Chain that is irreducible, aperiodic and symmetric converges to a
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uniform distribution [138, Th. 7.10]. We show that G-ES-MC has these three properties.

For irreducibility we observe that whenever there exists an edge switch from state

A to B, there also exists a global switch from A to B (e.g., if ` = 1). The state graph of

ES-MC is therefore a subgraph of the state graph of G-ES-MC. In addition, both Markov

Chains share the same set of states, i.e., the set of all simple graphs with the given degree

sequence. Then, since the state graph of ES-MC is already strongly connected [153], so

is the state graph of G-ES-MC, and thus both Markov Chains are irreducible.

For aperiodicity we note that a global switch Γ = (π, `) may not alter the graph

(e.g.,, if ` = 0). Thus each state in the Markov Chain has a self-loop with strictly positive

probability mass. This guarantees aperiodicity.

It remains to show the symmetry of transition probabilities. Let SAB be the

set of global switches Γ that transform graph A into graph B. Then the transition

probability PAB from A to B equals the probability of drawing a global switch from

SAB ,

PAB =
∑

Γ∈SAB

P (Γ),

where P (Γ) is the probability of selecting Γ. A global switch Γ = (π, `) is selected by

drawing its permutation π and executing ` edge switches. In particular, we have

P (Γ) =
1

m!︸︷︷︸
uniform π

·
(bm/2c

`

)
(1− PL)`P

bm/2c−`
L︸ ︷︷ ︸

binomially distributed `

.

Observe that P (Γ = (π, `)) depends on `, but neither on a speci�c choice of π nor the

states A and B. Thus the symmetry PAB = PBA follows by establishing a bijection

µAB between any forward global switch Γ=(π, `) ∈ SAB and an inverse global switch

Γ̃=(π̃, `) ∈ SBA with matching `.

We construct the bijection µAB as follows. For a global switch Γ = (π, `) that

executes the edge switches σ1, . . . , σ` with σk = (π(2k − 1), π(2k), gk) in sequence,

de�ne the inverse global switch Γ̃ = (π̃, `). The global switch Γ̃ executes the inverse

edge switches in reverse order, i.e., σ̃`−k+1 recovers the e�ect of the forward edge switch

σk.

Recall that (i) the inverse of an accepted edge switch is given by a direction �ag

g = 0, and that (ii) the forward direction bit is de�ned as gk = 1π(2k−1)<π(2k). Thus, if

σk is legal and gk = 1, we need to switch the order of the edge indices in the inverse

switch σ̃`−k+1. This implies π̃ on positions [2`]. In particular, we have for k ∈ [`]:(
π̃(2[`−k+1]− 1), π̃(2[`− k + 1])

)
={(

π(2k − 1), π(2k)
)

σk is illegal or gk = 0(
π(2k), π(2k − 1)

)
σk is legal and gk = 1

For the unused entries i ∈ [2`+1..m] choose π̃(i) = π(i). �
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3.4 Parallel Algorithms for ES-MC and G-ES-MC

3.4.1 Eager ES

EagerES is a simplistic parallelization of ES-MC to establish a performance baseline for

parallel algorithms. Each PU (processing unit) PU: processing unitperforms switches independently while

synchronizing implicitly only by preventing concurrent updates of individual edges.

To ensure that no edge is erased or inserted twice, we store the edges in a concurrent

hash-set using the following semantics: to remove an edge from the set, a ticket has to be

acquired �rst; this can be done by locking an existing edge or by inserting-and-locking a

new edge. These operations are implemented using a compare-and-exchange primitive.

Concurrent updates to the same edge are sequenced by the hardware.

To perform an edge switch, a PU draws the indices of two edges i, j ∈ [m] (in-

dependently of other PUs) and then attempts to rewire the edges E[i] and E[j] as in

De�nition 3.1. To this end, it �rst attempts to lock the two source edges and then to

insert-and-lock the target edges. If any of them is already locked by a concurrent edge

switch, the PU releases all locks it might hold to prevent dead locks, and then restarts

using the same edge indices (observe that E[i] and E[j] might be di�erent after the

restart). If any of the target edges exists and is unlocked, the switch is rejected as

ordinary. An implementation of EagerES is shown in Algorithm 2.

We call this algorithm eager, as it performs every edge switch that is legal after

synchronization, but lacks a well-de�ned order. Instead, the order in which edge switches

are performed is left up to the scheduler
1
. This however can lead to deviations from the

intended Markov Chain. For example, consider two edge switches that are performed in

parallel, and are legal, but attempt to insert the same edge, causing a target dependency.

In that case, only the edge switch whose PU is able to lock both its target edges �rst

is successful, and the other switch fails. Therefore, the transition probability between

two adjacent states in the state graph, is not only determined by the probability of

selecting the two source edges, but also by the probability of the switch having a target

dependency and the probability of being scheduled �rst.

Even in the case of a fair scheduler that grants each edge switch the same probability

of being scheduled �rst, the probability of the switch having a target dependency is not

symmetric between adjacent states. For example, consider two adjacent states A 6= B,

where A contains the edges {u, v}, {a, b} and B contains the edges {u, a}, {v, b}. The

probability that an edge switch betweenA andB encounters a target dependency is equal

to the probability that another switch attempts to insert either one of the same edges.

However, for the edge switch A → B, the probability that another switch attempts

to insert either {u, a} or {v, b} is proportional to the node degrees deg(u) deg(a) +

deg(v) deg(b), whereas for the edge switch B → A, the probability is proportional to

deg(u) deg(v) + deg(a) deg(b).

In conclusion, while this algorithm is simple to describe and implement, it does not

faithfully implement ES-MC. To do so, we need to take into account the dependencies

1

On real hardware, a combination of the CPU, memory subsystem, and OS.
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Algorithm 2: EagerES

Data: edge list E of a simple graph, requested switches r

1 Let H← ∅ // Initialize edge hash set H

2 for each edge e ∈ E in parallel
3 H.insert(e)

4 for i from 1 to r in parallel // Independently sample an edge switch σ

5 Sample edge indices i, j ∼ [m] with i 6= j

6 Sample direction bit g ∼ {0, 1}
7 Let t1, t2 be tickets for the source edges // Lock the source edges

8 while not both t1, t2 acquired do
9 Let e1 = E[i]

10 t1 ← H.lock(e1)

11 if t1 acquired then
12 Let e2 = E[j]

13 t2 ← H.lock(e2)

14 if not t2 acquired then
15 H.release(e1, t1)

16 Compute target edges (~e3, ~e4) = τ(~e1, ~e2, g)

17 Let t3, t4 be tickets for the target edges // Lock the target edges

18 while not both t3, t4 acquired do
19 t3 ← H.lock(e3)

20 if t3 acquired then
21 t4 ← H.lock(e4)

22 if not t4 acquired then
23 H.release(e3, t3)

24 if e3 is not self-loop ∧ e4 is not self-loop then
25 if H.insert(e3, t3) succeeds then
26 if H.insert(e4, t4) succeeds then
27 E[i]← e3, E[j]← e4 // Success, rewire the edges

28 ∀i ∈ {1, 2} : H.erase(ei, ti)

29 else
30 H.erase(e3, t3)

31 ∀i ∈ {3, 4} : H.release(ei, ti)

32 ∀i ∈ {1, 2} : H.release(ei, ti)
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between the switches and ensure that switches with dependencies are processed in a

well-de�ned order. As discussed in Section 3.3, this is more di�cult for ES-MC as it

exhibits both source and target dependencies. In particular, if an edge switch has a

source dependency on another, then the target edges of the second switch can only be

determined once we know whether the �rst switch is legal. Thus, source dependencies

make it di�cult to even detect other dependencies deeper into the dependency chain.

We might consider an algorithm that performs edge switches in batches, and choose

a small enough batch size so that each batch contains only target dependencies with

high probability. This requires the batch size to be very small, e.g. at most O(
√
m)

switches. However, this algorithm is unlikely to scale well, as we may only parallelize

small batches of O(
√
m) switches each, but must perform Ω(

√
m) batches sequentially

to even perform m switches in total. G-ES-MC on the other hand, does not exhibit

source dependencies by design, and allows us to parallelize global switches of up to

bm/2c single edge switches each.

3.4.2 Steady Global-ES

We now present SteadyGlobalES, a parallel algorithm that faithfully implements G-ES-
MC. It selects a random uniform global switch Γ = (π, `), and processes

2
the ` single

edge switches in Γ in order σ1, . . . , σ`, or any equivalent order (i.e., any reordering that

preserves this transition).

To this end, we detect all edge switches in Γ that have dependencies on other

switches, and ensure that if a switch σi depends on another switch σj , then σi is

processed only after σj is. For our purposes, it is convenient to think in terms of the

following two types of target dependencies (recall that a global switch does not have

source dependencies):

• An erase dependency erase dependencyoccurs if an edge switch σi creates an edge e that exists in

the initial graph A but is erased by a switch σj with j < i. Hence, σi may be legal

according to the order σ1, . . . , σ` if σj is legal, and hence, we must ensure that σj
is processed before σi.

• An insert dependency insert dependencyoccurs if two edge switches σi and σk attempt to create the

same edge e. In that case, we need to ensure that the switch with the smaller

index min{i, k} is processed �rst to decide which of the switches is legal in the

order σ1, . . . , σ`.

Observation 3.6. Given a graph G = (V,E) ∈ G(D) the global switch Γ attempts to

remove only edges e ∈ E and does so only once. As a direct consequence all erase

dependencies for some edge e ∈ E originate in the same switch σi. Also, for any number

of insert dependencies for some edge e at most one switch σi can be successful. J

Algorithm 3 shows an implementation of SteadyGlobalES in pseudocode. Before

performing a global switch Γ, we store the dependencies of the edge switches σ1, . . . , σ`

2

We say that a single edge switch is processed when we decide with �nality wether the switch is illegal,

in which case the switch is rejected, or legal, in which case the edges are rewired.
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Algorithm 3: SteadyGlobalES

Data: simple graph G = (V,E) by edge list E

1 Shu�e edge list E in parallel // Select random global ES Γ = (π, `)

2 Let ` ∼ Binom(bm/2c, 1− PL)

3 Let T← ∅ // Initialize dependency table T

4 for i from 1 to ` in parallel // Announce erased and inserted edges

5 Let e1 ← E[2i− 1], e2 ← E[2i]

6 Compute new edges (~e3, ~e4)← τ(~e1, ~e2, gi)

7 ∀ea ∈ {e1, e2} : T.store(ea, i, erase, undecided)

8 ∀eb ∈ {e3, e4} : T.store(eb, i, insert, undecided)

9 for for j from 2`+ 1 tom in parallel // Announce edges not be erased by Γ

10 T.store(E[j],∞, erase, illegal)

11 U← [1..`] // Initialize array U with undecided switches

12 while U not empty do
13 D← ∅ // Initialize array D for delayed switches

14 for i ∈ U in parallel
15 Let e1 ← E[2i− 1], e2 ← E[2i]

16 Compute new edges (~e3, ~e4)← τ(~e1, ~e2, gi)

17 Let si ← legal // Initialize status si
18 if e3 or e4 is self-loop then
19 si ← illegal

20 for eb ∈ {e3, e4} do // Lookup dependencies to decide si
21 j, sj ← T.lookup(eb, erase)

22 k, sk ← T.lookupFirst(eb, insert)

23 if j > i ∨ sj = illegal then Determine whether illegal

24 si ← illegal

25 if k < i ∧ sk = legal then
26 si ← illegal

27 if si 6= illegal then // Check whether has to be delayed

28 if j < i ∧ sj = undecided then
29 si ← undecided

30 if k < i ∧ sk = undecided then
31 si ← undecided

32 if si = undecided then
33 D.append(i)

34 else
35 if si = legal then
36 Set E[2i− 1]← e3, E[2i]← e4 // Success, rewire the edges

37 ∀ea ∈ {e1, e2} : T.update(ea, i, erase, si) // Update status flags

38 ∀eb ∈ {e3, e4} : T.update(eb, i, insert, si)

39 barrier: wait until all switches completed

40 U← D
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in an additional data structure. Then, while attempting to process σ1, . . . , σ` in parallel,

this allows us to determine if a switch is ready to be processed or has unresolved

dependencies. A global switch is then performed incrementally during multiple rounds.

In each round, we only process switches that have no dependencies on unprocessed

switches. This in turn resolves the dependencies of all switches that only depend on the

processed switches, and as the dependencies cannot be circular, we eventually process

all switches in this way. Then, �nally, once all switches have been processed, the global

switch has been performed.

In practice, we store the dependencies as tuples in a concurrent hash table with

open addressing, and index them by the source or target edge. For each switch σi,

we store four tuples, one for each source and each target edge, containing the edge e,

the index i of the switch, the type of operation the switch attempts to perform on the

edge te,i ∈ {erase, insert} and a status �ag si ∈ {undecided, legal, illegal}, that

is initially set to si = undecided. Usually, in a global switch, most edges are erased,

and so we use the same data structure to lookup the existence of edges. To this end,

we also store a tuple for each edge that is not erased by the global switch, with the

information that the edge is not erased, causing a switch that attempts to insert this

edge to be decided as illegal.

Now, when attempting to process a switch σi, we lookup all tuples where the edge is

one of its target edges. By observation 3.6, for each target edge e, there is only one tuple

stored by a switch σj where te,j = erase, i.e. that erases the edge. Then, if j < i, we

know that i has an erase dependency on j. Similarly, for each target edge e, there is only

one tuple stored by a switch σk, that is legal, and inserts the target edge. Speci�cally,

at any point, the only tuple that needs to be considered is the tuple with the smallest

index k where te,k = insert and sk 6= illegal. Then, if k < i, we know that i has an

insert dependency on k.

We then use this information to decide if the switch is illegal, must be delayed, or

is legal. If j > i or sj = illegal, then a target edge of the switch σi is only erased by

a later switch σj , or not erased at all, and thus the switch is illegal. Similarly, if k < i

and sk = legal, then a target edge of σi is already inserted by the earlier switch σk
and thus the switch is illegal. Otherwise, if an erase or insert dependency exists, but the

status of the other switch is undecided, the switch must be delayed. Finally, if none of

the above holds true, then the switch is legal.

If the switch is legal, the edges are rewired and the status of the tuples is set to legal.

Otherwise, if the switch is illegal, the status of the tuples is set to illegal. Finally, if the

switch has unresolved dependencies, we delay it until the next round.

3.5 Implementation

In this section, we describe the implementation of our sequential and parallel algorithms.

All algorithms (including previously existing ones) are implemented in C++.
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3.5.1 Graph and dependency representation

Most ES-MC implementations use an adjacency list to store the graph and manipulate it

with each switching [31, 171, 88, 114, 182]
3
. This design choice often leads to an easy

integration with other algorithms. However, ES-MC requires a graph representation that

e�ciently supports edge insertion, deletion, and existence queries. Unfortunately, an

adjacency list cannot support updates and search both in constant time (cf. the hybrid

data structure of [182]).

In contrast, hash-sets support all required operations in expected constant time.

From a practical point of view, we require a hash-set implementation that can handle

a roughly balanced mix of insertions, deletions, and search queries. After preliminary

experiments on various graphs, machines, and hash-set implementations
4
, we �nd that

in most cases RobinMap with a maximum load-factor of 1/2 is the fastest sequential

solution. Observe that for performance reasons, all our implementations use hash-tables

where the number of buckets is a power-of-two; hence the actual load-factor can be

lower. Our hash function uses the 64bit variant of the crc32 instruction available on

x64 processes with SSE 4.2 [100].

Our parallel algorithms require concurrent hash-tables with stable iterators (i.e.,

once an element is placed into a bucket, it is not moved until it gets erased). It is folklore

that such a data structure can be e�ciently implemented with open addressing and

lock-free compare-and-swap instructions (cf. [124]).

We implement the locking of edges as follows: each edge is kept in an 64bit-wide

bucket, where 56 bits are used to store the edge and 8 bit are reserved for locking.

To acquire a lock, a PU tries to compare-and-swap its thread id into the lock bits

and succeeds only if the bucket previously kept the edge in an unlocked state. This

implementations allows us to process graphs with up-to n ≤ 228
nodes on P <

256 threads. Observe that these restrictions can be lifted quite easily, as virtually all

relevant processors support 128bit compare-and-swap instructions with only moderate

performance penalities.

3.5.2 Sampling edges

Pseudo-random bits are generated using the MT19937-64 variant of the Mersenne

Twister [126] implemented by libstdc++ and translated into unbiased random

integers using [118]. Random permutations are sampled in parallel with an optimized

implementation inspired by [159, 118].

To sample edges uniformly at random we consider two options: Firstly, we maintain

an auxiliary array of edges. In order to sample an edge uniformly at random, we read

from a random index — this closely resembles the way we introduced edge switching in

3

[31] use a reduced adjacency matrix that only stores one directed edge. [114] use a di�erent MC with

the same switchings. [182] interleave ES-MC with connectivity checks after each edge switching. They use

an adjacency list where high-degree nodes store their neighborhoods in individual hash tables.

4

We considered the following hash-sets: h�ps://gcc.gnu.org, h�ps://github.com/{Tessil/robin-map,

Tessil/hopscotch-map,sparsehash/sparsehash}.
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Experiments

the previous chapters. Secondly, the use of open-addressing hash-tables allows us to

directly sample from the hash-set by repeatedly drawing random buckets until we hit

the �rst non-empty one.

While the second option avoids additional memory, it leads to a time trade-o�: while

all queries discussed in Section 3.5.1 bene�t from a low load-factor L, the sampling time

is geometrically distributed with a success probability of L. It, thus, favors a high load-

factor. In preliminary experiments, we found that decreasing the load factor to allow

faster queries and sampling using an additional array yields up-to 30 % faster overall

performance compared to balancing the load factor for both queries and sampling.

3.5.3 Prefetching

The rewiring of random edges inherently leads to unstructured accesses to main memory,

especially if the graph is represented in a hash set. While [90] propose an I/O-e�cient

edge switching implementation for graphs exceeding main memory, their solution

requires to repeatedly sort the edge list (and other data structures). In the context of a

parallel algorithm, this sorting step alone is more expensive than a global switch using

unstructured accesses.

We therefore accept the random I/Os and accelerate them using prefetching instruc-

tions. To this end, we split all insertion, deletion, and search queries to our hash-sets

into two: in a �rst step, we hash the key and identify the bucket in which the item is

placed if there is no collision. We then prefetch this bucket as well as its direct successor,

and return precomputed values that are required when we carry out the actual operation

in a second step. Since we use linear probing hash-sets with a low load factor and a

prefetch in advance, we e�ectively eliminate almost all cache misses if there is su�cient

time between both steps. To increase this time window, we use a pipeline of four edge

switches in di�erent progress stages.

3.6 Experiments

In the following, we empirically investigate the mixing times of the Markov Chains and

the runtime performances of their derived algorithms. The performance benchmarks

are built with GNU g++-9.3 and executed on a machine equipped with an AMD EPYC

7702P 64-core processor running Ubuntu 20.04.

Our experiments are performed on the following datasets:

• (SynGnp) — We generate G(n, p) graphs [79] (each edge exists independently

with probability p) for varying node counts n and p.

• (SynPld) — For varying node countsn and degree exponents γ : degree exponentγ, we generate power-

law degree sequences according to the degree distribution Pld([1..∆], γ) where

the maximum degree is set ∆: maximum degreeto ∆ = n1/(γ−1)
matching the analytic bound [78].

Thereafter, the generated sequences are materialized by the Havel-Hakimi algo-

rithm [95, 89]. Both steps are performed using NetworKit [171].

65



Parallel Global Edge Switching

• (NetRep) — We consider a subset of graphs
5

of the network repository [157]

with the following modi�cations: all directed edges (u, v) are replaced by the

undirected edges {u, v}, and self-loops and multi-edges are removed.

3.6.1 Empirical Mixing Time of ES-MC and G-ES-MC

Here, we compare the mixing times of ES-MC and the novel G-ES-MC. While we argue

in Section 3.3 that the lack of source dependencies of G-ES-MC improves parallelizability

over ES-MC, it is a priori unclear whether this restriction a�ects the randomization

quality of the Markov Chain.

For simple graphs, the mixing timemixing time of ES-MC has been studied for many families of

degree sequences (c.f. [56, 66, 86, 65, 11, 76]). In practice, the mixing time is approximated

by empirical proxies or estimated by data driven methods [169, 155]. The former

measures the convergence to the stationary distribution by convergence of its proxy or by

some aggregated value. In doing so, the Markov Chain is re�ected by a projection which

may converge faster [29]. The result depends on the proxy and might be insu�cient for

other more sensitive proxies. Additionally, it has been observed that common measures,

e.g., assortativity coe�cients, clustering coe�cients, diameter, maximum eigenvalue

and triangle count, are less sensitive than data-driven methods [90, 155]. Thus, we

consider the autocorrelation analysis, an approximate non-parametric method [155].

The autocorrelation analysisautocorrelation analysis proceeds in two steps. First, execute the Markov Chain

for a large number of steps K , and for each possible edge e track in a binary time-

series {Zt} whether edge e exists at time t. By its own, {Zt} and its transitions will be

correlated [169] which naturally indicates that a single Markov Chain step is insu�cient.

Consider now the k-thinned chain {Zkt }which retains every k-th entry of {Zt}. The

k-thinned chain will have smaller autocorrelation and begin to resemble independent

draws from a distribution for su�ciently large k. At some point, the thinned time-series

should resemble an independent process more than a �rst-order Markov process. To

determine which of the models is a better �t, the Bayesian Information Criterion (BIC)

is computed using the G2
-statistic [34] (see [155] for details). Thus, in a second step,

the time-series {Zt} is progressively thinned to determine independent edges for the

thinned time-series {Zkt } for increasing values of k.

For our purposes, instead of �rst computing the whole time-series {Zt} and then

considering increasing thinning values in a post-processing step, we de�ne a �xed set

of thinning values T and aggregate relevant entries of {Zt} on-the-�y for each k ∈ T .

While this approach is far less memory-consuming, we cannot recover for each edge the

earliest point of time it would have been deemed independent. Instead, for a thinning

value k, we report the fraction of edges that would be deemed independent irrespective

of a smaller thinning value k′ < k.

In this context, we compare ES-MC and G-ES-MC. In order to visually align the

results we de�ne a superstep for both Markov Chains. To this end, let m/2 uniform

5

We exclude: dimacs, dimacs10, graph500 (benchmark graphs), dynamic, misc (unclassi�ed graphs),

rand (synthetic graphs) and tscc (temporal graphs).
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(top) or 1 · 10−3 (bo�om). The outlier that merely requires k = 1

supersteps for both Markov Chains possesses only two unique

node degrees.

random edge switches and one uniform random global switch be a designated superstep

for ES-MC and G-ES-MC, respectively. This accounts for the fact that one global switch

potentially executes m/2 (non-uniform) edge switches.

We �rst consider the SynPld dataset and generate for each (n, γ) ∈ {27, 210, 213}×
{2.01, 2.1, 2.2, 2.5} forty power-law graphs.

6
In Figure 3.2 we report the mean fraction

of non-independent edges depending on the number of supersteps for a subset of the

node counts and degree exponents. For highly skewed degree sequences, e.g., γ = 2.01,

the G-ES-MC performs slightly better than the ES-MC for small supersteps. Increasing

the number of supersteps results in matching performances for both. For larger degree

exponents γ ≥ 2.2 G-ES-MC consistently outperforms ES-MC where the advantage

increases with γ. We observe both features for up to two orders of magnitude, and we

expect this to hold for even larger values of n.

Next we investigate real-world graphs of the NetRep dataset. Due to the high

computational cost, we restrict ourselves to graphs with 1000 ≤ m ≤ 800,000 edges.

To further reduce the cost, we perform the autocorrelation analysis only for the edges

of the initial graph, reducing the memory footprint of each thinning to Θ(m) where

m is the number of edges. In Figure 3.3 we present for each graph the �rst reported

superstep
7

at which the mean fraction of non-independent edges of at least 15 runs is

below a threshold τ . For τ = 1 × 10−2
, G-ES-MC seems to consistently outperform

ES-MC except for very dense graphs where the performance is similar. The τ = 1×10−3

is reached by only 46% of the 594 instances within 30 supersteps. Here, G-ES-MC still

6

We limit the largest node count to n = 213
since the longest individual run already took 18 hours

using an Intel Skylake Gold 6148 processor.

7

We do not use large primes and numbers with many divisors as thinning values. This yields an uneven

(but inconsequential) quantization of the y-axis.
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outperforms ES-MC on most instances except for moderately dense graphs on which

both chains converge signi�cantly slower.

3.6.2 Performance Benchmarks

In this section, we benchmark our ES-MC and G-ES-MC implementations. In each

experiment, we run a subset of the implementations on the same initial graph and

measure the average time required to initialize the data structures and perform 20

supersteps (e.g. 10 switches per edge). In practice, common choices [137, 81, 154] are

10 to 30 switches per edge. As G-ES-MC typically requires fewer supersteps (compare

Section 3.6.1), this gives a slight advantage to ES-MC over the G-ES-MC implementations.

Runtime

We compare existing sequential implementations to our solutions and report absolute

runtimes. To this end, we benchmark all implementations on a sample of graphs from

NetRep and report their runtimes in Table 3.1. We select the graphs in this sample

to cover a variety of sizes, average degrees and maximum degrees. As some of the

networks are quite large, we set a timeout of 1000 seconds.

ES-MC and G-ES-MC:

R Section 3.2

We �rst compare RobinES and GlobalES, our sequential ES-MC and G-ES-MC
solutions, with existing implementations from NetworKit [171] and Gengraph [181]. Our

solutions run 15-50 times faster than NetworKit and 5-10 times faster than Gengraph.

We also observe that GlobalES is faster than RobinES on large graphs, where shu�ing

is more e�cient than sampling the edges, whereas RobinES runs faster on small graphs.

In conclusion, our sequential implementations provide a meaningful baseline to measure

further speed-ups.

Next, we report the runtimes of the parallel algorithms. For P = 32 PUs, all parallel

implementations run much faster than the sequential implementations. On the largest
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graph, only the parallel implementations were able to perform 20 supersteps before the

timeout. SteadyGlobalES:

R Section 3.4.2

Here, SteadyGlobalES is up to 12 times faster than GlobalES. On all graphs,

SteadyGlobalES only shows a slowdown of at most 2 compared to EagerES.

EagerES:

R Section 3.4.1

In Figure 3.4, we evaluate RobinES, GlobalES and SteadyGlobalES on all graphs

from NetRep with at least m = 104
edges. For each graph, we run RobinES and

GlobalES on one PU and SteadyGlobalES on P = 32 PUs and report the absolute

runtimes and the speed-up of SteadyGlobalES over GlobalES. On all graphs with

m > 105
, the parallel algorithm is faster than the sequential algorithms and the observed

speed-up increases with the size of the graph.

Scaling

We �rst report the self speed-up of SteadyGlobalES on the sample of graphs from

NetRep in dependence of P (Figure 3.5). For larger graphs, the maximum speed-up

ranges between 20 and 30 using 32 to 64 PUs. On the two smallest graphs, the work

is likely too small to be e�ciently parallelized (e.g. compare Table 3.1). An outlier is

the largest graph (soc-twitter-mpi-sws); here, we expect the highest speed-up, but it is

possible that a property of this graph, such as the high maximum degree, increases the

runtime.

To measure the in�uence of the graph properties on the runtime, we consider

synthetic graphs. We �rst examine the in�uence of the density densityof the graph, i.e. the

average degree d : average degreed = 2m/n. To this end, we benchmark SteadyGlobalES on graphs

from SynGnp with various n and edge probability p = d/(n−1), and plot the runtime as

a function of the average degree in Figure 3.6. The density seems to have no signi�cant

e�ect on the runtime, even in the case where the average degree approaches the possible

maximum n− 1 (bottom-right in the plot). Hence, the density of the graph does not

seem to explain the variance in the speed-up we observed in Figure 3.5. On the other

hand, we can conclude that the algorithm o�ers a stable performance regardless of the

density of the graph.
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Table 3.1: Runtimes in seconds on a sample of graphs from NetRep sorted by network size. The left columns lists the graph,

number of nodes n, number of edges m and maximum degree dmax. The center columns list the sequential and parallel

implementations for P = 1 PU. The right columns list the parallel implementations for P = 32 PUs. The best time in each

group is indicated by the bold font. A dash (—) indicates a runtime of more than 1000 sec. for 20 supersteps.

NetworKit Gengraph RobinES GlobalES EagerES StdGlbES EagerES StdGlbES

Graph n m dmax P = 1 P = 32

soc-twitter-mpi-sws 41 M 1.2 B 2.9 M — — — — — — 251 397

bn-human-Jung2015 1.8 M 146 M 8.7 K — — 517 460 448 784 20.0 36.7

tech-p2p 5.7 M 140 M 675 K — — 530 464 477 788 21.3 37.2

socfb-konect 59 M 92 M 4.9 K — — 287 253 228 459 11.9 21.7

ca-holywood2009 1 M 56 M 11 K — 686 140 112 116 244 8.1 11.4

inf-road-usa 23 M 28 M 9 619 186 49.2 41.4 53.6 97.0 5.2 5.1

bio-human-gene1 220 K 12 M 7.9 K 512 109 12.3 12.5 18.1 32.0 1.3 2.0

web-wikipedia2009 1.8 M 4.5 M 2.6 K 65.4 36.5 4.7 4.9 6.6 9.7 0.58 0.95

cit-HepTh 22 K 2.4 M 8.7 K 45.0 20.4 2.2 2.3 3.4 5.3 0.25 0.47

email-enron-large 33 K 180 K 1.3 K 0.92 0.44 0.12 0.14 0.21 0.37 0.060 0.073

rec-amazon 91 K 120 K 5 0.57 0.16 0.098 0.11 0.18 0.17 0.060 0.045

Next, we consider power-law graphs from SynPld with degree exponent 3 ≥
γ ≥ 2.01 to evaluate the in�uence of the degree distribution’s skewness. Note that

increasing γ increases the number of edges even when �xing n, therefore we normalize

the runtime by dividing by the number of edges. We report the runtime per edge as

a function of γ in Figure 3.7. We observe an e�ect both in n and γ. For n ≥ 226
, the

runtime on 64 PUs increases slightly as γ approaches 2. A likely explanation is that in a

graph with highly skewed degree sequence, most edge switches will attempt to create

the same few edges
8
, causing many target dependencies and more synchronization

overhead. This would also explain why the speed-up on the largest graph was lower

than expected; checking the properties of this graph, we see that the maximum degree

is close to n, but the average degree is rather small, which suggests a highly skewed

degree sequence.

Recall that SteadyGlobalES may delay edge switches to resolve target dependencies.

It does so by executing several rounds. To study the performance impact, we execute

20 global switches per graph of NetRep using P = 32 PUs and record the number of

rounds per global switch, and the time accumulated on all rounds excluding the �rst

one. As reported in Figure 3.8, the average number of rounds is low with a mean of

2.2. Only one global switch required 8 rounds and none more. This is a consequence

of observation 3.6; as soon as the �rst edge switch of an insertion dependency chain is

successful, the remaining ones can be rejected in the next round. As most edge switches

are decided in the �rst round, the runtime impact of the following iterations is negligible

for su�ciently large graphs: for all networks with more than 4M edges the �rst round

accounts for more than 99% of the runtime.

8

Recall that the probability that a random edge switch creates edge e = {u, v} is proportional to

deg(u) · deg(v).
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3.7 Conclusions

We propose G-ES-MC, a novel ES-MC variant that converges to the uniform distribution

on G(D). Our parallel algorithm SteadyGlobalES faithfully implements this Markov

Chain. To the best of our knowledge, it is the �rst parallel algorithm to implement an

ES-MC variant that eliminates possible errors due to concurrent/racing switches.

Our experiments suggest that G-ES-MC typically requires fewer steps than standard

ES-MC to randomize a graph. On P = 32 PUs, our parallel algorithm executes 10− 12

times faster than our sequential G-ES-MC implementation, and 50 − 100 faster than

existing ES-MC implementations.

We investigate the in�uence of graph properties and provide evidence that the

runtime of the algorithm is not a�ected by the density of the graph. For large graphs

n ≥ 226
, and very small degree exponents γ < 2.2, there is a slight slowdown. On the

other hand, in our experiment on over 600 real graphs, this occurs for only very few

outliers. The last experiment suggests that SteadyGlobalES requires only few rounds

to perform a global switch. This indicates that the underlying principle works well

to parallelize the execution. We expect that dedicated base cases for small graphs can

further reduce the overhead due to the synchronization and concurrent data structures

and thereby improve the scaling on such graphs.
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4
Parallel and I/O-e�icient

Randomization of Massive Networks

using Global Curveball Trades

joint work with C.J. Carstens, M. Hamann, U. Meyer, M. Penschuck, and D. Wagner

Graph randomization is a crucial task in the analysis and synthesis of networks. It

is typically implemented as an edge switching process (ES) repeatedly swapping the

nodes of random edge pairs while maintaining the degrees involved [81].

Curveball is a novel approach that instead considers the whole neighborhoods of

randomly drawn node pairs. Its Markov chain converges to a uniform distribution,

and experiments suggest that it requires less steps than the established ES [47].

Since trades however are more expensive, we study Curveball’s practical runtime

by introducing the first e�icient Curveball algorithms: the I/O-e�icient EM-CB for

simple undirected graphs and its internal memory pendant IM-CB.

Further, we investigate global trades [47] processing every node in a graph during

a single super step, and show that undirected global trades converge to a uniform

distribution and perform superior in practice. We then discuss EM-GCB and EM-

PGCB for global trades and give experimental evidence that EM-PGCB achieves

the quality of the state-of-the-art ES algorithm EM-ES [91] nearly one order of

magnitude faster.

This chapter is based on the peer-reviewed conference article [48]:

[48] C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. Par-

allel and I/O-e�cient randomisation of massive networks using Global Curveball

trades. In Y. Azar, H. Bast, and G. Herman, editors, European Symp. on Algorithms
ESA, volume 112 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.11 .

My contribution

Manuel Penschuck and I are main authors of this paper. Together, we contributed most

of the algorithms and their implementations.
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4.1 Introduction

In the analysis of complex networks, such as social networks, the underlying graphs are

commonly compared to random graph models to understand their structure [102, 146,

173]. While simple models like Erdős-Rényi graphs [64] are easy to generate and analyze,

they are too di�erent from commonly observed powerlaw degree sequences [146, 143,

173]. Thus, random graphs with the same degree sequence as the given graph are

frequently used [55, 102, 163]. In practice, many of these graphs are simple graphs,

i.e. graphs without self-loops and multiple edges. In order to obtain reliable results

in these cases, the graphs sampled need to be simple since non-simple models can

lead to signi�cantly di�erent results [164, 163]. The randomization of a given graph is

commonly implemented as an Edge Switching [55, 137].

Nowadays, massive graphs that cannot be processed in the RAM of a single com-

puter, require new analysis algorithms to handle these huge datasets. In turn, large

benchmark graphs are required to evaluate the algorithms’ scalability — in terms of

speed and quality. LFR is a standard benchmark for evaluating clustering algorithms

which repeatedly generates highly biased graphs that are then randomized [114, 116].

[91] presents the external memory LFR generator EM-LFR and its I/O-e�cient edge

switching EM-ES. Although EM-ES is faster than previous results even for graphs �t-

ting into RAM, it dominates EM-LFR’s running time. Alternative sampling via the

Con�guration Model [139] was studied to reduce the initial bias and the number of ES
steps necessary [91]. Still, graph randomization remains a major bottleneck during the

generation of these huge graphs.

The Curveball algorithm has been originally proposed for randomizing binary

matrices while preserving row and column sums [174, 180] and has been adopted for

graphs [46, 47]: instead of switching a pair of edges as in ES, Curveball trades the

neighbors of two nodes in each step. Carstens et al. further propose the concept of a

global trade, a super step composed of single trades targeting every node
1

in a graph

once [47]. The authors show that global trades in bipartite or directed graphs converge

to a uniform distribution, and give experimental evidence that global trades require

fewer Markov-chain steps than single trades. However, while fewer steps are needed,

the trades themselves are computationally more expensive. Since we are not aware

of previous e�cient Curveball algorithms and implementations, we investigate this

trade-o� here.

4.1.1 Our Contributions

We present the �rst e�cient algorithms for Curveball: the (sequential) internal memory

and external memory algorithms IM-CB
2

and EM-CB for the Simple Undirected Curve-

ball algorithm (see Section 4.4). Experiments in Section 4.5, indicate that they are faster

than the established edge switching approaches in practice.

1

For an odd number n of nodes, a single node is left out

2

We pre�x internal memory algorithms with IM and I/O-e�cient algorithms with EM. The su�ces CB,

GCB, and PGCB denote Curveball, CB. with global trades, and parallel CB. with global trades respectively.
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In Section 4.3, we show that random global trades lead to uniform samples of

simple, undirected graphs and demonstrate experimentally in Section 4.5 that they

converge even faster than the corresponding number of uniform single trades. Exploiting

structural properties of global trades, we simplify EM-CB yielding EM-GCB and the

parallel I/O-e�cient EM-PGCB which achieves EM-ES’s quality nearly one order of

magnitude faster in practice (see Section 4.5).

4.2 Preliminaries and Notation

We de�ne the short-hand [k] := {1, . . . , k} for k ∈ N>0, and write [xi ]bi=a for an

ordered sequence [xa, xa+1, . . . , xb].

Graphs and Degree Sequences

A graph G = (V,E) has n = |V | sequentially numbered nodes V = {v1, . . . , vn} and

m = |E| edges. Unless stated di�erently, graphs are assumed to be undirected and

unweighted. To obtain a unique representation of an undirected edge {u, v} ∈ E, we

use ordered edges [u, v] ∈ E implying u ≤ v; in contrast to a directed edge, the ordering

is used algorithmically but does not carry any meaning. A graph is called simple if

it contains neither multi-edges nor self-loops, i.e. E ⊆ {{u, v} |u, v ∈ V with u 6=
v }. For node u ∈ V de�ne the neighborhood Au := {v : {u, v} ∈ E} and degree
deg(u) := |Au|. Let dmax := maxv{deg(v)} be the maximal degree of a graph. A

vector D = [ di ]ni=1 is a degree sequence of graph G i� ∀vi ∈ V : deg(vi) = di.

Randomization and Distributions

Pld ([a, b), γ) refers to an integer Powerlaw Distribution with exponent −γ ∈ R for

γ ≥ 1 and values from the interval [a, b); let X be an integer random variable drawn

from Pld ([a, b), γ) thenP[X=k] ∝ k−γ (proportional to) if a ≤ k < b andP[X=k] = 0

otherwise. A statement depending on some number x > 0 is said to hold with high
probability if it is satis�ed with probability at least 1− 1/xc for some constant c ≥ 1.

Let S be a �nite set, x ∈ S and let σ be permutation on S, we de�ne rankσ(x) as the

number of elements positioned in front of x by σ.

4.2.1 External Memory Model

In contrast to classic models of computation, such as the unit-cost random-access ma-

chine, modern computers contain deep memory hierarchies ranging from fast registers,

over caches and main memory to solid-state drives (SSDs) and hard disks. Algorithms

unaware of these properties may face signi�cant performance penalties.

We use the commonly accepted External Memory Model by Aggarwal and Vitter [1]

to reason about the in�uence of data locality in memory hierarchies. It features two

memory types, namely fast internal memory (IM or RAM) holding up to M data items,

and a slow disk of unbounded size. The input and output of an algorithm are stored in

external memory (EM while computation is only possible on values in IM. An algorithm’s
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Algorithm 4: Compute Fibonacci numbers using Time Forward Processing

1 PQ.push((key = 2, val = 0), (key = 2, val = 1)) // Send base cases x0 & x1 to v2
2 for i← 2, . . . , n do
3 sum← 0

4 while PQ.min.key == i do
5 sum← sum + PQ.removeMin().val // Receive all messeges for xi

6 print(xi = sum)

7 PQ.push( (key = i+1, val = sum), (key = i+2, val = sum))

performance is measured in the number of I/Os required. Each I/O transfers a block

of B = Ω(
√
M) consecutive items between memory levels. Reading or writing n

contiguous items is referred to as scanning and requires scan(n) := Θ(n/B) I/Os.

Sorting n consecutive items triggers sort(n) := Θ((n/B) · logM/B(n/B)) I/Os. For all

realistic values of n, B and M , scan(n) < sort(n)� n. Sorting complexity constitutes

a lower bound for most intuitively non-trivial EM tasks [133]. EM queues use amortized

O(1/B) I/Os per operation and requireO(B) main memory [123]. An external priority

queue (PQ) requires O(sort(n)) I/Os to push and pop n items [14, 13].

4.2.2 TFP: Time Forward Processing

Time Forward Processing (TFP) is a generic technique to manage data dependencies of

external memory algorithms [123]. Consider an algorithm computing values x1, . . . , xn
in which the calculation of xi requires previously computed values. One typically

models these dependencies using a directed acyclic graph G=(V,E). Every node

vi ∈ V corresponds to the computation of xi and an edge (vi, vj) ∈ E indicates that

the value xi is necessary to compute xj . For instance consider the Fibonacci sequence

x0 = 0, x1 = 1, xi = xi−1 + xi−2 ∀i ≥ 2 in which each node vi with i ≥ 2 depends

on exactly its two predecessors (see Algorithm 4). Here, a linear scan for increasing i

su�ces to solve the dependencies.

In general, an algorithm needs to traverse G according to some topological order

≺T of nodes V and also has to ensure that each vj can access values from all vi with

(vi, vj) ∈ E. The TFP technique achieves this as follows: as soon as xi has been

calculated, messages of the form 〈vj , xi〉 are sent to all successors (vi, vj) ∈ E. These

messages are kept in a minimum priority queue sorting the items by their recipients

according to ≺T . By construction, the algorithm only starts the computation vi once all

predecessors vj ≺T vi are completed. Since these predecessors already removed their

messages from the PQ, items addressed to vi (if any) are currently the smallest elements

in the data structure and can be dequeued. Using a suited EM PQ [14, 13], TFP incurs

O(sort(k)) I/Os, where k is the number of messages sent.
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4.3 Randomization Schemes

Here, we summarize the randomization schemes ES [137] and Curveball for simple undi-

rected graphs [46], and then discuss the notion of global trades. Since these algorithms

iteratively modify random parts of a graph, they can be analyzed as �nite Markov chains.

It is well known that any �nite, irreducible, aperiodic, and symmetric Markov chain

converges to the uniform distribution on its state space (e.g. [120]). Its mixing time
indicates the number of steps necessary to reach the stationary distribution.

4.3.1 Edge Switching

Edge Switching is a state-of-the-art randomization method with a wide range of ap-

plications, e.g. the generation of graphs [91, 116], or the randomization of biological

datasets [101]. In each step, ES chooses two edges e1 = [u1, v1], e2 = [u2, v2] and a

direction d ∈ {0, 1} uniformly at random and rewires them into {u1, u2}, {v1, v2} if

d=0 and {u1, v2}, {v1, u2} otherwise. If a step yields a non-simple graph, it is skipped.

ES’s Markov chain is irreducible [62], aperiodic and symmetric [81] and hence converges

to the uniform distribution on the space of simple graphs with �xed degree sequence.

While analytic bounds on the mixing time [84, 85] are impractical, usually a number of

steps linear in the number of edges is used in practice [154].

4.3.2 Simple Undirected Curveball Algorithm

Curveball is a novel randomization method. In each step, two nodes trade their neigh-

borhoods, possibly yielding faster mixing times [46, 174, 180].

Definition 4.1 (Simple Undirected Trade). Let G = (V,E) be a simple graph, A be

its adjacency list representation, and Au be the set of neighbors of node u. A trade

t = (i, j, σ) fromA to adjacency listB is de�ned by two nodes i and j, and a permutation

σ : Dij → Dij where Ai−j := Ai \ (Aj ∪ {j}) and Dij := Ai−j ∪Aj−i. As shown in

Figure 4.1, performing t on G results in

Bi = (Ai \Ai−j) ∪ {x | x ∈ Dij , rankσ(x) ≤ |Ai−j} and

Bj = (Aj \Aj−i) ∪ {x | x ∈ Dij , rankσ(x) > |Ai−j |} .

Since edges are undirected, symmetry has to be preserved: for all u ∈ Ai\Bi the label j

in adjacency list Bu is changed to i and analogously for Aj \Bj . J

Simple Undirected Curveball randomizes a graph by repeatedly selecting a pair of

nodes {i, j} and a permutation σ on the disjoint neighbors uniformly at random. Its

Markov chain is irreducible, aperiodic and symmetric. Therefore, it converges to the

uniform distribution [47].
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Ai = {1, 2, 6, j}
Aj = {3, 4, 5, 6, i}

Bi = {3, 4, 6, j}
Bj = {1, 2, 5, 6, i}

Bi−j = {3, 4}
Bj−i = {1, 2, 5}

σ( 1,2︸︷︷︸
Ai−j

, 3,4,5︸ ︷︷ ︸
Aj−i

) 7→ ( 4,3︸︷︷︸
Bi−j

, 5,1,2︸ ︷︷ ︸
Bj−i

)

Figure 4.1: The trade (i, j, σ) between nodes i and j only considers edges to the disjoint neighbors {1, . . . , 5}. For the

reassigned disjoint neighbors we use the short-hand Bi−j := {x | x ∈ Dij , rankσ(x) ≤ |Ai−j |} and Bj−i := {x | x ∈
Dij , rankσ(x) > |Ai−j |}. The triangle (i, j, 6) is omi�ed as trading any of its edges would either introduce parallel edges,

self-loops, or result in no change at all. Then, the given σ exchanges four edges.

4.3.3 Undirected Global Trades

Trade sequences typically consist of pairs in which each constituent is drawn uniformly

at random. While it is a well known fact
3

that Θ(n log n) trades are required in expec-

tation until each node is included at least once, there is no apparent reason why this

should be bene�cial; in fact, experiments in Section 4.5 suggest the contrary.

Carstens et al. propose the notion of global trades for directed or bipartite graphs

as a 2-partition of all nodes implicitly forming n/2 node pairs to be traded in a single

step [47]. This concept fails for undirected graphs where in general the two directions

(u, v) and (v, u) of an edge {u, v} cannot be processed independently in a single step.

We hence extend global trades to undirected graphs by interpreting them as a sequence

of n/2 simple trades which together target each node exactly once (we assume n to be

even; if this is not the case we add an isolated node
4
). Dependencies are then resolved

by the order of this sequence.

Definition 4.2 (Undirected Global Trade). LetG = (V,E) be a simple undirected graph

and π : V → V be a permutation on the set of nodes. A global trade T = (t1, . . . , t`)

for ` = bn/2c is a sequence of trades ti = {π(v2i−1), π(v2i), σi}. By applying T to G

we mean that the trades t1, . . . , t` are applied successively starting with G. J

Theorem 4.3 allows us to use global trades as a substitute for a sequence of single

trades, as global trades preserve the stationary distribution of Curveball’s Markov chain.

The proof extends [47], which shows convergence of global trades in bipartite or directed

graphs, to undirected graphs and uses similar techniques.

Theorem 4.3. Let G = (V,E) be an arbitrary simple undirected graph, and let ΩG

be the set of all simple undirected graphs that have the same degree sequence as G.

Curveball with global trades started at G converges to the uniform distribution on

ΩG. J

Proof. In order to prove the claim, we have to show irreducibility and aperiodicity of

the Markov chain as well as symmetry of the transition probabilities.

3

For instance studied as the coupon collector problem.

4

This is equivalent to randomly excluding a single node from a global trade
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For the �rst two properties it su�ces to show that whenever there exists a single

trade from state A to B, there also exists a global trade from A to B (see [45] for a

similar argument).
5

Observe that there is a non-zero probability that a single trade does not change the

graph, e.g. by selecting σi as the identity. Hence there is a non-zero probability that . . .

• . . . a global trade does not alter the graph at all. This corresponds to a self-loop at

each state of the Markov chain and hence guarantees aperiodicity.

• . . . all but one single trade of a global trade do not alter the graph. In this case,

a global trade degenerates to a single trade and the irreducibility shown in [45]

carries over.

It remains to show that the transition probabilities are symmetric. Let T gAB be the

set of global trades that transform state A to state B. Then the transition probability

between A and B equals the sum of probabilities of selecting a trade sequence from

T gAB . That is PAB =
∑

T∈T gAB
PA(T ) where PA(T ) denotes the probability of selecting

global trade T in state A.

The probability PA(t) of selecting a single trade t = (i, j, σ) from stateA to stateB

equals the probability PB(t̃) of selecting the reverse trade t̃ = (i, j, σ−1) from state B

toA [47]. We now de�ne the reverse global trade of T = (t1, . . . , t`) as T̃ = (t̃`, . . . , t̃1).

It is straight-forward to check that this gives a bijection between the sets T gAB and T gBA.

It remains to show that the middle equality holds in

PAB =
∑

T∈T gAB
PA(T )

!
=
∑

T̃∈T gBA
PB(T̃ ) = PBA.

Let T = (t1, . . . , t`) be a global trade from state A to state B as implied by π and

A = A1, . . . , A`+1 = B be the intermediate states. We denote the reversal of T and π

as T̃ and π̃ respectively and obtain

PA(T ) = P[π]PA1(t1) . . .PA`(t`) = P[π̃]PB(t̃`) . . .PA2(t̃1) = PB(T̃ ).

Clearly P[π] = P[π̃] as we are picking permutations uniformly at random. The second

equality follows from PA(t) = PB(t̃) for a single trade between A and B. �

4.4 Novel Curveball Algorithms for Undirected Graphs

In this section we present the related algorithms EM-CB, IM-CB, EM-GCB and EM-

PGCB. They receive a simple graph G and a trade sequence T = [ {ui, vi} ]`i=1 as input

and compute the result of carrying out the trade sequence T (see Section 4.3.2) in order.

EM-CB and IM-CB are sequential solutions suited to process arbitrary trade se-

quences T . For our analysis, we assume T ’s constituents to be drawn uniformly at

5

Since each global trade can be emulated by its n/2 decomposed single trades, the reverse is true for a

hop of n/2 single trade steps. Due to dependencies however the transition probabilities generally do not

match, see V = {1, 2, 3, 4} and E = {[1, 2], [3, 4]} for a simple counterexample.
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random (as expected in typical applications). Both algorithms share a common design,

but di�er in the data structures used. EM-CB is an I/O-e�cient algorithm while IM-CB is

optimized for small graphs by using unstructured accesses to RAM. In contrast, EM-GCB

and EM-PGCB process global trades only. This restricted input model allows to represent

the trade sequence T implicitly by hash functions which further accelerates trading.

At core, all algorithms perform trades in a similar fashion: In order to carry out

the i-th trade {ui, vi}, they retrieve the neighborhoods Aui and Avi , shu�e
6

them, and

then update the graph. Once the neighborhoods are known, trading itself is simple. We

compute the set of disjoint neighbors D = (Aui ∪ Avi) \ (Aui ∩ Avi) and then draw

|Aui∩D| nodes fromD for ui uniformly at random while the remaining nodes go to vi. If

Aui andAvi are sorted this requires onlyO(|Aui |+ |Avi |) work and scan(|Aui |+|Avi |)
I/Os (see also proof of Lemma 4.6 if the neighborhoods �t into RAM). Hence we focus

on the harder task of obtaining and updating the adjacency information.

4.4.1 EM-CB: A Sequential I/O-e�icient Curveball Algorithm

EM-CB (Algorithm 5) is an I/O-e�cient Curveball algorithm to randomize undirected

graphs. This basic algorithm already contains crucial design principles which we further

explore with IM-CB, EM-GCB and EM-PGCB in Sections 4.4.2 and 4.4.4 respectively.

The algorithm encounters the following challenges. After an undirected trade

{u, v} is carried out, it does not su�ce to only update the neighborhoods Au and Av :

consider the case that edge {u, x} changes into {v, x}. Then the switch also a�ects the

neighborhood of Ax. Here, we call u and v active nodes while x is a passive neighbor.

In the EM setting another challenge arises for graphs exceeding main memory; it is

prohibitively expensive to directly access the edge list since this unstructured pattern

triggers Ω(1) I/Os for each edge processed with high probability.

EM-CB approaches these issues by abandoning a classical static graph data structure

containing two redundant copies of each edge. Following the TFP principle, we rather

interpret all trades as a sequence of points over time that are able to receive messages.

Initially, we send each edge to the earliest trade one of its endpoints is active in.
7

This way, the �rst trade receives one message from each neighbor of the active nodes

and hence can reconstruct Au1 and Av1 . After shu�ing and reassigning the disjoint

neighbors, EM-CB sends each resulting edge to the trade which requires it next. If no

such trade exists, the edge can be �nalized by committing it to the output.

The algorithm hence requires for each (actively or passively) traded node u, the

index of the next trade in which u is actively processed. We call this the successor of u

and de�ne it to be∞ if no such trade exists. The dependency information is obtained

in a preprocessing step; given T = [ {ui, vi} ]`i=1, we �rst compute for each node u the

monotonically increasing index list S (u) of trades in which u is actively processed, i.e.

S (u) :=
[
i |u ∈ ti for i ∈ [`]

]
◦ [∞].

6

In contrast to De�nition 4.2, we do not consider the permutation σ of disjoint neighbors as part of the

input, but let the algorithm choose one randomly for each trade.

7

If an edge connects two nodes that are both actively traded we implicitly perform an arbitrary tie-break.
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Algorithm 5: EM-CB

Data: Trade sequence T , simple graph G = (V,E) by edge list E

// Preprocessing: Compute Dependencies

1 foreach trade ti = (u, v) ∈ T for increasing i do
2 Send messages 〈u, ti〉 and 〈v, ti〉 to Sorter SorterTtoV

3 Sort SorterTtoV lexicographically // All trades of a node are next to each other

4 foreach node u ∈ V do
5 Receive S (u) = [t1, . . . , tk] from k messages addressed to u in SorterTtoV

6 Set tk+1 ←∞ // t1 =∞ i� u is never active

7 Send 〈ti, u, ti+1〉 to SorterDepChain for i ∈ [k]

8 foreach directed edge (u, v) ∈ E do
9 if u < v then
10 Send message 〈v, u, t1〉 via PqVtoV

11 else
12 Receive tv1 from unique message received via PqVtoV

13
if t1 ≤ tv1 then Send message 〈t1, u, v, tv1〉 via PqTtoT

else Send message 〈tv1, v, u, t1〉 via PqTtoT

14 Sort SorterDepChain

// Main phase – Currently at least the first trade has all information it needs

15 foreach trade ti = (u, v) ∈ T for increasing i do
16 Receive successors τ(u) and τ(v) via SorterDepChain

17 Receive neighbors AG(u), AG(v) and their successors τ(·) from PqTtoT

18 Randomly reassign disjoint neighbors, yielding new neighbors A ′G(u) and A ′G(v).

19 foreach (a, b) ∈ ({u} ×A ′G(u)) ∪ ({v} ×A ′G(v)) do

20

if τa =∞ and τb =∞ then Output �nal edge {a, b}
else if τa ≤ τb then Send message 〈τa, a, b, τb〉 via PqTtoT

else Send message 〈τb, b, a, τa〉 via PqTtoT

Example 4.4. Let G = (V,E) be a simple graph with V = {v1, v2, v3, v4} and trade

sequenceT = [t1: {v1, v2}, t2: {v3, v4}, t3: {v1, v3}, t4: {v2, v4}, t5: {v1, v4}]. Then, the

successors S follow as S (v1) = [1, 3, 5,∞], S (v2) = [1, 4,∞], S (v3) = [2, 3,∞],

S (v4) = [2, 4, 5,∞]. J

This information is then spread via two channels:

• After preprocessing, EM-CB scans S and T conjointly and sends 〈ti, ui, tui 〉 and

〈ti, vi, tvi 〉 to each trade ti. The messages carry the successors tui and tvi of the

trade’s active nodes.

• When sending an edge as described before, we augment it with the successor

of the passive node. Initially, this information is obtained by scanning the edge

list E and S conjointly. Later, it can be inductively computed since each trade

receives the successors of all nodes involved.
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Lemma 4.5. For an arbitrary trade sequence T of length `, EM-CB has a worst-case

I/O complexity of O
[
sort(`) + sort(n) + scan(m) + `dmax/B logM/B(m/B)

]
. For r

global trades, the worst-case I/O complexity is O(r[sort(n) + sort(m)]). J

Proof. Refer to Section 4.A (Appendix) for the proof. �

4.4.2 IM-CB: An Internal Memory Version of EM-CB

While EM-CB is well suited if memory access is a bottleneck, we also consider the

modi�ed version IM-CB. As shown in Section 4.5, IM-CB is typically faster for small

graph instances. IM-CB uses the same algorithmic ideas as EM-CB but replaces its

priority queues and sorters
8

by unstructured I/O into main memory (see Algorithm 6

(Appendix) for details):

• Instead of sending neighborhood information in a TFP fashion, we now rely on

a classical adjacency vector data structure AG (an array of arrays). Similarly to

EM-CB, we only keep one directed representation of an undirected edge. As an

invariant, an edge is always placed in the neighborhood of the incident node

traded before the other. To speed up these insertions, IM-CB maintains unordered

neighborhood bu�ers.

• IM-CB does not forward successor information, but rather stores S in a con-

tiguous block of memory. The algorithm additionally maintains the vector

Sidx[1 . . . n] where the i-th entry points to the current successor of node vi.

Once this trade is reached, the pointer is incremented giving the next successor.

Lemma 4.6. For a random trade sequence T of length `, IM-CB has an expected running

time of O(n+ `+m+ `m/n). In the case of r many global trades (each consisting of

n/2 normal trades) the running time is given by O(n+ rm). J

Proof. Refer to Section 4.B (Appendix) for the proof. �

4.4.3 EM-GCB: An I/O-e�icient Global Curveball Algorithm

EM-GCB builds on EM-CB and exploits the regular structure of global trades to simplify

and accelerate the dependency tracking. As discussed in Section 4.3.3, a global trade can

be encoded as a permutation π : [n]→ [n] by interpreting adjacent ranks as trade pairs,

i.e. Tπ = [ {vπ(2i−1), vπ(2i)} ]
n/2
i=1. In this setting, a sequence of global trades is given by

r permutations [πj ]rj=1. The model simpli�es dependencies as it is not necessary to

explicitly gather S and communicate successors.

8

The term sorter refers to a data structure with two modes of operation: items are �rst pushed into the

write-only sorter in an arbitrary order by some algorithm. After an explicit switch, the �lled data structure

becomes read-only and the elements are provided as a lexicographically non-decreasing stream. It can

be rewound at any time. While a sorter is functionally equivalent to sorting an EM vector, the restricted

access model reduces constant factors in the implementation’s runtime and I/O complexity [24].
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Figure 4.2: During the trade j=1, i1=3, i2=4 the edge {v1, v2} is produced; the arrows indicate positions considered as

successors. Since v1 and v2 are already processed in round j=1, π2 is used to compute the successor. Then, the message is

sent to v1 in round 2 as v1 is processed before v2.

As illustrated in Figure 4.2, we also change the addressing scheme of messages.

While EM-CB sends messages to speci�c nodes in speci�c trades, EM-GCB exploits that

each node vi is actively traded only once in each round j and hence can be addressed

by its position πj(i). Successors can then be computed in an ad-hoc fashion; let a trade

of adjacent positions i1 < i2 of the j-th global trade produce (among others) the edge

{vx, vy}. The successor of vx (and analogously the one of vy) is Sj,i2 [vx] = (j, πj(x))

if vx is processed later in round j (i.e. πj(x)/2 > i2) and otherwise Sj,i2 [vx] =

(j+1, πj+1(x)). Here we imply an untraded additional function πr+1(x) = x which

avoids corner cases and generates an ordered edge list as a result of the r-th global trade.

To reduce the computational cost of the successor computation, EM-GCB supports

fast injective functions f : X → Y where [n] ⊆ X and [n] ⊆ Y . In contrast to the

original permutations, their relevant image { f(x) | x ∈ [n] } may contain gaps which

are simply skipped by EM-GCB. This requires minor changes in the addressing scheme

(see Section 4.C (Appendix)).

In practice, we use functions from the family of linear congruential maps linear congruential mapHp where

p is the smallest prime number p ≥ n:

Hp := {ha,b | 1 ≤ a < p and 0 ≤ b < p } (4.1)

ha,b(x) ≡ (ax+ b) mod p, (4.2)

As detailed in Section 4.D (Appendix) random choices from Hp are well suited for

EM-GCB since they are 2-universal
9

and contain only O(log(n)) gaps. They are also

bijections with an easily computable inverse h−1
a,b that allows EM-GCB to determine the

active node h−1
a,b(i) traded at position i; this operation is only performed once for each

traded position. EM-GCB can also support non-invertible functions using messages

〈h(i), i〉 that are generated for 1 ≤ i ≤ n and delivered using TFP .

4.4.4 EM-PGCB: An I/O-e�icient Parallel Global Curveball Algorithm

EM-PGCB adds parallelism to EM-GCB by concurrently executing multiple sequential

trades. As in Figure 4.3, we split a global trade into microchunks each containing a similar

9

i.e. given one node in a single trade, the other is uniformly chosen among the remaining nodes.
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Figure 4.3: EM-PGCB splits each global trade into k macrochunks and maintains an external memory queue for each. Before

processing a macrochunk, the bu�er is loaded into IM and sorted, and further subdivided into z batches each consisting of p

microchunks. A type (ii) message is visualized by the red intra-batch arrow.

number of node pairs and then execute a batch of p such subdivisions in parallel. The

batch’s size is a compromise between intra-batch dependencies (messages are awaited

from another processor) and overhead caused by synchronizing threads at the batch’s

end (see Section 4.E (Appendix)).

EM-PGCB processes each microchunk similarly as in EM-CB but di�erentiates

between messages that are sent (i) within a microchunk, (ii) between microchunks of

the same batch (iii) and microchunks processed later. Each class is transported using an

optimized data structure (see below).

Only type (ii) messages introduce dependencies between parallel path of execution.

They are resolved as follows: when a processor retrieves the messages of its next trade,

it checks whether all required data is available by comparing the number of messages

to the active nodes’ degrees. If data is missing the trade is skipped and later executed by

the processor that adds the last missing neighbor.

For graphs withm = O
(
M2/B

)
edges

10
, we optimize the communication structure

for type (iii) messages. Observe that EM-PGCB sends messages only to the current and

the subsequent round. We partition a round into k macrochunks each consisting of

Θ(n/k) contiguous trades. An external memory queue is used for each macrochunk

to bu�er messages sent to it; in total, this requires Θ(kB) internal memory. Before

processing a macrochunk, all its messages are loaded into IM, subsequently sorted and

arranged such that missing messages can be directly placed to the position they are

required in. This can also be overlapped with the processing of the previous macrochunk.

As thoroughly discussed in Section 4.E (Appendix), the number k of macrochunks should

be as small as possible to reduce overheads, but su�ciently large such that all messages

of a macrochunk �t into main memory (see Section 4.F).

Theorem 4.7. EM-PGCB requiresO(r[sort(n) + sort(m)]) I/Os for r global trades. J

Proof. Observe that we can analyze each of the r rounds individually. A constant

amount of auxiliary data is needed per node to provision gaps for missing data, to detect

whether a trade can be executed and (if required) to invert the permutation. These

Θ(n) messages require sort(n) I/Os to be delivered. Using a PQ, the analysis of EM-CB

(Lemma 4.5) carries over, requiring sort(m) I/Os for a global trade. �
10

Even with as little as 1 GiB of internal memory, several billion edges are supported.
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Figure 4.4: Fraction of edges still correlated as a function of the thinning parameter k for graphs with n = 2·103 nodes

and degree distribution Pld ([a, b), γ) with γ = 2, a = 5, and b ∈ {25, 750}. The (not thinned) long Markov chains of edge

switching (ES), Curveball with uniform trades (CBU) and Curveball with global trades (CBG) contain 6000 super steps each.

4.5 Experimental Evaluation

In this section we evaluate the quality of the proposed algorithms and analyze the

runtime of our C++ implementations.
11

EM-CB, IM-CB, EM-GCB are designed as

modules of NetworKit [171]; due to their superior performance, only the latter two were

added to the library and are available since release 4.6. EM-PGCB’s implementation is

developed separately and facilitates external memory data structures and algorithms of

STXXL [60].

Intuitively, graphs with skewed degree distributions are hard instances for Curveball

since it shu�es and reassigns the disjoint neighbors of two trading nodes. Hence,

limited progress is achieved if a high-degree node trades with a low-degree node. Since

our experiments support this hypothesis, we focus on graphs with powerlaw degree

distributions as di�cult but highly relevant graph instances. Our experiments use two

parameter sets:

• (lin) − The maximal possible degree scales linearly in the number n of nodes.

The degree distribution Pld ([a, b), γ) is chosen as a = 10, b = n/20 and γ = 2.

• (const) − The extremal degrees are kept constant. In this case the parameters are

chosen as a = 50, b = 10000 and γ = 2.

We select these con�gurations to be comparable with [91] where both parameter sets are

used to evaluate EM-ES. The �rst setting (lin) considers the increasing average degree of

real-world networks as they grow. The second setting (const) approximates the degree

distribution of the Facebook network in May 2011 [91]. Runtimes are measured on the

following o�-the-shelf machine: Intel Xeon E5-2630 v3 (8 cores at 2.40GHz), 64GB RAM,

2× Samsung 850 PRO SATA SSD (1 TB), Ubuntu Linux 16.04, GCC 7.2.

4.5.1 Mixing of Edge-Switching, Curveball and Global Curveball

We are not aware of any practical theoretical bounds on the mixing time of Markov

chains of Curveball, Global Curveball or Edge Switching. Hence, we quantitatively study

11

Code used for the presented benchmarks can be found at our fork h�ps://github.com/hthetran/

networkit (IM-CB and EM-CB) and h�ps://github.com/massive-graphs/extmem-lfr (EM-PGCB).
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the progress made by Curveball trades compared to edge switching and approximate

the mixing time of the underlying Markov chains by a method developed in [155]. This

criterion is a more sensitive proxy to the mixing time than previously used alternatives,

such as the local clustering coe�cient, triangle count and degree assortativity [91].

Intuitively, one determines the number of Markov chain steps required until the

correlation to the initial state decays. Starting from an initial graph G0, the Markov

chain is executed for a large number of steps, yielding a sequence (Gt)t≥0 of graphs

evolving over time. For each occurring edge e, we compute a Boolean vector (Ze,t)t≥0

where a 1 at position t indicates that e exists in graph Gt. We then derive the k-thinned
series (Zke,t)t≥0 only containing every k-th entry of the original vector (Ze,t)t≥0 and

use k as a proxy for the mixing time.

To determine if k Markov chain steps su�ce for edge e to lose the correlation to

the initial graph, the empirical transition probabilities of the k-thinned series (Zke,t)t≥0

are �tted to both an independent and a Markov model respectively. If the independent

model is a better �t, we deem edge e to be independent. The results presented here

consider only small graphs due to the high computational cost involved. However,

additional experiments suggest that the results hold for graphs at least one order of

magnitude larger.

We compare a sequence of uniform (single) trades, global trades and edge switching

and visually align the results of these schemes by de�ning a super step. Depending on the

algorithm a super step corresponds to either a single global trade, n/2 uniform trades

or m edge swaps. Comparing n/2 uniform trades with a global trade seems sensible

since a global trade consists of exactly n/2 single trades, furthermore randomizing with

n/2 single trades considers the state of 2m edges which is also true for m edge swaps.

It accounts for the fact that a single Curveball Markov chain step may execute multiple

neighbor switches, thus easily outperforming ES in a step-by-step comparison.

Figure 4.4 contains a selection of results obtained for small powerlaw graph instances

using this method (see Section 4.G.1 (Appendix) for the complete dataset). Progress is

measured by the fraction of edges that are still classi�ed as correlated, i.e. the faster a

method approaches zero the better the randomization. We omit an in-depth discussion

of uniform trades and rather focus on global trades which consistently outperform the

former (cf. Section 4.3.2).

In all settings ES shows the fastest decay. The gap towards global trades growths

temporarily as the maximal degree is increased which is consistent with our initial claim

that skewed degree distributions are challenging for Curveball. The e�ect is however

limited and in all cases performing 4 global trades for each edge switching super step

gives better results. This is a pessimistic interpretation since typically 10m to 100m

edge switches are used to randomize graphs in practice; in this domain global trades

perform similarly well and 20 global trades consistently give at least the quality of 10m

edge switches.
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Figure 4.5: Runtime per edge and super step (global trade or m edge swaps) of the proposed algorithms IM-CB, EM-CB and

EM-PGCB compared to state-of-the-art IM edge switching VL-ES and EM edge switching EM-ES. Each data point is the

median of S ≥ 5 runs over 10 super steps each. The le� plot contains the (const)-parameter set, the right one (lin). Observe

that the super steps of di�erent algorithms advance the randomization process at di�erent speeds (see discussion).

4.5.2 Runtime Performance Benchmarks

We measure the runtime of the algorithms proposed in Section 4.4 and compare them to

two state-of-the-art edge switching schemes (using the authors’ C++ implementations):

• VL-ES is a sequential IM algorithm with a hashing-based data structure optimized

for e�cient neighborhood queries and updates [181]. To achieve comparability,

we removed connectivity tests, �xed memory management issues, and adopted

the number of swaps.

• EM-ES:

R Section 2.5

EM-ES is an EM edge switching algorithm and part of EM-LFR’s toolchain [91].

We carry out experiments using the (const) and (lin) parameter sets, and limit the

problem sizes for internal memory algorithms to avoid exhaustion of the main memory.

For each data point we carry out 10 super steps (i.e. 10 global trades or 10m edge swaps)

on a graph generated with Havel-Hakimi from a random powerlaw degree distribution.

Figure 4.5 presents the wall-time per edge and super step including precomputation
12

required by the algorithms but excluding the initial graph generation process. The

plots include (mostly small) errorbars corresponding to the unbiased estimation of the

standard deviation of S repetitions per data point (with di�erent random seeds).

The number k of macrochunks does not signi�cantly a�ect EM-PGCB’s performance

for small graphs due to comparably high synchronization cost. In contrast, adjusting

k for larger graphs can noticeably increase the performance of EM-PGCB. We thus

experimentally determined the value k = 32 for both (const) and (lin) with n = 107

nodes and use that value for all other instances.

All Curveball algorithms outperform their direct competitors signi�cantly — even if

we pessimistically executed two global trades for each edge switching super step (see

Section 4.5.1). For large instances of (const) EM-PGCB carries out a super step 14.3 times

faster than EM-ES and 5.8 times faster for (lin). EM-PGCB also shows a superior scaling

12

For VL-ES we report only the swapping process and the generation of the internal data structures.
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behavior with an increasing speedup for larger graphs. Similarly, IM-CB processes super

steps up to 6.3 times faster than VL-ES on (const) and 5.1 times on (lin).
On our test machine, the implementation of IM-CB outperforms EM-CB in the

internal memory regime; EM-GCB is faster for large graphs. As indicated in Figure 4.9

(Section 4.G.2 (Appendix)), this changes qualitatively for machines with slower main

memory and smaller cache; on such systems the unstructured I/O of IM-CB and VL-ES

is more signi�cant rendering EM-CB and EM-GCB the better choice with a speedup

factor exceeding 8 compared to VL-ES.

4.6 Conclusion and Outlook

We applied global Curveball trades to undirected graphs simplifying the algorithmic

treatment of dependencies and showed that the underlying Markov chain converges to

a uniform distribution. Experimental results show that global trades yield an improved

quality compared to a sequence of uniform trades of the same size.

We presented IM-CB and EM-CB, the �rst e�cient algorithms for Simple Undirected

Curveball algorithms; they are optimized for internal and external memory respectively.

Our I/O-e�cient parallel algorithm EM-PGCB exploits the properties of global trades

and executes a super step 14.3 times faster than the state-of-the-art edge switching

algorithm EM-ES; for IM-CB we demonstrate speedups of up to 6.3 (in a conservative

comparison the speedups should be halved to account for the di�erences in mixing

times of the underlying Markov chains). The implementations of all three algorithms are

freely available and are in the process of being incorporated into EM-LFR and considered

for NetworKit.
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Appendix 4.A EM-CB

Lemma 4.5. For an arbitrary trade sequence T of length `, EM-CB has a worst-case

I/O complexity of O
[
sort(`) + sort(n) + scan(m) + `dmax/B logM/B(m/B)

]
. For r

global trades, the worst-case I/O complexity is O(r[sort(n) + sort(m)]). J

Proof. As in Algorithm 5, EM-CB scans over T and E during preprocessing, and

thereby triggers O(scan(`) + scan(m)) I/Os. It also involves sorters SorterTtoV

and SorterDepChain as well as priority queues PqVtoV and PqTtoT transport-

ing O(`), O(`), O(n) and O(n) messages respectively. Hence preprocessing incurs

O(sort(`) + sort(n) + scan(m)) I/Os.

During the i-th trade O(deg(ui) + deg(vi)) messages are retrieved shu�ed and

redistributed causing O[sort(deg(ui) + deg(vi))] I/Os. The bound can be improved to

O
(

(deg(ui) + deg(vi))/B logM/B(m/B)
)

by observing that O(m) items are stored

in the PQ at any time. For a worst-case analysis we set deg(ui) = deg(vi) = dmax

yielding the �rst claim.

Preprocessing of r global trades can be performed in r chunks of n/2 trades

each. By arguments similar to the previous analysis, this yields an I/O complex-

ity of O(r sort(n) + r scan(m)). For the main phase, the above analysis tightens to

O(r sort(m)) using the fact that a single global trade targets each edge at most twice. �

Appendix 4.B IM-CB

Lemma 4.6. For a random trade sequence T of length `, IM-CB has an expected running

time of O(n+ `+m+ `m/n). In the case of r many global trades (each consisting of

n/2 normal trades) the running time is given by O(n+ rm). J

Proof. As detailed in Algorithm 6, the computation of S [·] and its auxiliary structures

involves scanning over T and V resulting in O(n+ `) operations. Inserting all edges

into AG requires another O(n+m) steps.

The i-th trade takes O(deg(vi) + deg(ui)) time to retrieve the input edges and

distribute the new states. To compute the disjoint neighbors, we insert Aui into a

hash set and subsequently issue one existence query for each neighbor in Avi ; this

takes expected timeO(deg(vi) + deg(ui)). Since T ’s constituents are drawn uniformly

at random, we estimate the neighborhood sizes as E[deg(ui)] = E[deg(vi)] = m/n

yielding the �rst claim. In case of r global trades, T consists of r groups with n/2 trades

targeting all nodes each. Hence, trading requires time r
∑

i(deg(ui) + deg(vi)) =

r
∑

v∈V deg(v) = O(rm) . �

Appendix 4.C EM-GCB

Recall that a global trade can be encoded by a permutation π : V → V on the nodes or

node indices (see Section 4.3.2). Consequently, generating a uniform random permuta-
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Algorithm 6: IM-CB as detailed in Section 4.4.2.

Data: Trade sequence T , simple graph G

1 Sidx[1 . . . n+1]← 0 // Compute S : First count how o�en a node is active, . . .

2 foreach {u, v} ∈ T do
3 Sidx[u]← Sidx[u] + 1

4 Sidx[v]← Sidx[v] + 1

5 Sbegin[i]← 1 +
∑i−1
j=1 Sidx[j] ∀1 ≤ i ≤ n+1 // Exclusive prefix sum with stop marker

6 copy Sidx ← Sbegin

7 Allocate S [1 . . . 2`]

8 foreach ti = {ui, vi} ∈ T for increasing i do
9 S [Sidx[ui]]← i // Compute S : . . .when it is active

10 Sidx[ui]← Sidx[ui] + 1

11 S [Sidx[vi]]← i

12 Sidx[vi]← Sidx[vi] + 1

13 reset Sidx ← Sbegin

14 τvi := if (Sidx[i] == Sbegin[i+ 1]) then∞ else S [Sidx[i]] // Short for read successor

// Fill AG

15 Abegin[i]← 1 +
∑i−1
j=1 deg(vj) ∀1 ≤ i ≤ n+1 // Prefix sum with stop marker

16 copy Aidx ← Abegin

17 Allocate AG[1 . . . 2m]

18 foreach {a, b} ∈ E do

19
if τa ≤ τb then push b into AG(a): AG[Aidx[a]]← b; Aidx[a]← Aidx[a] + 1

else push a into AG(b): AG[Aidx[b]]← a; Aidx[b]← Aidx[b] + 1

// Trade

20 foreach trade ti = (u, v) ∈ T for increasing i do
21 Gather neighbors AG(u), AG(v) from AG using Abegin

22 Reset Aidx[u]← Abegin[u], Aidx[v]← Abegin[v]

23 Advance Sidx[u] and Sidx[v], s.t. τu and τv gets next trades

24 Randomly reassign disjoint neighbors, yielding new neighbors Au and Av .

25 foreach (a, b) ∈ ({u} ×A ′G(u)) ∪ ({v} ×A ′G(v)) do
// Push node edge into AG; same as line 18

26
if τa < τb then Push b in AG(a)

else Push a in AG(b)
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tion on [n] yields a uniform random global trade. Injective hash functions have several

computational advantages and can substitute the random permutation:

Definition 4.8 (Relaxed global trade). Let h : [n] → N be an injective hash function

and [ ai ]ni=1 be the image [h(i) ]ni=1 in sorted order. Further let Th = [ ti ]
n/2
i=1 where

ti trades the nodes with indices h−1(a2i−1) and h−1(a2i). Hence h implies the global

trade Th analogously to a permutation. J

In this setting, similar to using permutations, a sequence T of global trades is given

by r hash functions T = [hi ]ri=1. Again, EM-GCB uses the fact that each node vi is

actively traded only once in each round j and can then be addressed by hj(i) (instead

of previously πj(i)).

Appendix 4.D Linear Congruential Maps

We use linear congruential maps as fast injective hash functions to model global trades

for EM-PGCB. In this section, some of their useful properties are shown. We use the

notation Zp = {0, 1, . . . , p − 1} and Z∗p = {1, . . . , p − 1} for p prime and implicitly

use 0 ≡ p mod p. Additionally for a map h : X → Y we denote the image of h as

im(h) = {h(x) : x ∈ X}.
Definition 4.9 (2-universal hashing). Let H be an ensemble of maps from X to Y and

h be uniformly drawn from H . For �nite X and Y we call the ensemble H 2-universal
if for any two distinct x1, x2 ∈ X and any two y1, y2 ∈ Y and uniform random h ∈ H

P[h(x1) = y1 ∧ h(x2) = y2] = |Y |−2. J

Proposition 4.10. A linear congruential map ha,b : Zp → Zp, x 7→ ax+ b mod p for

a 6= 0 and p prime is a bijection. J

Proof. The translation τb(x) = x+ b mod p and multiplication χa(x) = ax mod p

is injective for all a ∈ Z∗p and b ∈ Zp. Then, the composition ha,b = (χa ◦ τb) is also

injective and the inverse is given by h−1
a,b(y) = a−1(y − b) mod p. �

Lemma 4.11. The ensemble H = {ha,b : a ∈ Z∗p, b ∈ Zp} is 2-universal. J

Proof. see Proposition 7 of [49]. �

The input size will most likely not be prime but linear congruential maps can still

be used as injective maps since by the prime number theorem the next larger prime to a

number n is on average O(ln(n)) larger. Additionally, since [n] is a subset of Zp the

2-universality also already applies to distinct keys x1, x2 ∈ [n]. The small di�erence

in n and p brings an additional feature we exploit while sending type (ii) messages

(see Proposition 4.16): given a lower and upper bound on a hashed value with their

respective ranks, one can estimate the rank of an element lying between those bounds.

Definition 4.12 (Sorted rank-map). Let n ∈ N. Further, let h : [n]→ N be an injective

map restricted to [n] and πh be the permutation that sorts [h(i) ]ni=1 ascendingly. Denote
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h

πh
π−1

0 1 2 3 4 5

1 5 2 6 3 0

0 1 2 3 5 6

introduces gap at 4xdd

0 1 2 3 4 5

0 1 2 3 4 5 6

Figure 4.6: The sorted rank-map for n = 6 and h : [n]→ Z7, x 7→ 4x+ 1. For the set {0, 1, 2, 3} the sorted rank-map π is

just the identity. In contrast for x ∈ {4, 5} the value x is mapped to π(x) = x+ 1.

with π = (h ◦ πh) : [n]→ im(h) the sorted rank-map. It is clear that π is bijective, and

π−1
remaps a mapped value to its rank in im(h), see Figure 4.6. J

Remark 4.13. The sorted rank-map π can only shift the original values and is thus

monotonically increasing, see Figure 4.6. The shift in value is given by π(x)− x and is

monotonically increasing, too. By applying π we introduce gaps in the set Zp from [n],

refer to Figure 4.6. J

Proposition 4.14. Let n ∈ N and p ≥ n be a prime number. Further, let h : [n]→ Zp
be a linear congruential map and π be its sorted rank-map. If we want to compute the

rank of y ∈ im(h) and know x, x′ ∈ [n] where h(x) ≤ y ≤ h(x′) then we can bound

the rank π−1(y) of y by using the shifts of x and x′: y − (π(x′) − x′) ≤ π−1(y) ≤
y − (π(x)− x). J

Proof. The sorted rank-map π is by de�nition monotone increasing, see also Figure 4.6.

It follows that π(x) = x + k, π(x′) = x′ + k′ and k ≤ k′ for some k, k′ ∈ N. By

monotonicity π(π−1(y)) = π−1(y) + s for s ∈ {k, . . . , k′}, resulting in inequalities

π−1(y) + k ≤ y ≤ π−1(y) + k′.

By subtracting k and k′ on both sides, the claim follows. �

With Proposition 4.14 we can reduce the number of candidates to search in. This is

especially useful, when working on a smaller contiguous part of the data (EM-PGCB,

Section 4.4.4).

Example 4.15. Let n and h be given from Figure 4.6. It is clear that the hashed-values are

given by im(h) = {0, 1, 2, 3, 5, 6}. Suppose the rank of 2 in im(h) has to be computed

given the outer values e.g. that π(0) = 0 and π(5) = 6. Then by Proposition 4.14

2− (π(5)− 5) ≤ π−1(2) ≤ 2− (π(0)− 0),

1 ≤ π−1(2) ≤ 2.

Thus, the rank of 2 in im(h) is either 1 or 2. J

Appendix 4.E EM-PGCB

EM-PGCB achieves parallelism by performing multiple trades concurrently. In contrast

to EM-GCB, rather than only retrieving the �rst two necessary adjacency rows for the
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single next trade, a whole chunk of data is loaded and maintained in IM-CB’s adjacency

list to store neighbors for a subset of nodes. The adjacency list is further used as a way

to transport messages within a loaded macrochunk. Observe that at most 2m messages

are sent in a global trade round since only neighborhood information is forwarded.

The idea is to split the messages into chunks of sizeM = cM where c ∈ (0, 1)

which can be processed in IM. For this, EM-PGCB loads and processes all messages

targeted to the next n/k nodes for a constant k and performs the corresponding trades

concurrently. This subdivides the messages and its processing into k macrochunks. If a

macrochunk is too large, it cannot be fully kept in IM resulting in unstructured I/O in

the trading process. The choice of k should therefore additionally consider the variance.

An analysis on the size of the macrochunks is given in Section 4.F.

4.E.1 Data Structure for Message Transportation

Recall in Section 4.4.4 that each macrochunk is subdivided into many microchunks
and processed in batches. During the trading process EM-PGCB has to di�erentiate

between messages that are sent (i) within a microchunk, (ii) between microchunks of the

same batch (iii) and microchunks processed later. To support both type (i) and type (ii)

messages we organize the messages of the current macrochunk in an adjacency vector

data structure similar to IM-CB. Instead of forwarding these messages in a TFP fashion,

EM-PGCB inserts them directly into the adjacency data structure. We rebuild the data

structure for each macrochunk requiring the degrees of the n/k loaded nodes to leave

gaps if messages are missing. In a preprocessing step we provide EM-PGCB with this

information by inserting messages 〈hr(v), deg(v), v〉 into a separate priority queue.

Initializing the adjacency vector can now be done by loading the degrees for the next

n/k targets and reserving for each target hr(v) the necessary deg(v) slots. Messages

〈r, hr(v), x〉 targeted to the node v can then be inserted in an unstructured fashion in IM.

This can be done in parallel for all targets in the macrochunk: �rst the retrieved messages

are sorted in parallel and then accessed concurrently after determining delimiters by a

parallel pre�x sum over the message counts.

For a trade t = {ui, vi} of targets hr(ui) and hr(vi) the assigned processor can

determine if the t is tradable by checking whether deg(ui) and deg(vi) match the

number of available messages. After performing the trade, we forward the updated

adjacency information. Assume that the edge {ui, x} has to be send to a later trade in

the same global trade.

1. If x is traded within the processed microchunk there is no synchronization re-

quired and ui can be inserted into the row corresponding to target hr(x).

2. If x is traded within the currently processed batch the processor has to insert ui
into the row corresponding to target hr(x) with synchronization. This yields a

data dependency in the parallel execution. We can infer if the trade for x belongs

to the current batch by comparing hr(x) to the maximum target of the batch.

3. If x is traded in a later microchunk, it either belongs to the same macrochunk or
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a later one (of the same global trade). For the former EM-PGCB proceeds similar

to type (ii) without processing foreign trades. In the latter case EM-PGCB inserts

a message 〈r, hr(x), ui〉 into the priority queue.

Addressing the adjacency row of a target hr(u) can be done by computing the rank of

hr(u) in the retrieved n/k targets. Since the separate priority queue provides all loaded

targets by messages 〈hr(u),deg(u), u〉, we can perform a binary search and obtain the

rank in time O(log(n/k)).

For linear congruential maps (Section 4.D) we can do better:

Proposition 4.16. Let h be a linear congruential map. Then, heuristically computing

the row (rank) corresponding to h(u) requires O(log log n) time. J

Proof. The next larger prime p to n is heuristically ln(n) larger than n. After loading all

messages 〈h(u), deg(u), u〉 for the current macrochunk the smallest and largest hashed

value of the current macrochunk are known. By subtracting both values by the already

processed number of targets and using Proposition 4.14 the search space can be reduced

to O(log n) elements. Application of a binary search on the remaining elements yields

the claim. �

As already mentioned, if a trade has not received all its required messages, the

assigned processor cannot perform the trade yet and therefore skips it. This can only

happen within a batch when type (ii) messages occur. In Section 4.F we argue that this

happens rarely. The processor that inserts the last message for that particular trade will

perform it instead.

4.E.2 Improvements for Type (iii) Messages

Messages inserted into the priority queue need to contain the round-id to process global

trades separately. Observe however that in a sequence of global trades, messages are

only send to the current and subsequent round. We therefore modify our data structure,

omitting the round from every message reducing the memory footprint signi�cantly.

Recall that, as an optimization for m = O
(
M2/B

)
edges, EM-PGCB uses external

memory queues for each of the k macrochunks of both global trade rounds.

A previously generated message 〈r, hr(u), x〉 is now inserted into the corresponding

queue containing messages for hr(u). Again, in a preprocessing step EM-PGCB deter-

mines for each queue its target range. For this, the separate priority queue containing

messages 〈hr(u),deg(u), u〉 is read while extracting every (n/k)-th target (retrieving

every element results in a sequence of sorted messages). This enables the computation of

the correct queue for hr(u) with a binary search in timeO(log(k)). Naturally since both

the current and subsequent round are relevant, EM-PGCB employs k external memory

queues for each. If a global trade is �nished, the k EM queues of the currently processed

and �nished round can be reused for the next global trade. EM-PGCB’s pseudo code

can be found in Algorithm 7.
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Algorithm 7: EM-PGCB as detailed in Section 4.4.4 and Section 4.E.

Data: Trade sequence T = [hi ]ri=1, simple graph G = (V,E) as edge list E

Result: Randomized graph G′

// Initialization: provide auxiliary info and initialise with edges

1 foreach node u ∈ V do
2 Send 〈h1(u),deg(u), u〉 via AuxInfoToTarget // Send node and degree to target

3 Sort AuxInfoToTarget lexicographically

4 Scan AuxInfoToTarget and determine bounds for the k queues

5 foreach edge e = [u, v] in E do
6 Insert e according to h1 into one of the corresponding queues

// Execution: Process rounds and macrochunks

7 for round R = 1, . . . , r do
8 for macrochunkK = 1, . . . , k do
9 Retrieve auxiliary data 〈hR(u),deg(u), u〉 from AuxInfoToTarget

10 Load and sort messages of the K-th queue

11 Insert the messages into the adjacency list AG in parallel

12 for batch B = 1, . . . , z do
13 pardo the i-th processor works on the i-th microchunk of batch B
14 for a trade t = {u, v} do
15 Retrieve Au and Av from AG

16 With deg(u) and deg(v) determine whether tradable

17 if tradable then
18 Compute A′u and A′v
19 Forward each resulting edge

worksteal if inserted message �lls all necessary data

20 else Skip

21 if R < r then
22 Clear AuxInfoToTarget and re�ll for hR+1 (repeat steps 3 to 5)

Appendix 4.F Analysis of EM-PGCB

4.F.1 Macrochunk Size

As already mentioned, the number of incoming messages may exceed the size of the

internal memory M , since we partition the nodes into chunks which then may receive

a di�erent number of messages. Therefore some analysis on the size of the maximum

macrochunk is necessary. Denote withN (µ, σ2) the distribution of a Gaussian r.v. with

mean µ and variance σ2
. A macrochunk holds the sum of n/k many iid degrees and is

thus approximately Gaussian with mean 2m/k and variance n/k ·Var(D) where D is

distributed to the underlying degree distribution. This approximation gets better for

larger values of n/k and is thus a suitable approximation for large graphs. Denote with

S1, . . . , Sk the sizes of all k macrochunks.
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When determining a suitable choice of k, it is necessary to consider both the mean

and the variance of the maximum macrochunk max1≤i≤k Si. The largest macrochunk

may receive many high-degree nodes exceeding the size of the internal memory M . We

thus bound its number in Corollaries 4.18 and 4.20.

Lemma 4.17. Let Y = max1≤i≤kXi, where the Xi are iid r.v. distributed as N (0, σ2).

Then, E[Y ] ≤ σ
√

2 log(k). J

Proof. The following chain of inequalities holds

etE[Y ] ≤ E
[
etY
]

= E
[

max
1≤i≤k

etXi
]
≤

k∑
i=1

E
[
etXi

]
= ket

2σ2/2,

where in order Jensen’s inequality
13

monotonicity and non-negativity of the expo-

nential function as well as the de�nition of the moment generating function of a Gaussian

r.v. have been applied. Taking the natural logarithm and dividing by t on both sides

(ruling out t 6= 0) yields E[Y ] ≤ log(k)
t + tσ2

2 , which is minimized by t =
√

2 log(k)/σ.

The above proof is a special case in a proof of [125]. �

Corollary 4.18. Let Y = max1≤i≤k Si. By approximating Si with a Gaussian r.v. Ni

with µ = E[Si] and σ2 = Var(Si), one gets an approximate upper bound on Y :

E[Y ] ≈ E
[

max
1≤i≤k

Ni

]
≤ E[S1] +

√
2 log(k) Var(S1) = E[S1] +

√
n log(k)

2k
Var(D).

J

Proof. Since max1≤i≤kNi is centered around µ, it is identically distributed to µ +

max1≤i≤kN
′
i where N ′i has the same variance but is centered around 0. By apply-

ing Lemma 4.17 to max1≤i≤kN
′
i the claim follows, since E[max1≤i≤kNi] = µ +

E[max1≤i≤kN
′
i ]. �

Lemma 4.19. LetX1, ..., Xk be iid and Y= max
1≤i≤k

Xi. Then, Var(Y ) ≤ kVar(X1). J

Proof. For Z,Z ′ iid. E
[
(Z − Z ′)2

]
= 2 Var(Z) holds, since

E
[
Z2 − 2ZZ ′ + Z ′2

]
= 2E

[
Z2
]
− 2E[Z]2 .

Now, let Y ′ = max1≤i≤kX
′
i be an independent copy of Y and r > 0. First,

the inequality P
[
|Y − Y ′|2 > r

]
≤ ∑k

i=1 P
[
|Xi −X ′i|2 > r

]
is shown. We show the

implication that if |Y − Y ′|2 > r there exists an index i such that |Xi −X ′i|2 > r.

If |Y − Y ′|2 > r holds, then w.l.o.g. let Y = Xi and Y ′ = X ′j and Y > Y ′, such

that |Xi − X ′j |2 > r. By maximality the following inequality chain Xi > X ′j ≥ X ′i
implies |Xi > X ′i| > r and consequently P

[
|Y − Y ′|2 > r

]
≤ P[∃i : Xi −X ′i| > r].

A union bound yields P
[
|Y − Y ′|2 > r

]
≤∑k

i=1 P
[
|Xi −X ′i|2 > r

]
. Integrating

r from 0 to∞ yields 2 Var(Y ) = E
[
(Y − Y ′)2

]
≤ kE

[
(X1 −X ′1)2

]
= 2kVar(X1),

which concludes the proof. �
13

Let f be convex. For a non-negative λi with

∑n
i=1 λi = 1 it follows f(

∑n
i=1 λixi) ≤

∑n
i=1 λif(xi).
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Corollary 4.20. Let Y = max1≤i≤k Si. Then, Var(Y ) ≤ kVar(S1) = nVar(D). J

Proof. This is a special case of Lemma 4.19. �

The probability mass of a Gaussian r.v. is concentrated around its mean, e.g. the tails

vanish very quickly, see Proposition 4.21. This heuristically additionally holds true for

the maximum macrochunk size (Lemma 4.22).

Proposition 4.21. Let X be a standard Gaussian r.v. and f(x) = 1√
2π
e−x

2/2
be its

probability density function. Let t > 0 then it holds

P[X > t] ≤ exp(−t2/2)/
√

2π/t = O
(
e−t

2/2

t

)
. J

Proof. The value of P[X > t] equals

∫∞
t

1√
2π
e−x

2/2dx. Since the integrating variable

ranges from [t,∞) then
x
t ≥ 1 s.t. P[X > t] ≤

∫∞
t

x
t

1√
2π
e−x

2/2dx = 1
t
e−t

2/2
√

2π
. �

Lemma 4.22. Let Y = max1≤i≤kNi where Ni are iid standard Gaussian random

variables. Then P[Y > t] = O
(
k exp(−t2/2)/t

)
. J

Proof. The claim follows by the following calculation:

P[Y > t] = P
[

max
1≤i≤k

Ni > t

]
= P[∃ i s.t. Ni > t] ≤

k∑
i=1

P[Ni > t] = O
(
k · e

−t2/2

t

)
.

If for any random variable Ni > t, then already max1≤i≤kNi > t, inversely if

max1≤i≤kNi > t then there exists a Ni such that Ni > t, which shows the �rst

equality. After applying the union bound and Proposition 4.21 the claim follows. �

4.F.2 Heuristic on Intra-Batch Dependencies

In EM-PGCB, if information on an edge {u,w} has to be inserted into the same batch a

dependency arises. We will now argue that this happens not too often when the number

of batches z is chosen su�ciently large.

Lemma 4.23. Let B be the set of targets for a batch. Assuming uniform neighbors, the

number of dependencies from B to B heuristically is

(
p
2

)
2m

k2z2p2
. J

Proof. By construction |B| = n
kz since B is part of an equal subdivision of a macrochunk.

Each individual microchunk consists of
n
kzp many targets for the same reason. The i-th

microchunk therefore has (p− i) n
kzp many critical targets. On average each microchunk

generates avg deg n
kzp = 2m

kzp many messages that need to be forwarded. For an edge

produced by the i-th microchunk assume uniformity on the neighbors A, then Vi is the

number of critical messages where Vi =
∑n

i=1 1i∈A1i∈h−1(B). Its expectation is

E[Vi] =

n∑
i=1

P[i ∈ A]P
[
i ∈ h−1(B)

]
= n

degavg

n

n(p−i)
kzp

n
= degavg

p− i
kzp

.
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performs performs
performs

performs

PU 1 PU 2 PU 3 PU 4

Figure 4.7: Work stealing of PU 1. The arrows represent a long work stealing chain of trades.

The red marked area represents still untouched trades of the first microchunk that will get

processed a�er the long chain by the first PU.

Now let the total number of messages from the i-th microchunk to B be Hi. Since each

microchunk holds
n
kzp many nodes, Hi is given by

E[Hi] =
n

kzp
E[Vi] =

2m(p− i)
k2z2p2

.

By summing over all p microchunks, e.g.

∑p
i=1 E[Hi] the claim follows. �

Example 4.24. Consider Lemma 4.23 wherem = 12×109
, k = 32, z = 211

and p = 16.

The average number of messages in the batch is given by m/kz ≥ 1.8 × 105
. And

Lemma 4.23 predicts a count of less than 4 critical messages on average in a batch. J

Theoretically by Lemma 4.23 the number of critical messages is very small if z is set

to be su�ciently large. Therefore waiting and stalling for missing messages is ine�cient

and should be avoided. EM-PGCB thus skips a trade when it cannot be performed

and is later executed by the processor that adds the last missing neighbor. However,

since a work stealing processor spends time on a trade that is possibly assigned to

another microchunk, it is not working on its own. Therefore messages coming from that

particular microchunk are generated later down the line. This may be especially bad

when a PU performs a chain of trades that it was not originally assigned to as illustrated

in Figure 4.7. Since work stealing can only be done in a TFP fashion, the chain length

therefore is geometrically distributed (in fact, the probability declines in each step since

less targets are critical) and is thus whp. of order O(1) by Proposition 4.25.

Proposition 4.25. Let X be geometrically distributed with parameter (1− 1/z2) for

z > 1. Then, P[X > t] = 1
z2t

= e−2 ln(z)t. J

Proof. The claim follows by P[X > t] = 1/z2t
and setting t = O(1). �
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Additional Experimental Results

Appendix 4.G Additional Experimental Results

4.G.1 Swaps Performed by Curveball and Global Curveball

In Figure 4.8 we counted the number of neighborhood swaps in n/2 uniform trades and

a single global trade and obtain the fraction of performed swaps to all possible swaps.

These experiments are performed on a series of 10-regular graphs and powerlaw graphs

with increasing maximum degree. Both algorithms perform a similar count of swaps

and suggest no systematic di�erence. As expected, for regular graphs the fraction of

performed swaps goes to 1/2 for an increasing number of nodes, since with increasing

n the number of common neighbors goes to zero. On the other hand the fraction of

performed swaps decreases for powerlaw graphs with a higher maximum degree.
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Figure 4.8: The average fraction of performed neighborhood swaps of n/2 uniform trades and a single global trade.

Le�: 10-regular graphs for increasing n.

Right: powerlaw graphs realized from Pld ([10, n/20), 2) for increasing n by the Havel-Hakimi algorithm.

4.G.2 Autocorrelation Time of Curveball and Edge Switching
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Figure 4.9: Runtime per edge and super step of IM-CB and EM-CB compared to state-of-the-art IM edge switching VL-ES.

Each data point is the median of S ≥ 5 runs over 10 super steps each. The le� plot contains the (const)-parameter set, the

right one (linear). Machine: Intel i7-6700HQ CPU (4 cores), 64 GB RAM, Ubuntu Linux 17.10.
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Figure 4.10: Fraction of edges still correlated as function of the thinning parameter k for graphs with n = 2·103 nodes and

degree distribution Pld ([a, b), γ) with γ = 2, a = 5, and several di�erent values for b. The (not thinned) long Markov chains

contain 6000 super steps each.
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5
Engineering Uniform Sampling of Graphs with

a Prescribed Power-law Degree Sequence

joint work with D. Allendorf, U. Meyer, M. Penschuck, and N. Wormald

We consider the following common network analysis problem: given a degree

sequence D = (d1, . . . , dn) ∈ Nn return a uniform sample from the ensemble

of all simple graphs with matching degrees. In practice, the problem is typically

solved using Markov Chain Monte Carlo approaches, such as Edge-Switching or

Curveball, even if no practical useful rigorous bounds are known on their mixing

times. In contrast, Arman et al. sketch Inc-Powerlaw, a novel and much more

involved algorithm capable of generating graphs for power-law bounded degree

sequences with γ ' 2.88 in expected linear time.

For the first time, we give a complete description of the algorithm and add novel

switchings. To the best of our knowledge, our open-source implementation of Inc-

Powerlaw is the first practical generator with rigorous uniformity guarantees for

the aforementioned degree sequences. In an empirical investigation, we find that

for small average-degrees Inc-Powerlaw is very e�icient and generates graphs with

one million nodes in less than a second. For larger average-degrees, parallelism can

partially mitigate the increased running-time.

This chapter is based on the peer-reviewed conference article [9]:

[9] D. Allendorf, U. Meyer, M. Penschuck, H. Tran, and N. Wormald. Engineering

uniform sampling of graphs with a prescribed power-law degree sequence. In

C. A. Phillips and B. Speckmann, editors, Proceedings of the Symp. on Algorithm
Engineering and Experiments ALENEX, pages 27–40. Society for Industrial and

App. Math. SIAM, 2022. doi:10.1137/1.9781611977042.3 .

My contribution

I substantially contributed to the new booster switchings.

https://doi.org/10.1137/1.9781611977042.3


Uniform Sampling of Graphs with a Power-law Degree Sequence

5.1 Introduction

A common problem in network science is the sampling of graphs matching prescribed

degrees. It is tightly related to the random perturbation of graphs while keeping their

degrees. Among other things, the problem appears as a building block in network

models (e.g., [114]). It also yields null models used to estimate the statistical signi�cance

of observations (e.g., [136, 83]).

The computational cost and algorithmic complexity of solving this problem heavily

depend on the exact requirements. Two relaxed variants with linear work sampling

algorithms are Chung-Lu graphs [52] and the con�guration model [26, 144, 38]. The

Chung-Lu model produces the prescribed degree sequence only in expectation and

allows for simple and e�cient generators [135, 3, 140, 73]. The con�guration model (see

Section 5.2), on the other hand, exactly matches the prescribed degree-sequence but

allows loops and multi-edges, which introduce non-uniformity into the distribution [144,

p.436] and are inappropriate for certain applications; however, erasing them may lead

to signi�cant changes in topology [164, 181].

In this article, we focus on simple graphs (i.e., without loops or multi-edges) matching

a prescribed degree sequence exactly.

5.1.1 Related Work

An early uniform sampler with unknown algorithmic complexity was given by Tin-

hofer [177]. Perhaps the �rst practically relevant algorithm was implicitly given by graph

enumeration methods (e.g. [25, 26, 39]) using the con�guration model with rejection-

sampling. While its time complexity is linear in the number of nodes, it is exponential

in the maximum degree squared and therefore already impractical for relatively small

degrees.

McKay and Wormald [128] increased the permissible degrees. Instead of repeatedly

rejecting non-simple graphs, their algorithm may remove multi-edges using switching

operations. For d-regular graphs with d = O
(
n1/3

)
, its expected time complexity is

O
(
d3n
)

where n is the number of nodes; later, Gao and Wormald [77] improved the

result to d = o(
√
n) with the same time complexity, and also considered sparse non-

regular cases (e.g. power-law degree sequences) [78]. Subsequently, Arman et al. [17]

present
1

the algorithms Inc-Gen, Inc-Powerlaw and Inc-Reg based on incremental
relaxation. Inc-Gen runs in expected linear time provided ∆4 = O(m) where ∆ is the

maximum degree and m is the number of edges.

In the relaxed setting, where the generated graph is approximately uniform, Jerrum

and Sinclair [105] gave an algorithm using Markov Chain Monte Carlo (MCMC) methods.

Since then, further MCMC-based algorithms have been proposed and analyzed (e.g. [56,

81, 85, 107, 122, 170, 174, 180, 181]). While these algorithms allow for larger families of

degree sequences, topological restrictions (e.g., connected graphs [81, 181]), or more

general characterizations (e.g., joint degrees [170, 122]), theoretically proven upper

1

Implementations of Inc-Gen and Inc-Reg are available at h�ps://users.monash.edu.au/~nwormald/

fastgen_v3.zip
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Introduction

bounds on their mixing times are either impractical or non-existent. Despite this,

some of these algorithms found wide use in several practical applications and have

been implemented in freely available software libraries [114, 171, 181] and adapted for

advanced models of computation [30, 90, 48].

As generally fast alternatives, asymptotic approximate samplers (e.g. [78, 23, 110,

172, 186]) have been proposed. These samplers provide a weaker approximation than

MCMC: the error tends to 0 as n grows but cannot be improved for any particular n.

5.1.2 Our Contribution

Arman et al. [17] introduce incremental relaxation and, as a corollary, obtain Inc-

Powerlaw by applying the technique to the Pld algorithm [78]. Crucial details of

Inc-Powerlaw were left open and are discussed here for the �rst time. For the parts

of the algorithm that use incremental relaxation (see Section 5.2), we determine the

order in which the relevant graph substructures should be relaxed, how to count the

number of those substructures in a graph and �nd new lower bounds on the number of

substructures, or adjust the ones used in Pld.

Our investigation also identi�ed two cases where incremental relaxation compro-

mised Inc-Powerlaw’s linear running-time as it implied too frequent restarts. We

solved this issue in consultation with the authors of [17] by adding new switchings to

Phase 4 (ta-, tb-, and tc-switchings, see Section 5.2.6) and Phase 5 (switchings where

max(m1,m2,m3) = 2, see Section 5.2.7).

We engineer and optimize an Inc-Powerlaw implementation and discuss practical

parallelization possibilities. In an empirical evaluation, we study our implementation’s

performance, provide evidence of its linear running-time, and compare the running-

time with an implementation of the popular approximately uniform Edge Switching
algorithm.

5.1.3 Preliminaries and Notation

For consistency, we use notation in accordance with prior descriptions of Pld and

Inc-Powerlaw. A graph G = (V,E) has n nodes V = {1, . . . , n} and |E| edges. An

edge connecting node i to itself is called a loop at i. Let mi,j denote the multiplicity

of edge e = {i, j} (often abbreviated as ij); for mi,j = 0, 1, 2, 3 we refer to e as a

non-edge, single-edge, double-edge, triple-edge, respectively, and for mi,j > 1 as multi-
edge (analogously for loops). A graph is simple if it only contains simple edges (i.e., no

multi-edges or loops).

Given a graph G, de�ne the degree deg(i) = 2mi,i +
∑

j∈V/{i}mi,j deg(·) : degreeas the number

of edges incident to node i ∈ V . Let D = (d1, . . . , dn) ∈ Nn D : degree sequencebe a degree sequence and

denote G(D) as the set of simple graphs on n nodes with deg(i) = di for all i ∈ V . The

degree sequence D is graphical graphicalif G(D) is non-empty. If not stated di�erently, D is non-

increasing, i.e., d1 ≥ d2 ≥ . . . ≥ dn. We say D is power-law distribution-bounded (plib)
plib: power-law

distribution-bounded

with exponent γ > 1 if D is strictly positive and there exists a constant K (independent

of n) such that for all i ≥ 1 there are at most Kni1−γ entries of value i or larger [78].
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Denote the k-th factorial moment as [x]k =
∏k−1
i=0 (x− i) and de�ne Mk =

∑n
i=1[di]k,

Hk =
∑h

i=1[di]k, and Lk = Mk −Hk, where h is a parameter de�ned in Section 5.2.1

(roughly speaking, h is the number of nodes with high degrees).

5.2 Algorithm Description

Inc-Powerlaw takes a degree sequence D = (d1, . . . , dn) as input and outputs a

uniformly random simple graph G ∈ G(D). The expected running-time is O(n) if D is

a plib sequence with exponent γ > 21/10 +
√

61/10 ≈ 2.88102.

The algorithm starts by generating a random graph G using the Con�guration
Model [26]. To this end, let G be a graph with n nodes and no edges, and for each node

i ∈ V place di marbles labeled i into an urn. We then draw two random marbles without

replacement, connect the nodes indicated by their labels, and repeat until the urn is

empty. The resulting graph G is uniformly distributed in the set S(mh,l,d,t(G)) where

mh,l,d,t(G) is a vector specifying the multiplicities of all edges between, or loops at

heavy nodes (as de�ned below), as well as the total numbers of other single-loops, double-

edges, and triple-edges. In particular, if G is simple, then it is uniformly distributed

in G(D). Moreover, if D implies M2 < M1, the degrees are rather small, and with

constant probability G is a simple graph [104]. Hence, rejection sampling is e�cient;

the algorithm returns G if it is simple and restarts otherwise.

ForM2 ≥M1, the algorithm goes through �ve phases. In each phase, all non-simple

edges of one kind, e.g., all single-loops, or all double-edges, are removed from the graph

by using switchings. A switching replaces some edges in the graph with other edges

while preserving the degrees of all nodes. Phases 1 and 2 remove multi-edges and loops

with high multiplicity on the highest-degree nodes. In Phases 3, 4 and 5, the remaining

single-loops, triple-edges and double-edges are removed. To guarantee the uniformity

of the output and the linear running-time, the algorithm may restart in some steps. A

restart always resets the algorithm back to the �rst step of generating the initial graph.

Note that the same kind of switching can have di�erent e�ects depending on which

edges are selected for participation in the switching. In general, we only allow the

algorithm to perform switchings that have the intended e�ect. Usually, a switching

should remove exactly one non-simple edge without creating or removing other non-

simple edges. A switching that has the intended e�ect is called valid.

Uniformity of the output is guaranteed by ensuring that the expected number

of times a graph G in S(mh,l,d,t(G)) is produced in the algorithm depends only on

mh,l,d,t(G). This requires some attention since, in general, the number of switchings

we can perform on a graph and the number of switchings that produce a graph can

vary between graphs in the same set (i.e., some graphs are more likely reached than

others). To remedy this, there are rejection steps, which restart the algorithm with a

certain probability. Before a switching is performed on a graph G, the algorithm accepts

with a probability proportional to the number of valid switchings that can be performed

on G, and forward-rejects (f-rejects) otherwise. We do this by selecting an uniform

random switching on G, and accepting if it is valid, or rejecting otherwise. Then, after
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a switching produced a graph G′, the algorithm accepts with a probability inversely

proportional to the number of valid switchings that can produceG′, and backward-rejects
(b-rejects) otherwise. This is done by computing a quantity b(G′) that is proportional to

the number of valid switchings that can produce G′, and a lower bound b(G′) on b(G′)

over all G′ in the same set, and then accepting with probability b(G′)/b(G′).

5.2.1 Phase 1 and 2 Preconditions

In Phases 1 and 2, the algorithm removes non-simple edges with high multiplicity

between the highest-degree nodes. To this end, de�ne a parameter h = n1−δ(γ−1)

where δ is chosen so that 1/(2γ − 3) < δ < (2− 3/(γ − 1))/(4− γ) (e.g. δ ≈ 0.362

for γ ≈ 2.88103). The h highest-degree nodes are then called heavy, and the remaining

nodes are called light. An edge is called heavy if its incident nodes are heavy, and light
otherwise. A heavy multi-edge is a multi-edge between heavy nodes, and a heavy loop
is a loop at a heavy node.

Now, let Wi denote the sum of the multiplicities of all heavy multi-edges incident

with i, and let Wi,j = Wi + 2mi,i−mi,j . Finally, let η =
√
M2

2H1/M3
1 . There are four

preconditions for Phase 1 and 2: (1) for all nodes i 6= j connected by a heavy multi-edge,

we have mi,jWi,j ≤ ηdi and mi,jWj,i ≤ ηdj , (2) for all nodes i that have a heavy loop,

we have mi,iWi ≤ ηdi, (3) the sum of the multiplicities of all heavy multi-edges is

at most 4M2
2 /M

2
1 , and (4) the sum of the multiplicities of all heavy loops is at most

4M2/M1.

If any of the preconditions is not met, the algorithm restarts, otherwise it enters

Phase 1.

5.2.2 Phase 1: Removal of Heavy Multi-Edges

A heavy multi-edge ij with multiplicity m = mi,j is removed with the heavy-m-way
switching shown in Figure 5.1. Note that the switching is de�ned on pairs instead

of edges. An edge ij of multiplicity m is treated as m distinct pairs (i, j). Adding a

pair (i, j) increases the multiplicity m, and similarly, removing (i, j) decreases m. The

heavy-m-way switching switching removes the m pairs (i, j) and m additional pairs

(vk, vk+1), 1 ≤ k ≤ m, and replaces them with 2m new pairs between i and vk, and j

and vk+1.

i

j

v1

v2

v3

v4

v5

v6

i

j

v1

v2

v3

v4

v5

v6

inverse

3 pairs

m=3

Figure 5.1: A heavy-m-way

switching where m = 3.

In Phase 1, we iterate over all heavy multi-edges ij and each time execute:

1. Pick a uniform random heavy-m-way switching S = (G,G′) at nodes i and

j as follows: for all 1 ≤ k ≤ m, sample a uniform random pair (vk, vk+1) in

random orientation. Then remove the pairs (i, j) and (vk, vk+1), and add (i, vk)

and (j, vk+1). The graph that results after all pairs have been switched is G′.

2. Restart the algorithm (f-reject) if S is not valid. The switching is valid if for all

1 ≤ k ≤ m: (a) vk and vk+1 are distinct from i and j, (b) if vk is heavy, it is not

already connected to i, and if vk+1 is heavy, it is not connected to j, and (c) at

107



Uniform Sampling of Graphs with a Power-law Degree Sequence

least one of vk and vk+1 is light. (This ensures that only the heavy multi-edge ij

is removed, and no other heavy multi-edges or loops are added or removed.)

3. Restart the algorithm (b-reject) with probability 1− bhm(G′, i, j,m)

bhm(G′, i, j,m)
.

4. SetG← G′ and continue to the next iteration with probability

1

1 +
bhm(G′, i, j, 1)

f
hm

(G′, i, j, 1)

.

Otherwise, re-add ij as a single-edge with the following steps:

(a) Pick a uniform random inverse heavy-1-way switching S′ = (G′, G′′) at

nodes i, j as follows: pick one simple neighbor v1 of i (i.e., edge v1i is

simple) uniformly at random, and analogously v2 for j. Then remove the

pairs (i, v1), (j, v2), and add (i, j), (v1, v2).

(b) Restart the algorithm (f-reject) if S′ is not valid. The switching is valid unless

both v1 and v2 are heavy.

(c) Restart the algorithm (b-reject) with probability 1−
f
hm

(G′′, i, j, 1)

fhm(G′′, i, j, 1)
.

(d) Set G← G′′.

To compute the b-rejection probability for step 3, let Y1 and Y2 be the number of heavy

nodes that are neighbors of i and j, respectively, in the graph G′. Then, set:

bhm(G′, i, j,m) = [di−Wi,j ]m[dj−Wj,i]m

−mh2[di−Wi,j ]m−1[dj−Wj,i]m−1

(5.1)

bhm(G′, i, j,m) =
m∑
l=0

[
(−1)l

(
m

l

)
[Y1]l[Y2]l

· [di−Wi,j−l]m−l[dj−Wj,i−l]m−l
] (5.2)

For step 4:

bhm(G′, i, j, 1) = (di −Wi,j)(dj −Wj,i) (5.3)

f
hm

(G′, i, j, 1) = M1 − 2H1 (5.4)

For step 4c: let Z1 be the number of ordered pairs between light nodes in the graph

G′′, let Z2 be the number of pairs between one light and one heavy node, where the

heavy node is not adjacent to i, and let Z3 be the analogous number for j. Then set:

fhm(G′′, i, j, 1) = Z1 + Z2 + Z3 (5.5)

(5.6)

f
hm

(G′′, i, j, 1) = M1 − 2H1 (5.7)

Phase 1 ends if all heavy multi-edges are removed. Then Inc-Powerlaw enters

Phase 2.
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5.2.3 Phase 2: Removal of Heavy Loops

Phase 2 removes all heavy loops using the heavy-m-way loop switching shown in

Figure 5.2. The algorithm iterates over all heavy nodes i that have a heavy loop, and for

each performs the following steps: i

v1

v2

v3

v4

i

v1

v2

v3

v4

inverse

2 pairs

m=2

Figure 5.2: A heavy-m-way

loop switching where

m = 2.

1. Pick a uniform random heavy-m-way loop switching S = (G,G′) at node i (cf.

Phase 1).

2. Restart (f-reject) if S is not valid. The switching is valid if for all 1 ≤ k ≤ m: a)

vk 6= i and vk+1 6= i, b) ivk and ivk+1 are non-edges or light, c) at least one of vk
and vk+1 is light.

3. Restart the algorithm (b-reject) with probability 1− bhl(G
′, i,m)

bhl(G′, i,m)
.

4. Set G← G′.

Let Y be the number of heavy neighbors of i in G′. The quantities needed in step 3 are:

bhl(G
′, i,m) = [di]2m −mh2[di]2m−2 (5.8)

bhl(G
′, i,m) =

m∑
l=0

(−1)l
(
m

l

)
[Y ]2l[di − 2l]2m−2l (5.9)

Phase 2 ends if all heavy loops are removed. We then check preconditions for the

next phases.

5.2.4 Phase 3, 4 and 5 Preconditions

After Phases 1 and 2, the only remaining non-simple edges in the graphG are all incident

with at least one light node, i.e., with one of the low-degree nodes. With constant

probability, the only remaining non-simple edges are single loops, double-edges, and

triple-edges, and there are not too many of them [78]. Otherwise, the algorithm restarts.

Let ml denote the number of single loops, mt the number of triple-edges, and md the

number of double-edges in the graph G. Then, the preconditions are: (1) ml ≤ 4L2/M1,

(2) mt ≤ 2L3M3/M
3
1 , (3) md ≤ 4L2M2/M

2
1 , and (4) there are no loops or multi-edges

of higher multiplicity.

If all preconditions are met, the algorithm enters Phase 3 to remove all remain-

ing loops.

5.2.5 Phase 3: Removal of Light Loops

Phase 3 removes all light loops, i.e., loops at lower degree nodes, with the l-switching
depicted in Figure 5.3. We repeat the following steps until all loops are removed:

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

inverse

Figure 5.3: The l-switching

used in Phase 3.

1. Pick a uniform random l-switching S = (G,G′) as follows. Sample a uniform

random loop on some node v1 in G. Then, sample two uniform random pairs

109



Uniform Sampling of Graphs with a Power-law Degree Sequence

(v2, v4) and (v3, v5) in random orientation. Replace (v1, v1), (v2, v4), (v3, v5) with

(v1, v2), (v1, v3), (v4, v5).

2. Restart (f-reject) if S is not valid. The switching is valid if it removes the targeted

loop without adding or removing other multi-edges or loops.

3. Restart the algorithm (b-reject) with probability 1− bl(G
′; 0)bl(G

′; 1)

bl(G′, ∅)bl(G′, v1v2v3)
.

4. Set G← G′.

To accelerate the computation of the b-rejection probabilities, incremental relax-
ation [17] is used. Let v1v2v3 denote a two-star centered at v1, i.e. three nodes v1, v2, v3

where v1v2 and v1v3 are edges. We call a two-star v1v2v3 simple, if both edges are

simple, and we call the star light, if the center v1 is a light node. Finally, we speak of

ordered two-stars if each permutation of the labels for the outer nodes v2 and v3 implies

a distinct two-star. Then, the l-switching creates a light simple two-star v1v2v3 and a

simple pair v4v5.

With incremental relaxation, the b-rejection is split up into two sub-rejections, one

for each structure created by the switching. First, set bl(G
′, ∅) to the number of light

simple ordered two-stars in G′. Then, initialize bl(G
′, v1v2v3) to the number of simple

ordered pairs in G′. Now, subtract all the simple ordered pairs that are incompatible

with the two-star v1v2v3 created by the switching. The incompatible pairs a) share

nodes with the two-star v1v2v3 or b) have edges v2v4 or v3v5. Let A2 =
∑d1

i=1 di. Then,

we use the following lower bounds on these quantities:

bl(G
′; 0) = L2 − 12mtdh − 8mddh −mld

2
h (5.10)

bl(G
′; 1) = M1 − 6mt − 4md − 2ml − 2A2 − 4d1 − 2dh (5.11)

Next, the algorithm removes triple-edges in Phase 4.

5.2.6 Phase 4: Removal of Light Triple-Edges

In Phase 4, the algorithm uses multiple di�erent switchings. Similarly to the previous

phases, there is one switching that removes the multi-edges. The other switchings,

called boosters, lower the probability of a b-rejection. In total, there are four di�erent

switchings. The t-switching removes a triple-edge (see Figure 5.4a). The ta-, tb- and

tc-switchings create structures consisting of a simple three-star v1v3v5v7, and a light

simple three star v2v4v6v8, that do not share any nodes. We call these structures triplets.
Note that the t-switching creates a triplet where none of the edges v1v2, v3v4, v5v6 or

v7v8 are allowed to exist. The ta-switching creates the triplets where either one of the

edges v3v4, v5v6 or v7v8 exist. The tb-switching (see Figure 5.4b) creates the triplets

where two of those edges exist. The tc-switching creates the triplet where all three of

those edges exist.
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v1

v2

v3

v4

v5

v6

v7

v8

v1
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v4

v5

v6

v7

v8

inverse

(a) The t-switching.

v1

v7
v9

v2

v8

v3

v4

v5

v6

v1

v7
v9

v2

v8

v3

v4

v5

v6

inverse

(b) The tb-switching.

Figure 5.4: Switchings used in Phase 4. Both produce a triplet with the three-stars v1v3v5v7 and v2v4v6v8 centered at v1 and

v2, respectively.

Phase 4 removes all triple-edges. In each iteration, the algorithm �rst chooses

a switching type τ from {t, ta, tb, tc}, where type τ has probability ρτ . The sum of

these probabilities can be less than one, and the algorithm restarts with the remaining

probability. Overall, we have the following steps (where the constants ρτ , de�ned below,

ensure uniformity – cf. [77]):

1. Choose switching type τ with probability ρτ , or restart with probability 1−∑τ ρτ .

2. Pick a uniform random τ -switching S = (G,G′). If τ = t, sample a uniform

random triple-edge and three uniform random pairs, and switch them as shown

in Figure 5.4a. If τ 6= t, sample some uniform random k-stars, as exempli�ed for

tb in Figure 5.4b, and switch them into the intended triplet.

3. Restart the algorithm (f-reject) if S is not valid. The switching is valid if, for τ = t,

it removes the targeted triple-edge, or if, for τ 6= t, it creates the intended triplet,

without adding or removing (other) multi-edges or loops.

4. Restart the algorithm (b-reject) with probability 1− bt(G
′; 0)bt(G

′; 1)

bt(G′, ∅)bt(G′, v1v3v5v7)
.

5. Restart the algorithm (b-reject) with probability 1− bτ (G′)

bτ (G′)
.

6. Set G← G′.

For the b-rejection, incremental relaxation is used. In step 4, there are two sub-

rejections for the triplet, and in step 5, there are sub-rejections for any additional pairs

created (e.g. pairs that are not part of the triplet). The t-switching creates no additional

pairs, the ta-switching creates three, the tb-switching shown in Figure 5.4b creates six,

and the tc-switching nine.

The probability for step 4 is computed as follows: �rst, set bt(G
′, ∅) to the number of

simple ordered three-stars inG′. Then, set bt(G
′, v1v3v5v7) to the number of light simple
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ordered three-stars that a) do not share any nodes with the three-star v1v3v5v7 created

by S, b) have no edge v1v2 and no multi-edges v3v4, v5v6, v7v8. Let Bk =
∑d1

i=1[dh+i]k .

Then, the lower bounds are:

bt(G
′; 0) = M3 − 18mtd

2
1 − 12mdd

2
1 (5.12)

bt(G
′; 1) = L3 − 18mtd

2
h − 12mdd

2
h −B3 − 3(mt +md)B2 − d3

h − 9B2 (5.13)

For step 5: let k be the number of additional pairs created by the switching. Then,

for pair 1 ≤ i ≤ k, set bτ (G′, V i+1(S)) to the number of simple ordered pairs in G′,

that a) do not share nodes with the triplet or the previous i− 1 pairs, and b) have no

edges that should have been removed by the switching (e.g., in Figure 5.4b, v1v9 cannot

be an edge). Finally, set bτ (G′) =
∏k
i=1 bτ (G′, V i+1(S)). The lower bound is:

bτ (G′) =
∏k

i=1
bτ (G′; i+ 1) (5.14)

bτ (G′; i+ 1) = M1 − 6mt − 4md − 16d1 − 4(i− 1)d1 − 2A2 (5.15)

The type probabilities as computed as follows. When initializing Phase 4, set ρt =

1 − ε where ε = 28M2
2 /M

3
1 , and set ρτ = 0 for τ ∈ {ta, tb, tc}. In each subsequent

iteration, the probabilities are only updated after a t-switching S = (G,G′) is performed.

Then, �rst, let i be the number of triple-edges in the graph G′, and let i1 be the initial

number of triple-edges after �rst entering Phase 4. Now, de�ne a parameter xi:

xi = xi+1ρt
bt(G

′; 0)bt(G
′; 1)

f t(i+ 1)
+ 1, (5.16)

where xi1 = 1 and f t(i) = 12iM3
1 .

De�ne f ta = 3M3L3M
2
2 , f tb = 3M3L3M

4
2 , and f tc = M3L3M

6
2 . Then, update

the probability ρτ for τ ∈ {ta, tb, tc} as follows:

ρτ =
xi+1

xi
ρt

f τ
bτ (G′)f t(i+ 1)

(5.17)

Finally, the algorithm enters Phase 5.

5.2.7 Phase 5: Removal of Light Double-Edges

Similar to Phase 4, Phase 5 uses multiple di�erent switchings. The d-switching (see

Figure 5.5a) removes double-edges. The booster switchings create so-called doublets
consisting of a simple two-star v1v3v5 and a light simple two-star v2v4v6 that do not

share any nodes. Let m1, m2, and m3 denote the multiplicities of the edges v1v2,

v3v4 and v5v6 in a doublet, respectively. Then, the d-switching creates the doublet

with max(m1,m2,m3) = 0. The booster switchings create all other doublets where

max(m1,m2,m3) ≤ 2, i.e., where some of the edges are single-edges or double-edges.

We identify each booster switching by the doublet created, e.g., type τ = (1, 2, 0) shown

in Figure 5.5b creates a doublet where m1 = 1, m2 = 2, and m3 = 0.
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(a) d-switching.

v1 v5
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v2 v6

v3

v4
inverse

(b) The type τ = (1, 2, 0) booster switching.

Figure 5.5: Switchings used in Phase 5.

Phase 5 repeats the following steps until all double-edges are removed:

1. Choose switching type τ with probability ρτ or restart with

the probability 1−∑τ ρτ .

2. Pick a uniform random τ -switching S = (G,G′). If τ = d, sample a uniform

random double-edge and two uniform random pairs, and switch them as shown

in Figure 5.5a. If τ 6= d, sample a number of uniform random k-stars, as exempli-

�ed in Figure 5.5b, and switch them into the intended doublet and a number of

additional simple edges.

3. Restart the algorithm (f-reject) if S is not valid. The switching is valid if, for τ = d,

it removes the targeted double-edge or, for τ 6= d, it creates the intended doublet

without adding or removing (other) multi-edges or loops.

4. Restart the algorithm (b-reject) with probability 1− bd(G
′; 0)bd(G

′; 1)

bd(G′, ∅)bd(G′, v1v3v5)
.

5. Restart the algorithm (b-reject) with probability 1− bτ (G′)

bτ (G′)
.

6. Set G← G′.

For the b-rejection, incremental relaxation is used. Step 4 contains the sub-rejections for

the doublet and step 5 the rejections for any additional pairs created by the switching.

In general, the number of additional pairs created by type τ = (m1,m2,m3) is k =

Im1≥1m1 + Im2≥1(m2 + 2) + Im3≥1(m3 + 2) where I denotes the indicator function.

For step 4: �rst, set bd(G
′, ∅) to the number of simple ordered two-stars in G′. Then,

set bd(G
′, v1v3v5) to the number of light simple ordered two-stars in G′ that do not

share any nodes with the two-star v1v3v5 created by S. The lower bounds are:

bd(G
′; 0) = M2 − 8mdd1 (5.18)

bd(G
′; 1) = L2 − 8mddh − 6B1 − 3d2

h (5.19)
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For step 5: let k be the number of additional pairs created by the switching. Then,

for pair 1 ≤ i ≤ k, set bτ (G′, V i+1(S)) to the number of simple ordered pairs in G′,

that a) do not share nodes with the doublet or the previous i− 1 pairs, and b) have no

edges that should have been removed by the switching (e.g., in Figure 5.5b, v1v7 cannot

be an edge). Finally, set bτ (G′) =
∏k
i=1 bτ (G′, V i+1(S)). The lower bound is:

bτ (G′) =
∏k

i=1
bτ (G′; i+ 1) (5.20)

bτ (G′; i+ 1) = M1 − 4md − 12d1 − 4(i− 1)d1 − 2A2 (5.21)

The type probabilities are computed as follows. When initializing Phase 5, set

ρd = 1− ξ where

ξ =
32M2

2

M3
1

+
36M4L4

M2L2M2
1

+
32M2

3

M4
1

, (5.22)

and set ρτ = 0 for all types τ 6= d. The probabilities are updated after a switching

S = (G,G′) is performed that changes the number of double-edges. Then, �rst, let

i denote the new number of double-edges in G′, let i1 denote the initial number of

double-edges after �rst entering Phase 5, and let ρd(i) denote the probability of type d

on a graph with i double-edges. Now, de�ne a parameter xi:

xi = xi+1ρd(i+ 1)
bd(G

′; 0)bd(G
′; 1)

fd(i+ 1)
+ 1, (5.23)

where xi1 = 1 and fd(i) = 4iM2
1 .

Then, to update the probability of a booster switching type τ , there are two cases: (1)

if τ = (m1,m2,m3) adds double-edges (i.e., max(m1,m2,m3) = 2) and the number

of double-edges if a switching of this type was performed would be higher than i1 − 1,

set ρτ = 0. Otherwise, (2) let i′ denote the new number of double-edges if a switching

of this type was performed, and de�ne

f τ = Mk1Lk1(Ik2≥2M
2
k2 + Ik2≤11) · (Ik3≥2M

2
k3 + Ik3≤11), (5.24)

where k1 = m1 + 2, k2 = m2 + 1, k3 = m3 + 1.

Then set:

ρτ =
xi′+1

xi
ρdi′+1

f τ
bτ (i′)fd(i

′ + 1)
(5.25)

ρd = 1− ρ1,0,0 − ξ. (5.26)

When Phase 5 terminates, all non-simple edges are removed, and the �nal graph G

is output.

5.3 Adjustments to the Algorithm

In this section, we describe our adjustments to the Inc-Powerlaw algorithm sketched

in [17].
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5.3.1 New Switchings in Phase 4

Phase 4 of Pld only uses the t-switching [78]. There, the rejection probability is small

enough so that no booster switchings are needed. The overall running-time of Phase 4

in Pld however, is superlinear, as computing the probability of a b-rejection requires

counting the number of valid t-switchings that produce a graph. By using incremental

relaxation [17], the cost of computing the b-rejection probability becomes sublinear, as

it only requires us to count simpler structures in the graph. However, when applying

incremental relaxation to Phase 4, the probability of a b-rejection increases, as the lower

bounds on the number of those structures are less tight, and the overall running-time

remains superlinear.

We address this issue by using booster switchings in Phase 4 to reduce the b-rejection

probability (analogous to Phase 5 of Pld). To this end, we add three new switchings: the

ta, tb and tc switching (see Section 5.2.6). This is done entirely analogous to Phase 5 of

Pld, which also uses multiple switchings in the same Phase. We �rst derive an equation

for the expected number of times that a graph is produced by a type τ ∈ {t, ta, tb, tc}
switching. Then we set equal the expected number of times for each graph in the same

set S(mh,l,d,t). The resulting system of equations is fully determined by choosing an

upper bound ε on the probability of choosing a type τ 6= t. We can then derive the

correct probabilities ρτ for each type as a function of mh,l,d,t.

Lemma 5.1. LetD be a plib sequence with exponent γ > 21/10 +
√

61/10 ≈ 2.88102.

Then, given D as input, the probability of a b-rejection in Phase 4 of Inc-Powerlaw is

o(1). J

Proof. Refer to Section 5.A (Appendix) for the proof. �

5.3.2 New Switchings in Phase 5

Phase 5 of Pld uses the type-I switching (this is the same as the d-switching in Inc-

Powerlaw), as well as a total of six booster switchings called type-III, type-IV, type-V,

type-VI and type-VII. These booster switchings create the doublets where each of the "bad

edges" can either be a non-edge or single-edge, i.e. max{m1,m2,m3} = 1. For Phase 5

of Pld, this su�ces to ensure that the b-rejection probability is small enough. However,

similar to Phase 4, applying incremental relaxation to reduce the computational cost

increases the rejection probability, leading to a superlinear running-time overall.

To further reduce the probability of a b-rejection, we add booster switchings

that create the doublets where one or more of the "bad edges" is a double-edge, i.e.

max{m1,m2,m3} = 2 (see Section 5.2.7). We then integrate the new switchings to

Phase 5 of Inc-Powerlaw by deriving the correct probabilities ρτ and increasing the

constant ξ used to bound the probabilities of the types τ /∈ {d, (1, 0, 0)}.
Lemma 5.2. LetD be a plib sequence with exponent γ > 21/10 +

√
61/10 ≈ 2.88102.

Then, given D as input, the probability of a b-rejection in Phase 5 of Inc-Powerlaw is

o(1). J

Proof. Refer to Section 5.A (Appendix) for the proof. �
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5.3.3 Expected Running-time

We now use Lemma 5.1 and Lemma 5.2 to bound the expected running-time of the

algorithm.

Theorem 5.3. LetD be a plib sequence with exponent γ > 21/10+
√

61/10 ≈ 2.88102.

Then, given D as input, the expected running-time of Inc-Powerlaw is O(n). J

Proof. From [17], we know that the running-time of each individual phase (e.g. compu-

tation of rejection parameters, etc.) is at most O(n) and in addition, we know that the

probability of an f-rejection in any Phase is o(1) and the probability of a b-rejection in

Phases 1, 2 or 3 is o(1). By Lemma 5.1 and Lemma 5.2, the probability of a b-rejection in

Phase 4 or 5 is o(1). Therefore, the expected number of restarts is O(1), and the overall

running-time of Inc-Powerlaw is O(n). �

5.4 Implementation

In this section we highlight some aspects of our Inc-Powerlaw implementation. The

generator is implemented in modern C++ and relies on Boost Multiprecision
2

to handle

large integer and rational numbers that occur even for relatively small inputs.

5.4.1 Graph Representation

Inc-Powerlaw requires a dynamic graph representation capable of adding and removing

edges, answering edge existence and edge multiplicity queries, enumerating a node’s

neighborhood, and sampling edges weighted by their multiplicity. A careful combination

of an adjacency vector and a hash map yields expected constant work for all operations.

In practice, however, we �nd that building and maintaining these structures is more

expensive than using a simpler, asymptotically sub-optimal, approach. To this end, we

exploit the small and asymptotically constant average degree of plib degree sequences

and the fact that most queries do not modify the data structure. This allows us to only

use a compressed sparse row (CSR) representation that places all neighborhoods in a

contiguous array AC and keep the start indices AI of each neighborhood in a separate

array; neighborhoods are maintained in sorted order and neighbors may appear multiple

times to encode multi-edges.

Given an edge list, we can construct a CSR in time O(n+m) using integer sorting.

A subsequent insertion or deletion of edge uv requires timeO(deg(u) + deg(v)); these

operations, however, occur at a low rate. Edge existence and edge multiplicity queries for

edge uv are possible in time O(log min(deg(u),deg(v))) by considering the node with

the smaller neighborhood (as D is ordered u ≤ v implies deg(u) ≥ deg(v)). Assuming

plib degrees, these operations require constant expected work. Randomly drawing an

2

h�ps://github.com/boostorg/multiprecision (V 1.76.0)
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edge weighted by its multiplicity is implemented by drawing a uniform index j for AC
and searching its incident node in AI in time O(log n)3

.

Several auxiliary structures (e.g., indices to non-simple edges, numbers of several

sub-structures, et cetera) are maintained requiring O(m) work in total. Where possible,

we delay their construction to the beginning of Phase 3 in order to not waste work in

case of an early rejection in Phases 1 or 2.

5.4.2 Parallelism

While Inc-Powerlaw seems inherently sequential (e.g. due to the dependence of

each switching step on the previous steps), it is possible to parallelize aspects of the

algorithm. In the following we sketch two non-exclusive strategies. These approaches

are practically signi�cant, but are not designed to yield a sub-linear time complexity.

Intra-Run

As we discuss in Section 5.5, the implementation’s runtime is dominated by the sampling

of the initial multigraph and construction of the CSR. These in turn spend most time

with random shu�ing and sorting. Both can be parallelized [18, 159].

Inter-Run

If Inc-Powerlaw restarts, the following attempt is independent of the rejected one.

Thus, we can execute P instances of Inc-Powerlaw in parallel and return the “�rst”

accepted result. Synchronization is only used to avoid a selection bias towards quicker

runs: all processors assign globally unique indices to their runs and update them after

each restart. We return the accepted result with smallest index and terminate processes

working on results with larger indices prematurely. The resulting speed-up is bounded

by the number of restarts which is typically a small constant.

5.4.3 Configuration Model

As the majority of time is spend sampling the initial graph G and building its CSR

representation, we carefully optimize this part of our implementation. First, we give an

extended description of the con�guration model that remains functionally equivalent to

Section 5.2.

Given a degree-sequence D = (d1, . . . , dn), let G be a graph with n nodes and no
edges. For each node u ∈ V place du marbles labeled u into an urn. Then, randomly draw
without replacement two marbles with labels a and b, respectively. Append label a to an
initially empty sequence A and analogously label b to B. Finally, add for each 1 ≤ i ≤ m
the edge {A[i], B[i]} to G.

We adopt a common strategy [150] to implement sampling without replacement.

First produce a sequence N [1 . . . 2m] representing the urn, i.e., the value i is contained

3

Observe that constant time look-ups are straight-forward by augmenting each entry in AC with the

neighbor. We, however, found the contribution of the binary search non-substantial.
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di times. Then randomly shu�eN and call the resultN ′. Finally, partitionN ′ arbitrarily

to obtain the aforementioned sequences A and B of equal sizes. For our purpose, it

is convenient to choose the �rst and second halves of N ′, i.e., A = N ′[1 . . .m] and

B = N ′[m+1 . . . 2m]. 4

Our parallel implementation shu�es N with a shared memory implementation

based on [159]. We then construct a list of all pairs in both orientations and sort it

lexicographically in parallel [18]. In the resulting sequence, each neighborhood is a

contiguous subsequence. Hence, we can assign the parallel workers to independent sub-

problems by aligning them to the neighborhood boundaries. The sequential algorithm

follows the same framework to improve locality of reference in the data accesses. It

uses a highly tuned Fisher-Yates shu�e based on [118] and the integer sorting SkaSort
5
.

Both shu�ing algorithms are modi�ed almost halving their work. The key insight

is that the distribution of graphs sampled remains unchanged if we only shu�e A

and allow an arbitrary permutation of B (or vice versa). This can be seen as follows.

Assume we sampled A and B as before and computed graph GA,B . Then, we let an

adversary choose an arbitrary permutation πB of B without knowing A. If we apply

πB to B before adding the edges, the resulting GA,πB(B) is in general di�erent from

GAB . We claim, however, that GA,B and GA,πB(B) both are equally distributed samples

of the con�guration model. We can recover the original graph by also applying πB
to A, i.e., GπB(A),πB(B) = GA,B . Let Pm denote the set of all m! permutations of a

sequence of length m, and note that the composition ◦ : Pm × Pm → Pm is a bijection.

Further recall that A is randomly shu�ed and all its permutations πA ∈ Pm occur with

equal probability. Thus, as πA is uniformly drawn from Pm, so is (πA ◦ πB) ∈ Pm. In

conclusion, the distribution of edges is independent of the adversary’s choice.

To exploit this observation, we partition N into two subsequences N ′[1 . . . k] and

N ′[k + 1 . . . 2m]. Each element is assigned to one subsequence using an independent

and fair coin �ip. While partitioning and shu�ing are both linear time tasks, in practice,

the former can be solved signi�cantly faster (in the parallel algorithm [159], it is even

a by-product of the assignment of subproblems to workers). Observe that with high

probability both sequences have roughly equal size, i.e., |k −m| = O(
√
m). We then

only shu�e the larger one (arbitrary tie-breaking if k = m), and �nally output the pairs

(N ′[i], N ′[m+ i]) for all 1 ≤ i ≤ m.

5.5 Empirical Evaluation

In the following, we empirically investigate our implementation of Inc-Powerlaw.

To rea�rm the correctness of our implementation and empirically support the

uniformity of the sampled graphs, we used unit tests and statistical tests. For instance,

we carried out χ2
-tests over the distribution of all possible graphs for dedicated small

degree sequencesD where it is feasible to fully enumerate G(D). Additionally, we assert

4

To “shu�e” or “random permute” refers to the process of randomly reordering a sequence such that

any permutation occurs with equal probability.

5

h�ps://github.com/skarupke/ska_sort
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Figure 5.6: Average running-time of sequential
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the plausibility of rejection parameters.

The widely accepted, yet approximate, Edge Switching MCMC algorithm provides

a reference to existing solutions. We consider two implementations: NetworKit-ES,

included in NetworKit [171] and based on [81], was selected for its readily availability

and �exibility. Fast-ES is our own solution that is at least as fast as all open sequential

implementations we are aware of. For the latter, we even exclude the set-up time for

the graph data structure. To their advantage, we execute an average of 10 switches per

edge (in practice, common choices [137, 81, 154] are 10 to 30). Increasing this number

improves the approximation of a uniform distribution, but linearly increases the work.

In each experiment below, we generate between 100 and 1000 random power-law

degree sequences with �xed parameters n, γ, and minimal degree dmin analogously to

the PowerlawDegreeSeqence generator of NetworKit. Then, for each sequence, we

benchmark the time it takes for the implementations to generate a graph and report

their average. In the plots, a shaded area indicates the 95%-con�dence interval. The

benchmarks are built with GNU g++-9.3 and executed on a machine equipped with an

AMD EPYC 7452 (32 cores) processor and 128 GB RAM running Ubuntu 20.04.

Running-time Scaling in n

In Figure 5.6 we report the performance of Inc-Powerlaw and the Edge Switching
implementations for degree sequences with γ ≈ 2.88, dmin = 1, and n = 2k for integer

values 10 ≤ k ≤ 28. Our Inc-Powerlaw implementation generates a graph with

n ≈ 106
nodes in 0.26 seconds. The plot also gives evidence towards Inc-Powerlaw’s

linear work complexity. Comparing with the Edge-Switching implementations, we �nd

that Inc-Powerlaw runs faster. We can conclude that in this setting, the provably

uniform Inc-Powerlaw runs just as fast, if not faster, than the approximate solution.
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Table 5.1: The average

number of runs until ac-

ceptance and peak speed-

ups as observed in Fig-

ure 5.7.

n runs Inter-Run Intra-Run

216 3.9 2.7 for p = 10 1.3 for p = 10

220 3.3 2.3 for p = 7 2.2 for p = 12

224 3.0 2.0 for p = 5 3.8 for p = 11
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Figure 5.8: The average running-time of Inc-Powerlaw in

dependence of n for di�erent values of γ.
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Figure 5.9: The average running-time of Inc-Powerlaw for

sequences with minimum degree dmin ∈ {1, 2, 3}.

Speed-up of the Parallel Variants

Figure 5.7 shows the speed-up of our Inter-Run and Intra-Run parallelizations over

sequential Inc-Powerlaw. We generate degree sequences with n = 2k for k ∈
{16, 20, 24}, measure the average running-time of the parallel variants when using

1 ≤ p ≤ 12 PUs (processor cores), and report the speed-up in the average running-time

of the parallel variants over sequential Inc-Powerlaw.

For p = 5 and n = 224
, we observe an Inter-Run parallelization speed-up of 2.0;

more PUs yield diminishing returns as the speed-up is limited by the number of runs

until a graph is accepted which is 3.0 on average for the aforementioned parameters.

Another limiting factor is the fact that rejected runs stop prematurely. Hence, the

accepting run (i) requires on average more work and (ii) forms the critical path that

cannot be accelerated by Inter-Run.

For the same n, Intra-Run achieves a speed-up of 3.8 for p = 11 PUs; here, the

remaining unparallelized sections limit the scalability as governed by Amdahl’s law [156].

Overall, Inter-Run yields a better speed-up if the the number of restarts is high (smaller

n), whereas Intra-Run yields a better speed-up for larger n if the overall running-time

is dominated by generating the initial graph (see Table 5.1).

Di�erent Values of the Power-law Exponent γ

Next, we investigate the in�uence of the power-law exponent γ. The guarantees on

Inc-Powerlaw’s running-time only hold for sequences with γ ' 2.88102, so we expect

a superlinear running-time for γ ≤ 2.88. For γ ≥ 3, the expected number of non-simple

edges in the initial graph is much lower, so we expect the running-time to remain

linear but with decreased constants. Figure 5.8 shows the average running-time of

Inc-Powerlaw for sequences for various γ.

For γ ≤ 2.88, we observe an increase in the running-time. The slope of the curve for
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γ = 2.85 also suggests that the running-time becomes non-linear for lower values of γ.

Overall, the requirement of γ ' 2.88102 appears to be relatively strict. In particular, we

observe that the higher maximum degrees of sequences with γ ≤ 2.85 greatly increase

the rejection probability in Phases 1 and 2.

For γ ≥ 3, the average running-time decreases somewhat but remains linear. For

these values of γ, we observe that the initial number of non-simple edges in the graph

is small, and that the algorithm almost always accepts a graph on its �rst run, so the

overall running-time approaches the time required to sample the initial graph with the

con�guration model.

Higher Average Degrees

The previously considered sequences drawn from an unscaled power-law distribu-

tion tend to have a rather small average degree of approximately 1.44. On the other

hand, many observed networks feature higher average degrees [22, 157]. To study

Inc-Powerlaw on such networks, we sample degree sequences with minimum degree

dmin ∈ {1, 2, 3}. For dmin = 2 and dmin = 3, the average degree d of the sequences

increases to d = 3.39 and d = 5.44 respectively. We then let the implementation

generate graphs for each choice of dmin ∈ {1, 2, 3}, and report the average time as a

function of n in Figure 5.9.

As a higher average degree increases the expected number of non-simple edges in

the initial graph, we observe a signi�cant increase in running-time. For instance, for

n = 220
we �nd that the average number of double-edges in the initial graph are 6.5,

41.6 and 98.8 for dmin = 1, 2 and 3, respectively, and the overall number of switching

steps until a simple graph is obtained increases from 10.2 for dmin = 1 to 49.6 for

dmin = 2 and to 110.8 for dmin = 3. This in turn greatly increases the chance for a

rejection to occur and the number of runs until a graph is accepted (see Section 5.6).

However, for large values of n ≥ 224
the e�ect of the higher average degrees on the

running-time becomes less pronounced. This is because the probability of a rejection

at any step in the algorithm decreases quite fast with n, thus even if the number of

switching steps increases, the number of runs decreases. We can conclude that Inc-

Powerlaw is e�cient when generating graphs that are either very sparse (d / 5) or

very large (n ' 224
), but the algorithm is much less e�cient when generating small to

medium sized graphs (n / 224
) with medium average degree (d ' 5).

Speed-up of Inter-Run for Higher Average Degrees

While Inc-Powerlaw’s sequential work increases with a higher average degree, so do

the number of independent runs that can be parallelized by Inter-Run. Figure 5.10

shows the speedup of Inter-Run over sequential Inc-Powerlaw for sequences with

dmin = 2 when using 2 ≤ p ≤ 24 PUs and dmin = 3 using 2 ≤ p ≤ 32 PUs. For

n = 220
nodes, Inter-Run yields a speed-up of 6.4 with p = 14 PUs for dmin = 2 and

12.8 for p = 31 PUs for dmin = 3 (see Section 5.6).
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Figure 5.10: Speed-up of Inter-Run for dmin ∈ {2, 3}.

Table 5.2: Average number of runs until acceptance and

average number of switching steps in an accepting run.

dmin = 1 dmin = 2 dmin = 3

n runs steps runs steps runs steps

216 3.9 4.9 53.0 24.1 1160.7 51.0

220 3.3 10.2 18.1 49.6 164.0 110.8

224 3.0 19.0 9.6 92.8 43.3 208.5

228 2.5 32.3 5.6 161.6 16.7 375.3

Table 5.3: Average number of runs until acceptance and

peak speed-ups as observed in Figure 5.10.

dmin = 2 dmin = 3

n runs speedup runs speedup

216 53.0 8.5 for p = 24 1160.7 25.8 for p = 32

220 18.1 6.4 for p = 14 164.0 12.8 for p = 31

224 9.6 3.4 for p = 10 43.3 9.0 for p = 20

As expected, we can achieve a higher speed-up for higher dmin, so we can partially

mitigate the increase in running-time by taking advantage of the higher parallelizability.

On the other hand, we still experience the limited scaling due to accepting runs being

slower than rejecting runs.

5.6 Conclusions

For the �rst time, we provide a complete description of Inc-Powerlaw which builds

on and extends previously known results [17, 78]. To the best of our knowledge, Inc-

Powerlaw is the �rst practical implementation to sample provably uniform graphs

from prescribed power-law-bounded degree sequences with γ ≥ 2.88102. Our imple-

mentation is freely available.

In an empirical study, we �nd that Inc-Powerlaw is very e�cient for small average

degrees; for larger average degrees, we observe signi�cantly increased constants in Inc-

Powerlaw’s running-time which are partially mitigated by an improved parallelizability.

While the expected running-time of Inc-Powerlaw is asymptotically optimal, we

expect practical improvements for higher average degrees by improving the acceptance

probability in Phases 3, 4 and 5 of the algorithm (e.g., by �nding tighter lower bounds

or by adding new switchings). It is also possible that the requirement on γ could be

lowered; our experiments indicate that the acceptance probability in Phases 1 and 2

should be improved to this end. Our measurements also suggest that more �ne-grained

parallelism may be necessary to accelerate accepting runs.
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Appendix 5.A Proofs

Lemma 5.1. LetD be a plib sequence with exponent γ > 21/10 +
√

61/10 ≈ 2.88102.

Then, given D as input, the probability of a b-rejection in Phase 4 of Inc-Powerlaw is

o(1). J

Proof. We �rst show that the number of iterations in Phase 4 is at mostO
(
L3M3/M

3
1

)
.

First, recall that the algorithm only enters Phase 4 if the graph satis�es the Phase 3, 4 and

5 preconditions. In particular, the graph may contain at most L3M3/M
3
1 triple-edges.

Phase 4 terminates once all triple-edges are removed. In each iteration, a triple-edge is

removed if we choose a type t-switching. The probability of choosing a t-switching is

ρt = 1−ε, where ε = 28M2
2 /M

3
1 , and it can be veri�ed that the probability of choosing

any other switching is bounded by ε. In addition, we know that Mk = O
(
nk/γ−1

)
for

k ≥ 2 and M1 = Θ(n) [78], and we have ε = O
(
n2/(γ−1)/n3

)
= o(1) assuming that

γ > 21/10 +
√

61/10 ≈ 2.88102. Thus, a triple-edge is removed in each iteration with

probability 1− o(1), and as the graph may contain at most L3M3/M
3
1 triple-edges, the

total number of iterations is at most O
(
L3M3/M

3
1

)
.

Now, we show that the probability of a b-rejection vanishes with n. First, it is

easy to verify that the probability of a b-rejection in step 4 dominates the probabil-

ity of a rejection in step 5 (compare Section 5.2.6). The probability of a b-rejection

in step 4 is 1 − bt(G
′; 0)bt(G

′; 1)/(bt(G
′, ∅)bt(G′, v1v3v5v7)). It can be shown that

bt(G
′; 0) = Ω(M3), bt(G

′; 1) = Ω(L3 − B3), and bt(G
′, ∅)bt(G′, v1v3v5v7) ≤ M3L3.

Thus, the probability of a b-rejection is at most O(M3B3/M3L3). In addition, as

shown above, the number of iterations of Phase 4 is at most O
(
L3M3/M

3
1

)
. Then, the

overall probability of a b-rejection during all of Phase 4 is at most O
(
M3B3/M

3
1

)
=

O
(
n3/(γ−1)n1−δ(γ−4)/n3

)
= o(1) for γ > 21/10 +

√
61/10 ≈ 2.88102. �

Lemma 5.2. LetD be a plib sequence with exponent γ > 21/10 +
√

61/10 ≈ 2.88102.

Then, given D as input, the probability of a b-rejection in Phase 5 of Inc-Powerlaw is

o(1). J

Proof. Analogous to the proof of Lemma 5.1, we �rst bound the number of iterations

in Phase 5. In each iteration, a double-edge is removed if we chose the d-switching,

and a d-switching is chosen with probability 1 − ρ1,0,0 − ξ, where ξ = 32M2
2 /M

3
1 +

36M4L4/M2L2M
2
1 + 32M2

3 /M
4
1 . It can be veri�ed that the probability of choosing

any of the other switchings is bounded by ξ. In Phase 5 of Pld ([, , t), h)e probability

of choosing a type-I switching is set to 1 − ρIII − ξ′, where ξ′ = 32M2
2 /M

3
1 . As the

probability of not choosing a type-I switching in Pld ([v, a), n)ishes with n, we know

that the terms ρ1,0,0 = ρIII and 32M2
2 /M

3
1 vanish with n. For the remaining two terms,

�rst note that Lk+1 ≤ Lkdh = O
(
Lkn

δ
)

and Mk+1 ≤ Mkd1 = O
(
Mkn

1/(γ−1)
)

for k ≥ 2 [78]. Then, we have 36M4L4/M2L2M
2
1 ≤ M2d

2
1L2d

2
h/M2L2M

2
1 =

O
(
n2/(γ−1)+2δ/n2

)
= o(1), and 32M2

3 /M
4
1 = O

(
n6/(γ−1)/n4

)
= o(1) assuming

γ > 21/10 +
√

61/10 ≈ 2.88102. Thus, a double-edge is removed in each iteration

with probability 1− o(1), and as a graph satisfying the Phase 3, 4 and 5 preconditions
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may contain at most L2M2/M
2
1 double-edges, the total number of iterations in Phase 5

is at most O
(
L2M2/M

2
1

)
.

We now show that the probability of a b-rejection is small enough. Again, the

probability of a b-rejection in step 4 dominates the probability of a b-rejection in step 5

(compare Section 5.2.7). The rejection probability in step 4 is

1−bd(G′; 0)bd(G
′; 1)/(bd(G

′, ∅)bd(G′, v1v3v5)). Note that bd(G
′; 0) = Ω(M2), bd(G

′; 1) =

Ω(L2 − A2), and bd(G
′, ∅)bd(G′, v1v3v5) ≤ M2L2. Then, the overall probability of a

b-rejection in Phase 5 is at most O
(
M2A2/M

2
1

)
= O

(
n2/(γ−1)n(2γ−3)/(γ−1)2/n2

)
=

o(1) for γ > 21/10 +
√

61/10 ≈ 2.88102. �

Appendix 5.B Correctness proofs of lower bounds

For Phases 3, 4 and 5, we use new lower bounds on the number of structures in the

graph created by a valid switching.

For Phase 3, we factorize the lower bound on the number of inverse l-switchings

used in Pld to obtain two new lower bounds bl(G
′; 0) and bl(G

′; 1).

Lemma 5.4. Let S be the class of graphs with mt light triple-edges, md light double-

edges and ml light single loops (and no other non-simple edges). For all G ∈ S , and all

light simple two-stars v1v2v3 in G that are created by a valid l-switching, we have

bl(S; 0) ≤ bl(G, ∅) (5.27)

bl(S; 1) ≤ bl(G, v1v2v3). (5.28)

J

Proof. We have bl(S; 0) = L2 − 12mtdh − 8mddh − mld
2
h, and bl(G, ∅) is equal to

the number of light simple ordered two-stars in G. We now show that bl(S; 0) is a

lower bound on bl(G, ∅). First, each graph G matching the sequence contains exactly

L2 light ordered two-stars. We then overestimate the number of two-stars that are

not simple, and subtract this from L2: a two-star v1v2v3 is not simple if one of the

edges v1v2 or v1v3 is a triple-edge, a double-edge or a loop. There are at most 12mtdh
that contain a triple-edge, as there are mt ordered triple-edges (6mt ordered pairs),

at most dh choices for the remaining node of the two-star (any light node has degree

smaller than dh), and 2 ways to combine the selected pairs into the two-star as shown

in Figure 5.3. Similarly, there are at most 8mddh two-stars that contain a double-edge,

as there are md double-edges (4md ordered pairs), at most dh choices for the remaining

node and 2 ways to combine the selected pairs into the two-star, and there are at most

mld
2
h two-stars that contain a loop, as there are ml loops and at most d2

h choices for the

outer nodes of the two-star.

For the second bound, we have bl(S; 1) = M1−6mt−4md−2ml−2A2−4d1−2dh
and bl(G, v1v2v3) is set to the number of simple ordered pairs (v4, v5) that (a) do share

nodes with the two-star v1v2v3 and (b) where v2v4 and v3v5 are non-edges. Each graph

G matching the sequence contains exactly M1 ordered pairs. There are at most 6mt
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ordered pairs that contain a triple-edge, at most 4md ordered pairs that contain a double-

edge and at most 2ml ordered pairs that contain a loop. For case (a), there are at most

4d1 ordered pairs where v4 ∈ {v2, v3} or v5 ∈ {v2, v3}, and at most 2dh ordered pairs

where v4 = v1 or v5 = v1. For case (b), we know that A2 =
∑d1

i=1 di is an upper

bound on the number of two-paths v2v4v5 or v3v5v4 [78], so there are at most 2A2 such

pairs. �

For Phase 4, we use three new lower bounds bt(G; 0), bt(G; 1) and bτ (G; i+ 1).

Lemma 5.5. Let S be the class of graphs with mt light triple-edges and md light

double-edges (and no other non-simple edges). For all G ∈ S , all simple three-

stars v1v3v5v7 in G, and all triplets with 1 ≤ i ≤ k additional pairs V i+1(S) =

(v1v3v5v7v2v4v6v8, . . . , v6+2i−1v6+2i) in G that are created by a valid Phase 4 switch-

ing S, we have

bt(S; 0) ≤ bt(G, ∅) (5.29)

bt(S; 1) ≤ bt(G, v1v3v5v7) (5.30)

bτ (S; i+ 1) ≤ bτ (G,V i+1(S)). (5.31)

J

Proof. We have bt(S; 0) = M3 − 18mtd
2
1 − 12mdd

2
1 and bt(G, ∅) is set to the number

of simple ordered three-stars in G. Analogously to Lemma 1, we show that bt(S; 0) is a

lower bound on bt(G, ∅) by starting with M3, the number of ordered three-stars in a

graph G matching the sequence and then subtracting an overestimate of the number

of non-simple three-stars. The only non-simple three-stars contain a triple-edge or a

double-edge. There are at most 18mtd
2
1 non-simple three-stars that contain a triple-edge,

as there aremt triple-edges inG, at most d1 choices for each of the two remaining outer

nodes, and 18 ways to label the star as shown in Figure 5.4a. Similarly, there are at most

12mdd
2
1 three-stars that contain a double-edge.

For the second bound, we have bt(G
′; 1) = L3− 18mtd

2
h− 12mdd

2
h−B3− 3(mt +

md)B2 − d3
h − 9B2, and bt(G, v1v3v5v7) is equal to the number of light simple ordered

three-stars that a) do not share any nodes with the three-star v1v3v5v7 created by S,

b) have no edge v1v2 and no multi-edges v3v4, v5v6, v7v8. Each graph matching the

sequence contains exactly L3 light ordered simple three-stars. Analogous to bt(S; 0),

there are at most 18mtd
2
h + 12mdd

2
h light three-stars that are not simple. There are at

most d3
h + 9B2 light simple ordered three-stars v2v4v6v8 of case a): �rst, if v2 = v1,

then there are at most d3
h choices for the outer nodes. In addition, we know that for each

node v4 in G, there are at most B2 =
∑d1

i=1[dh+i]2 light simple two-stars v2v6v8 where

v2v4 is an edge [78], so there are at most 9B2 three-stars where v4, v6, v8 ∈ {v3, v5, v7}.
The only remaining case is if v2 ∈ {v3, v5, v7}, or if any of v4, v6, v8 = v1, but in

this case v1v2 is an edge, so this falls under case b). For case b), it su�ces to subtract

B3 + 3(mt + md)B2 three-stars: we know that for each node v1 in G, there are at

most B3 =
∑d1

i=1[dh+i]3 light simple three-stars v2v4v6v8 where v2v1 is an edge. For a

three-star where any of v3v4, v5v6, v7v8 is a multi-edge, we have at most 3(mt+md)B2
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choices, as there are mt +md multi-edges in G and choices for the �rst outer node, and

at most B2 choices for the center and the two remaining outer nodes.

For the third bound, we have bτ (S; i + 1) = M1 − 6mt − 4md − 16d1 − 4(i −
1)d1 − 2A2, and bτ (G,V i+1(S)) is equal to the number of simple ordered pairs in G,

that a) do not share any nodes with the triplet, or the previous i− 1 pairs, and b) have

no forbidden edges with the triplet. First, each graph matching the sequence contains

exactly M1 ordered pairs. At most 6mt of those pairs are in a triple-edge, and at most

4md pairs are in a double-edge. For case a), there are at most 16d1 ordered pairs that

share a node with the triplet, as for each of the 8 nodes of the triplet, there are at most

d1 choices for the second node of the simple pair and 2 ways to label the pair. Similarly,

there are at most 4(i − 1) pairs that share a node with the i − 1 pairs relaxed in the

previous steps. Finally, there are at most 2A2 pairs of case b): each of the two nodes in

the pair cannot have an edge with one designated node of the triplet, and starting from

that node, there are at most A2 pairs connected to it via an edge. �

In Phase 5, we use three new lower bounds bd(G; 0), bd(G; 1) and bτ (G; k + 1).

Lemma 5.6. Let S be the class of graphs with md light double-edges (and no other

non-simple edges). For all G ∈ S , all simple two-stars v1v3v5 in G, and all doublets

with 1 ≤ i ≤ k additional pairs V i+1(S) = (v1v3v5v2v4v6, . . . , v4+2i−1v4+2i) in G

that are created by a valid Phase 5 switching S, we have

bd(S; 0) ≤ bd(G, ∅) (5.32)

bd(S; 1) ≤ bd(G, v1v3v5) (5.33)

bτ (S; i+ 1) ≤ bτ (G,V i+1(S)). (5.34)

J

Proof. We have bd(G
′; 0) = M2 − 8mdd1, and bd(G, ∅) is set to the number of simple

ordered two-stars inG. We now show that bd(G
′; 0) is a lower bound on bd(G, ∅). There

are M2 ordered two-stars in a graph G matching the sequence. Of these, the only ones

that are not simple are the ones that contain a double-edge, and G can contain at most

8mdd1 such two-stars.

For the second bound, we have bd(G; 1) = L2−8mddh−6B1−3d2
h, and bd(G, v1v3v5)

is equal to the number of light simple ordered two-stars in that do not share any nodes

with the two-star v1v3v5. Similar to the �rst step above, G contains exactly L2 light

ordered two-stars, and at most 8mddh light ordered two-stars that are not simple. The

only remaining cases are two-stars v2v4v6 that share any nodes with the �rst two-star.

First, there are at most 6B1 two-stars where v4, v6 ∈ {v1, v3, v5}, as B1 is an upper

bound on the number of pairs v2v4 or v2v6 where v4 or v6 are connected to one of

v1, v3, v5 via an edge. The other remaining case is v2 ∈ {v1, v3, v5}. In this case, there

are at most d2
h choices for the remaining nodes of the two-star, so in total there are at

most 3d2
h such two-stars.

The proof for bτ (S; i+ 1) is analogous to the proof for the similar bound in Phase 4

(see above). �
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6
An Experimental Study of External Memory

Algorithms for Connected Components

joint work with G.S. Brodal, R. Fagerberg, D. Hammer, U. Meyer, and M. Penschuck

We empirically investigate algorithms for solving Connected Components in the ex-

ternal memory model. In particular, we study whether the randomized O(sort(E))

algorithm by Karger, Klein, and Tarjan can be implemented to compete with practi-

cally promising and simpler algorithms having only slightly worse theoretical cost,

namely Borůvka’s algorithm and the algorithm by Sibeyn and collaborators.

For all algorithms, we develop and test a number of tuning options. Our experiments

are executed on a large set of di�erent graph classes including random graphs, grids,

geometric graphs, and hyperbolic graphs.

Among our findings are: The Sibeyn algorithm is a very strong contender due to its

simplicity and due to an added degree of freedom in its internal workings when used

in the Connected Components se�ing. With the right tunings, the Karger-Klein-

Tarjan algorithm can be implemented to be competitive in many cases. Higher

graph density seems to benefit Karger-Klein-Tarjan relative to Sibeyn. Borůvka’s

algorithm is not competitive with the two others.

This chapter is based on the peer-reviewed conference article [41]:

[41] G. S. Brodal, R. Fagerberg, D. Hammer, U. Meyer, M. Penschuck, and H. Tran. An

experimental study of external memory algorithms for connected components.

In D. Coudert and E. Natale, editors, Int. Symp. on Experimental Algorithms SEA,

volume 190 of LIPIcs, pages 23:1–23:23. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2021. doi:10.4230/LIPIcs.SEA.2021.23 .

My contribution

David Hammer and I contributed an over-proportionally amount of material.

https://doi.org/10.4230/LIPIcs.SEA.2021.23
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6.1 Introduction

The Connected Components (CC)CC: Connected

Components

problem is a fundamental algorithmic task on undi-

rected graphs and has a large number of applications including web graph analysis,

communication network design, image analysis, and clustering in computational biology.

CC may be viewed as a smaller sibling of the Minimum Spanning Forest (MSF )MSF: Minimum Spanning

Forest

problem

de�ned on weighted, undirected graphs — any algorithm solving MSF and able to return

the trees of the forest one by one can be used to solve CC by �rst assigning arbitrary

edge weights.

In internal memory, CC is simple to solve in linear time by DFS or BFS. A long-

standing open problem is whether MSF can also be solved deterministically in linear

time. The large body of work devoted to the question (see e.g., the references in [151])

indicates that in internal memory, MSF is harder to tackle than CC, at least in terms of

the algorithmic sophistication needed (and potentially also in terms of the asymptotic

complexity of the problem).

In external memory (see Section 6.2 for the de�nition of the model and its pa-

rameters), the I/O-complexity of CC and MSF is bounded from below by Ω(E/V ·
sort(V )) [142] and a number of algorithms come within at most a logarithmic factor of

O(sort(E)). No deterministic algorithm is known to match the lower bound, but a ran-

domized algorithm with O(sort(E))1
expected cost exists [108, 51]. Unlike in internal

memory, the known external memory CC algorithms are essentially the same as the

known algorithms for MSF , either exactly or as close variants. The largest discrepancy

between the two settings is for the randomized O(sort(E)) algorithm, where a fairly

involved subroutine in its MSF variant becomes straight-forward for CC.

It seems that the randomized O(sort(E)) external memory algorithm was never

empirically investigated. One aim of this paper is to carry out such an investigation in

the CC setting where the discrepancy mentioned above gives the algorithm the largest

opportunity of being competitive in practice. Due to the large size of internal memory

in most current computer systems, it is not clear whether a small asymptotic advantage

of at most a logarithmic factor will materialize in practice for graphs of very large, but

still plausible, sizes. In more detail, we want to investigate implementations and tuning

options for the randomizedO(sort(E)) CC algorithm, as well as for the practically most

promising of the remaining (asymptotically slightly worse, but often simpler) external

CC algorithms, and then compare the best implementations of each algorithm on a

broad range of graph classes. More generally, the aim of this paper is to investigate the

best algorithmic choices for solving the CC problem in external memory.

Previous work In the semi-external case, where V ≤ M , scanning the edges and

maintaining the components via a Union-Find data structure in internal memory will

solve CC in O(scan(E)) I/Os. The classic Borůvka MSF algorithm was externalized by

1

Using sparsi�cation, the algorithm can be implemented to useO(E/V · sort(V )) I/Os [51], matching

the lower bound exactly. In this paper, we will consider itsO(sort(E)) version as the two bounds are very

close and in practice their di�erence is unlikely to outweigh the added algorithmic complication.
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Chiang et al. [51] by showing how to implement a Borůvka step in O(sort(E)) I/Os,

leading to O(log(V/M) · sort(E)) I/Os for the entire algorithm. A simpler method for

implementing a Borůvka step in O(sort(E)) I/Os was later given by Arge et al. [15].

Munagala and Ranade [142] gave a CC algorithm using O(log log(V B/E) · sort(E))

I/Os and also proved the above-mentioned lower bound. The algorithm was generalized

to MSF by Arge et al. [15], keeping the I/O bound. The algorithm of [15] was further

developed by Bhushan and Gopalan [33], slightly improving the I/O bound.

Karger, Klein, and Tarjan [108] gave an internal MSF algorithm with expectedO(E)

running time using a linear timeMSF veri�cation algorithm as its central subroutine. The

algorithm can be externalized to use expected O(sort(E)) I/Os [51] by using external

Borůvka steps and the external MSF veri�cation algorithm by Chiang et al. [51]. For

CC, it is an easy observation (already made by [4]) that the MSF veri�cation can be

substituted by a contraction step, which simpli�es the implementation considerably. To

the best of our knowledge, neither the CC nor the MSF variant of this external memory

algorithm has been studied empirically.

A very simple randomized MSF algorithm using expected O(log(V/M) · sort(E))

I/Os was developed by Sibeyn and Meyer. It was �rst reported by Schultes [165],

and further described and empirically tested by Dementiev et al. [61]. A CC variant

was theoretically and empirically studied by Sibeyn [167] (and to a lesser extent by

Schultes [166]). Due to its simplicity, the algorithm is likely to have very competitive

constants in its I/O bound, which is argued theoretically in [167] and substantiated

by the experiments in [165, 166, 61, 167]; however, none of these experiments include

comparisons to other external memory algorithms.

Our contribution We implement the CC version of the O(sort(E)) randomized and

external algorithm by Karger, Klein, and Tarjan [108] and develop and investigate a

number of tuning options. We then compare it to tuned versions of what we consider

the practically most promising other algorithms for the CC, namely external Borůvka

and the algorithm by Sibeyn et al. [165, 166, 61, 167]. Our experiments are executed

on numerous graph classes, including G(n, p) graphs, grids, geometric graphs, and

hyperbolic graphs (see Section 6.6).

Among our �ndings are: Sibeyn’s algorithm is a very strong contender due to its

simplicity and due to an added degree of freedom in its internal workings when used

in the CC setting. With the right tunings, the Karger-Klein-Tarjan algorithm can

be implemented to be competitive. Higher graph density seems to bene�t Karger-

Klein-Tarjan relative to Sibeyn, as does larger graph sizes. The latter observation is

in line with its better (expected) asymptotic I/O bound. Borůvka’s algorithm is not

competitive compared to its contenders.

6.2 Definitions

The Connected Components (CC) problem on an undirected graph G = (V,E) is to

partition V such that two nodes are in the same subset i� they are connected by a path

131



External Memory Connected Components

v1

v2

v3 v4

v5

v6v7

v v1 v2 v4 v6 v7
f ′(v) v1 v1 v6 v6 v6

(a) Obtain f ′ by

solving CC on E′

relabel

E by f ′

v3

v5

v6

v v3 v5 v6
f ′′(v) v5 v5 v5

(b) Obtain f ′′ by solving CC

on E relabeled by f ′

relabel the

stars of f ′

by f ′′

and merge

v1

v2

v3 v4

v5

v6v7

v v1 v2 v3 v4 v5 v6 v7
f(v) v1 v1 v5 v5 v5 v5 v5

(c) Obtain f by merging the star of f ′′

and the star of f ′ relabeled with f ′′

Figure 6.1: Relabeling and contraction. The input E and the subset E′ ⊆ E are illustrated in (a) where E′ corresponds

to solid black edges and E \ E′ to do�ed lines. Solving CC on E′ yields f ′ which represents the two CCs {v1, v2} and

{v4, v6, v7} by v1 and v6, respectively. This corresponds to the two stars indicated by the directed green edges. Since v3 and

v5 are not covered by E′, they are also not included in f ′. The result of the contraction E/E′ is shown in (b) with solid lines

and is obtained by relabeling E by f ′. Solving CC on E/E′ yields f ′′ indicated by the dashed directed edges. In (c), we

merge the stars of f ′ relabeled with f ′′ (solid) together with the stars of f ′′ (dashed) and obtain the final result f . Observe

that the star of f may contain edges (e.g. (v7, v5)) that were not part of the original input E.

in G. We overload the symbols V and E: depending on the context, V may represent

either the set or the number of nodes, and E may similarly represent either the set or

the number of edges.

We analyze the cost of algorithms in the I/O-model of Aggarwal and Vitter [1] where

M denotes the size of the internal memory, B denotes the block size, and scan(N) =

Θ(N/B) and sort(N) = Θ(N/B logM/B(N/M)) denote the costs of scanning and

sorting N elements.

As input, we assume the standard external memory representation of a graph as a

list of its edges. This means that isolated nodes cannot be represented and should be

handled separately by the user, which is straight-forward as they constitute their own

connected components. We denote by V (E) the set of nodes contained in an edge set E.

Hence, an input is formally a graph G = (V (E), E), but for simplicity we denote it just

by E. We require the input E to be given in lexicographical order, as all our algorithms

need this. We thereby avoid an initial sorting step in the algorithms, which would only

make their relative di�erences in running times less clear. Unless otherwise stated, we

also assume that each unordered edge {u, v} is stored only once in its normalized form

(min(u, v),max(u, v)).

As output, we require a mapping f : V (E)→ V (E) where f(v) = f(u) i� u and v

are in the same connected component. In other words, for each connected component

one node is chosen as its representative. Concretely, the mapping shall be returned

as the list of pairs {(v, f(v)) | v ∈ V (E)}, except that all identities (v, v) are omitted.

Note that we can interpret this output as the edge list of a directed graph composed of

disjoint stars, where a star is a set of nodes pointing to a common center node. Each

star represents a connected component in E.

A relabeling of a graph E by a mapping f : V (E) → V (E) means applying f to

all edge endpoints and then removing parallel edges and self-loops in the resulting

edge list. If f is given by a graph of oriented stars as described above, a relabeling
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can be implemented in O(sort(E)) I/Os by O(1) sorting and scanning steps on E. A

contraction E/E′ of a graph E by a subset E′ ⊆ E of its edges means solving CC on

E′ and then relabeling E by the returned mapping f ′. The concepts of relabeling and

contraction are illustrated in Figure 6.1 (a) and (b), respectively.

Note that if we next obtain a mapping f ′′ by solving CC on the contracted graph

E/E′, we can solve CC on the original graph E as follows: use the mapping f ′′ to

relabel the graph of stars representing f ′ (only the target of each star edge is a�ected

by the relabeling) and then return the union of those relabeled edges and the edges of

the graph of stars representing f ′′. The process is illustrated in Figure 6.1 (c). It is easy

to verify that it will produce a graph of stars representing the solution f to CC on the

original graph E. All recursive algorithms in the current paper use this process as their

framework.

6.3 Algorithms

In this section, we describe the basic versions of the implemented algorithms.

Union-Find In the semi-external case, where V (E) ≤M , scanning the edges once

while maintaining a Union-Find data structure on V (E) in internal memory solves CC in

O(scan(E)) I/Os and O(Eα(E, V (E))) time [175], where α is the inverse Ackermann

function. We use this as a base case.

Borůvka A Borůvka step in the MSF setting means letting each node choose an

incident edge of minimum weight and then contracting the graph by the setE′ of chosen

edges. In E′, each node is in a connected component of size at least two, so the number

of nodes is at least halved in the step. As a Borůvka step requires O(sort(E)) I/Os (see

below), this leads to a recursive algorithm which will use O(log2(V/M) sort(E)) I/Os

before the semi-external base case is reached. This constitutes Borůvka’s algorithm.

The �rst part of a Borůvka step �nds E′ with O(sort(E)) I/Os as follows: double

E during a scan to make it contain both directions of each undirected edge. Then for

all nodes choose an incident edge of minimum weight via a single sort and scan of this

version of E.

To implement the remainder of a Borůvka step, one can exploit that E′ is a graph

where each connected component has exactly one cycle, as seen by repeatedly following

paths of chosen edges until all nodes have been visited. Assuming that all edge weights

are unique (otherwise, use node IDs as tie-breakers), the weights along any such path

are strictly decreasing, except when traversing the lightest undirected edge {u, v} of

the component in two directions (u, v), (v, u), implying that the cycle is a two-cycle.

Both directions have the same normalized representation, hence can be identi�ed and

de-duplicated by sorting E′, after which the connected component corresponds to a

tree rooted in v. This can be done for all such pairs in the same sorting step, making

the edges E′ form a forest where each tree coincides with a connected component. We

select the roots as the components’ IDs.
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In order to return the star graph of the mapping f ′, we have to inform each node

of its tree’s root. Early external methods [51, 4] used algorithms for Euler tours of

trees based on list ranking. We use a simpler method described in [15]. It requires

O(sort(V (E))) I/Os and is based on the fact that edge weights are strictly increasing

on root-to-leaf paths in the trees, i.e., if we address messages to nodes by the weight

of their incoming edge, parents will be processed before their children. This allows

edge weights to be used as a “time line” in a general technique known as Time Forward
Processing [123]. The propagation is done for all trees simultaneously by maintaining a

set of signals in an external priority queue. The data structure is initialized by inserting

signals for all children of all roots. Using sorting steps, we also create a list L of tree

edges not incident to a root. In L, all child edges of a node v are grouped together, and

the order between groups is determined by the weight of the parent edge of v. We then

repeatedly remove the signal with smallest key from the priority queue and forward the

information contained to the next block of children from L.

In the CC setting, the above algorithm for a Borůvka step can be implemented by

(formally) assigning to all edges their unique normalized identity as their weight. Note

that in the �rst part of the step, this is equivalent to each node simply choosing the edge

to the neighbor with the lowest ID.

Karger-Klein-Tarjan The CC version [4] of the O(sort(E)) randomized, external

algorithm based on Karger, Klein, and Tarjan [108] has the following recursive structure:

1. Perform three Borůvka steps on the input graph. Let the result be E.

2. Let E′ contain each edge of E independently with probability 1/2.

3. Compute the connected components of E′ recursively.

4. Form the contraction E′′ = E/E′.

5. Compute the connected components of E′′ recursively.

6. Relabel the result of step 3 by the result of step 5 and merge with the result of

step 5, as detailed in Section 6.2.

7. Perform the relabelings and merges corresponding to the contraction in each of

the initial Borůvka steps (as detailed in Section 6.2) and return the result.

In step 4, only the edges in E \ E′ need to be processed as contraction by E′

eliminates all edges in E′. The crux of the Karger-Klein-Tarjan algorithm is that the

number of edges in E′′ is O(V (E)) in expectation. The argument for this is as follows

(adapted from [108] to the CC setting).

Consider building a spanning tree F for E′ by the standard Union-Find based

algorithm while performing the sampling. That is, consider each edge e ofE sequentially

and include it in F i� it is sampled and it does not form a cycle with edges already

in F . Case 1: e forms a cycle. Then e will not appear in E′′ due to the contraction.
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Case 2a: e does not form a cycle, and is sampled. Then e will not appear in E′′ due

to the contraction (as it is included in F ). Case 2b: e does not form a cycle, and is not

sampled. Then e may appear in E′′. Since the �nal F is a spanning tree of E′, we have

|F | ≤ V (E′) − 1 and hence |F | < V (E). Thus, the number of Case 2b edges is a

stochastic variable upper-bounded by a negative binomial distribution with p = 1/2

and r = V (E) (the number of tails before V (E) heads have appeared when �ipping a

fair coin). Therefore the expected number of Case 2b edges is at most V (E), implying

the same for the expected number of edges in E′′.

This statement is analogous to Lemma 2.1 of [108] for the MSF version. The rest of

the argument in [108] for the expected cost carries over
2

almost verbatim, with O(E)

time substituted by O(sort(E)) I/Os.

Sibeyn The MSF algorithm presented in [61] is a surprisingly simple I/O-e�cient

algorithm. It works by repeatedly letting some node select its minimum incident edge

and contracting that edge. These contractions are done in a lazy fashion using the

time-forward processing method with node IDs as the “time” dimension. The original

algorithm is described in two versions: one using buckets and the other using a priority

queue.

We here describe the version based on priority queues. The algorithm represents the

undirected edges only in their normalized form (oriented from lower to higher ID). All

edges are initially inserted into a priority queue (PQ) which is ordered by source �rst and

edge weight second. This ordering allows the algorithm to perform node contractions by

repeatedly extracting the minimum edge in the PQ. When the extracted edge (u, v, w)

has a new source u compared to the previous extracted edge, {u, v} is the lightest edge

incident to u (after the contractions done so far) and is output as an MSF edge. The edge

{u, v} is then contracted and u’s remaining edges are forwarded to (i.e., taken over by)

v. In detail, all subsequent edges (u, v′, w′) with source u extracted from the PQ become

{v, v′} by inserting (min{v, v′},max{v, v′}, w′) into the PQ, except that edges with

v′ = v (i.e., self-loops) are skipped. In this MSF version of the algorithm, forwarded

edges need to be annotated with the original node IDs of their endpoints, in order for the

output to be a correct MSF. When the number V ′ of source IDs remaining in the PQ can

�t in internal memory, i.e., when V ′ ≤M , the rest of the edges in the PQ are extracted

and a semi-external version of Kruskal’s algorithm is run on them. If using randomized

node IDs, the algorithm requires expected O(E log(V/V ′)) priority queue operations

to contract the original node set V to a smaller node set V ′ (i.e. for contracting V − V ′
nodes) [61]. This implies a total cost of O(log(V/M) · sort(E)) I/Os.

In our setting, the goal is to compute connected components. This allows the

algorithm to be simpli�ed in a number of ways (some described in [166]). The tree that

the algorithm outputs should only capture connectivity, hence its edges need not be

edges from the original input E, so there is no need to annotate forwarded edges with

original node IDs. Additionally, one can choose an arbitrary edge out of the “current”

2

The argument in [108] allows for using only two initial Borůvka steps. We here follow the description

of the CC algorithm in [4], which uses three.
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source u as the new target to forward edges to. A natural heuristic is to send the

information as far forward in time as possible. This is achieved by simply ordering the

PQ by source in increasing order and by target in decreasing order as the �rst edge out

of each new source will then go to the furthest neighbor (or known reachable node due

to forwarded edges) immediately.

As the �nal CC information should be represented as a set of stars, some post-

processing has to be done on the rooted trees output by the modi�ed node contraction

algorithm. As node IDs give a topological ordering of the tree edges, one can simply

reverse the tree edges and use time-forward processing in the opposite direction relative

to the node contraction phase. This post-processing only incurs O(sort(V )) additional

I/Os.

The bucket version of the algorithm replaces the priority queue with a set of unsorted

buckets. Two variants are described in the CC setting in [167, Section 3.4]: one which

processes each bucket in internal memory and one which uses the semi-external Union-

Find algorithm on each bucket. Choosing bucket sizes ahead of time for the former

variant is non-trivial as the density tends to increase during computation. We therefore

focus on the latter variant in this paper.

Randomized-Borůvka A standard Borůvka step has a �rst part where each node

selects an incident edge, and a second part where the connected components of this edge

set E′ are found via time-forward processing and returned as a mapping represented by

a star graph.

We now describe a novel randomized method for the second part which is simpler

than time-forward processing, at the cost of a worse bound on the contraction factor. In

Section 6.7, we empirically investigate whether this trade-o� is bene�cial for the overall

I/O cost when using Borůvka steps (as part of Borůvka’s or Karger-Klein-Tarjan’s

algorithm).

We consider the selected edge of a node as an outgoing oriented edge. The method

is simple: 1) Let each node keep its selected edge with probability p, resulting in the

edge set E′′. 2) Mark all edges (u, v) in E′′ for which E′′ contains an edge (w, u), then

remove all marked edges to give the �nal edge set E′′′. Step 1) can be done during the

edge selection process at no cost, and step 2) can be done in one additional sort and scan

step. No (oriented) path in E′′′ has length more than one, hence E′′′ is a star graph itself

(it represents its own connected components) and can just be returned. Note that while

the star-graph computation discussed for the original Borůvka algorithm requires the

cycle of a connected component to be a two-cycle, and therefore requires nodes to

choose minimum incident edges according to some assigned unique edge weights, this

is not the case for our randomized variant.

Lemma 6.1. E′′′ has expected size of at least p(1− p)V (E). J

Proof. E′ has size V (E), so the expected size ofE′′ is pV (E). If we for each edge (w, u)

in E′ count a mark whenever (w, u) was kept and (u, v) was kept (where (u, v) is u’s

chosen edge), then we have an upper bound on the total number of marks (it is an upper
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bound, as (u, v) could also be counted as marked via another edge (w′, u), but (u, v)

can only hold one mark). Hence, the expected number of edges removed from E′′ to

E′′′ is less than p2V (E). Thus, the expected size of E′′′ is at least p(1− p)V (E), which

is maximized for p = 1/2. �

When contracting using the star graph E′′′, each edge of E′′′ will remove at least

one node, so at least 1/2(1− 1/2)V (E) = V (E)/4 nodes are removed in expectation.

Thus, the expected contraction factor is at least 1/(1− 1/4) = 4/3. The contraction for

a given graph may be larger than this (just as for standard Borůvka steps and its lower

bound of two on the contraction factor). In Section 6.7, we empirically study contraction

factors.

6.4 Tuning Options

We suggest and experimentally evaluate several variations of the algorithms with

potential for impact on their practical running times and I/O costs.

Pipelining Pipelining is the concept of one algorithmic sub-routine handing its output

directly to another sub-routine without storing the intermediate data on disk. Applying

this where possible can save I/Os, and our implementation platform STXXL o�ers tools

for this type of programming. Before settling on using it, however, we want to investigate

its impact.

Contraction Sub-routine In Borůvka’s algorithm, and in the �rst step of the

Karger-Klein-Tarjan algorithm, nodes are contracted. We investigate if Time For-
ward Processing based Borůvka steps or the proposed randomized version will be the

fastest. The general form of the I/O cost argument in [61, 165] states that if Sibeyn’s

algorithm is run until the number of nodes has been contracted from V to V ′, it uses

expected O(log(V/V ′) · sort(E)) I/Os. Thus, another possible contraction sub-routine

in Karger-Klein-Tarjan is to use Sibeyn.

Omi�ing Node Contractions at the Root in Karger-Klein-Tarjan From the

details of the cost analysis of Karger-Klein-Tarjan [108], it seems likely that the initial

contraction in the root node of its recursion tree will dominate the running time in

practice. The asymptotic result of expectedO(sort(E)) cost still holds if this contraction

(but not the contractions in other nodes of the recursion tree) is omitted. Then the

algorithm will simply start with a scan of the input edge list when sampling edges before

the �rst recursive call. If the returned mapping happens to contract nodes and edges

well, the second recursive call will not contribute much to the total I/O cost, either. In

this case, the dominating part will be the contraction after the �rst recursive call, which

comprises two sorting steps and two scannings steps on E (if we enter the base case in

the second recursive call, we can even save one of the sorting steps, because the edges

do not need to be sorted before making the call).

137



External Memory Connected Components

Sampling Parameter in Karger-Klein-Tarjan The original sampling probability

for edges before the �rst recursive call in Karger-Klein-Tarjan was set to p = 1/2,

but other values are possible. Lowering p makes the �rst recursive call cheaper, and

for denser graphs, we may still have a good e�ect of the contraction before the second

recursive call, because a sparser subset of edges may still span large portions of the

connected components. If this turns out to be true, one could make p depend on the

density (lower p when the density is higher).

Approximate Counting Algorithms for Size Estimation In the recursive algo-

rithms, there is a need to estimate V in order to know when the semi-external base case

can be entered. One idea is to use approximate counting algorithms [10, 21, 68] from

the streaming community to determine an estimate on the number of unique nodes in

the edge list. In the streaming model this problem is referred to as the Distinct Elements
problem and most solutions only provide a (δ, ε) guarantee, meaning that the estimate

is within a (1 + ε)-multiplicative error with probability at least (1 − δ). As smaller

values of ε and δ require more internal work (mostly in the form of more evaluations

of independent hash-functions), we investigate if we can bene�t from these methods

while staying I/O-bound.

Which Neighbor to Contract in Sibeyn In each step of Sibeyn, the MSF version of

the algorithm must choose to contract the current node and its neighbor given by its

incident edge of minimum weight. In the CC version, it is free to choose any neighbor.

As argued in [61], it may be bene�cial to choose the neighbor with largest node ID. We

investigate what is the best choice and the gains possible, and we empirically compare

choosing a neighbor with largest node ID, a neighbor with smallest node ID, and a

random neighbor (which corresponds to the MSF version).

Minimizing the PQ in Sibeyn When running the PQ version of Sibeyn, we may

exploit that the input edges are sorted. This allows us to skip the initial insertion of all

edges into the PQ: while running the algorithm, the list of original edges can just be

merged with the output of the PQ, which then only needs to contain reinserted edges,

not original edges.

Influence of Relinking in Sibeyn with Buckets In the bucket version of Sibeyn’s

algorithm, the connected components for a bucket are computed and signals are sent to

later buckets. Sibeyn [61] introduces a relinking variant which restructures the signals

before sending them to reduce the number of signals between buckets.

6.5 Implementation

All algorithms are implemented in C++ using the STXXL library [60], which o�ers highly

tuned external memory versions of fundamental algorithmic building blocks like sorting

and priority queues. It also supports pipelining, as described in Section 6.4. The external
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priority queue of STXXL, which we use in several places in the algorithms implemented,

is based on [160].

In order to accommodate di�erent contraction schemes in the contraction of the

recursive Karger-Klein-Tarjan algorithm, we implemented a generic framework for

performing the sampling, contraction, relabeling and merging during the algorithm’s

execution. The supported conraction schemes are Sibeyn, Karger-Klein-Tarjan and

Randomized-Borůvka contractions. The framework comes in two �avors: as a purely

vector-based and a pipelined stream-based implementation. This allows us to evaluate

to what degree pipelining is bene�cial.

Edge Representation In our implementation we store each undirected edge by its

ordered pair (u, v) where u < v. For sorted edges we additionally employ a more

I/O-e�cient data structure: consecutive edges with the same source u are compressed

to a single entry u followed by all its adjacent nodes and a delimiter.

Data Structures The pipelined implementations make use of several STXXL data

structures. In these, generated data is not saved in an explicit vector but fed to a container

then functions as a data stream with read-only access. An example for this is STXXL’s

sorter: in the �rst phase, items are pushed into the write-only sorter in an arbitrary

order by some algorithm. After an explicit switch, the �lled data structure becomes

read-only and the elements are provided as a sorted stream which can be rewound at

any time. While a sorter is functionally equivalent to �lling, sorting, and reading back

an external memory vector, the restricted access model reduces constant factors in the

running time and I/O cost [24].

Semi-external Base Case While we assume that the number of nodes in the original

input is known exactly, this is not necessarily true for recursive calls. As we aim to

switch to a semi-external base case algorithm, keeping track of the number of remaining

nodes is essential. For the Karger-Klein-Tarjan algorithm, the node contraction step

contracts a speci�ed number of nodes and as such, a good estimate for the number

of nodes remaining after initial contraction is simply the original node count minus

the number contracted
3
. The same holds for the contracted edge set passed on to the

second recursive call: the number of connected components returned from the �rst

recursive call is known and corresponds to the number additional nodes contracted.

This leaves the �rst recursive call operating on the sampled edges E′. The number of

nodes here is trivially bounded both by the bound known before sampling and by 2|E′|.
The latter bound can be improved somewhat; as edges are kept sorted, the number

of unique sources can be counted while sampling and only |E′| is added for an upper

bound. Taking the best of these bounds at di�erent stages, we maintain an upper bound

on the node count. By using these upper bounds we can save I/Os in the relabeling as

relabeled edges may immediately be piped into the semi-external base case without the

3

This gives an exact count except when a connected component is contracted to a singleton — at which

point it will not appear in the edge list.
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otherwise required �nal sorting step. Note that while computing the exact number of

nodes requires only a few scanning and sorting steps, this is too costly in practice for

competitive results.

6.6 Graph Classes

For our experiments, we use a variety of di�erent synthetic graph models. We consider

four types: the Gilbert type classic random graphs, Random Geometric Graphs and

Random Hyperbolic Graphs, both belonging to the class of spatial network models, and

�nally deterministically generated grid graphs. Using scalable graph generators, we

generate fully external (M < V ) graphs with a range of di�erent parameters. For a

recent overview of such generators, see [150].

Gilbert Graphs In the G(n, p) model of Gilbert [79], each edge is present indepen-

dently with probability p. The G(n, p) model can generate graphs with a varying number

of connected components for su�ciently small p. It is widely used in empirical work,

but its degree distribution is often considered atypical compared to real-world instances.

Random Geometric Graphs Random Geometric Graphs (RGGs) [80, 148] are a simple

case of spatial networks where graphs are projected onto Euclidean space. In RGGs n

points are placed uniformly at random into a d-dimensional unit-cube [0, 1)d where any

two points are connected if their Euclidian distance is below a given threshold r. To

generate graphs in this model, we use the generator available in KaGen [74].

Random Hyperbolic Graphs Random Hyperbolic Graphs (RHGs) [112, 87] are a

special case of spatial networks where graphs are projected onto hyperbolic space. We

describe the threshold model, the simplest RHG variant [87]. The points are randomly

placed onto a two-dimensional disk in hyperbolic space where the radial probability

density function increases exponentially towards the border. The angular coordinate is

sampled uniformly at random from [0, 2π) and points are connected if their hyperbolic

distance is less than a given threshold R. The density of points near the center is

controllable by setting a dispersion parameter α. One interesting feature of RHGs is that

the node degrees follow a power law distribution which is often found in real-world

graph instances, in particular when generated via human activities and choices. In the

threshold model the exponent is γ = 1 + 2α with high probability [87]. To generate

graphs in this model, we use the HyperGen generator [149].

Grid Graphs We consider two di�erent types of square grid graphs. In both versions,

the nodes are seen as points in a two-dimensional grid; (x, y) for 1 ≤ x ≤ w and

1 ≤ y ≤ h. For the simpler version, nodes are connected horizontally and vertically to

their neighbors. All nodes except for boundary nodes thus have degree 4. To achieve

higher degree, we additionally consider generalized grids in which nodes are connected

to all nodes within distance d under the in�nity norm. That is, node (x, y) has edges to
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nodes (x+ i, y+ j) where −d ≤ i ≤ d and −d ≤ j ≤ d, except where this exceeds the

grid boundary. Internal nodes in these graphs have degree 4d(d+ 1). To investigate the

e�ects of increasing the number of components, we additionally generate graphs which

we refer to as cubes consisting of multiple disjoint layers, each of which is a generalized

grid graph.

6.7 Experiments

Our experiments were carried out in two phases. In the �rst phase, we investigated

the impact of the various algorithmic variants and proposals for tuning described in

Sections 6.3 to 6.5. This was done on subsets of the test graphs of Section 6.6 and

selected other test cases. The aim of this phase was to develop a set of well-engineered

implementations of the most promising contenders. In the second phase, we then

compared those on a large set of test graphs of Section 6.6 — the compute time of this

phase alone comprised one third of a year. Below, we describe our experimental setup

and our learnings from each of the two phases. For space reasons, we mainly include

plots for the second phase. The full set of plots are in Section 6.A (Appendix) (in the

plots, the numbers V and E are denoted by n and m, respectively).

6.7.1 Experimental Setup

The experiments were run on individual nodes of the Goethe-HLR cluster at Goethe

University Frankfurt, as this allowed us to run many experiments simultaneously (note

that our algorithms all are sequential, parallel algorithms for CC are beyond the scope

of this paper). The nodes each have Intel Xeon Skylake Gold 6148 CPUs and 192 GB

of RAM. Each node has a HGST Ultrastar HUS726020ALA610 hard drive which was

used for the STXXL disk �le. The code was compiled using GCC version 8.3.1 with the

optimization parameters O3 and march=native.

In each run, the input graph was �rst loaded onto the local hard drive in the

appropriate STXXL data structure: an edge stream for the stream-based implementations

and an STXXL vector for the vector-based implementations. The threshold for switching

to the semi-external base case was for all the algorithms set to 33,554,432 nodes which

corresponds to 256 MiB of node IDs. To capture wall-time and I/O volume, we used

the iostats module provided by the FOXXLL library (a component of STXXL). The

main timing plots in Figures 6.10 to 6.17 show the wall time (bars) and total I/O volume

(bytes read plus bytes written during the execution of the algorithm) reported by the

iostats.

To keep the combined compute time of the experiments from becoming infeasible

(even when executing experiments in parallel on a cluster), we reduced the RAM used

by the CPUs to a few GB, which allowed us values of V/M up to 80 and graph densities

E/V up to 20 (although not both maximal values at the same time) while keeping

individual experiments under half a day of compute time. Our hypothesis was that if

the algorithms are I/O-bound, the relative running times of the algorithms would stay

approximately the same even if moving to larger sizes of RAM and from the hard disks
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of the cluster nodes to solid-state disks. With the set of �nal contenders, we conducted

experiments on selected graph classes on a single machine having 16 GB of RAM and

a RAID with six solid-state disks of 480 GB each. Those experiments con�rmed our

hypothesis, as the relative running times changed less than 20% in almost all cases

tested.

To limit the amount of memory used on the cluster nodes, we limited the internal

memory allowed for STXXL primitives used (sorting streams and priority queues were

limited to 1 GB of RAM each). With the base case threshold (accounting for overhead),

and the above limits, the implementations should be able to run with approximately

2 GB of memory. We did not have a mechanism to enforce a strict bound on the memory

actually allocated, but monitored the amount of RAM actually used, which was in the

range of 2 GB to 5 GB. To force disk accesses rather than additional bu�ering, the

direct �ag was used for the STXXL disk �le.

6.7.2 Phase 1 – Initial Findings

We now describe our main �ndings in phase one of our experiments. Unless otherwise

mentioned, the measure compared is wall clock time.

Randomized-Borůvka and Borůvka

For our suggestion for randomized Borůvka steps, we �rst investigated the impact

on the observed contraction ratio of a number of di�erent edge representations and

of various sampling parameters. On most graph classes, sampling parameters much

closer to one than to 1/2 gave better contraction ratios (see Figure 6.5), in line with

Lemma 6.1 only giving a lower bound. There was correlation among the graph classes

between increased contraction e�ciency of the randomized Borůvka steps and increased

contraction e�ciency of standard Borůvka (past the lower bound of two on the ratio).

However, the ratio was consistently worse for the randomized version, and its simpler

code did not make up for this when considering the total time of Borůvka’s algorithm.

Additionally, both of the two versions of Borůvka’s algorithm were clearly worse than

Sibeyn’s algorithm based on PQs, both before and after adding pipelining. For instance,

when doing node contraction until the base case is reached, we found that Sibeyn’s

algorithm was approximately 59% faster than ordinary Borůvka and we likewise found

that one variant of our Karger-Klein-Tarjan implementation using Sibeyn’s algorithm

for node contraction was around 58% faster than one using the randomized Borůvka

steps (results vary across graphs, numbers given here are averages). We therefore left

Borůvka’s algorithm out of the �nal race.

Pipelining

Adding pipelining in STXXL turned out to improve our implementations of Sibeyn and

of Karger-Klein-Tarjan. Introducing pipelining (including compressed edge streams)

reduced the running time of one of our Karger-Klein-Tarjan variants approximately
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Figure 6.2: (Subset of Figure 6.10) Running times and I/O volumes for G(n, p) graphs with a node set size of 5GiB and varying

density. The default variant always contracts and has a sampling probability of p = 1/2. The remaining variants skip

contraction in the root and have fixed sampling probabilites. For m/n = 20, the default variant exceeded the local hard

disk’s capacity leading to a halt in the algorithm’s execution. We thus only report the elapsed wall time up until that point.

73% on average over a simple version based on STXXL vectors. Even for our Sibeyn

implementation (where even a simple implementation incurs much less copying), intro-

ducing pipelining improved the running time by approximately 10% on average. The

tunings to the PQ based version of Sibeyn suggested in Section 6.4, e.g. reducing the

processed volume of edges in the PQ, turned out to be bene�cial, lowering running time

by an additional approximately 29% on average.

Approximate Counting

For the estimation of V using approximate counting algorithms, we tested the FM

algorithm by Flajolet and Martin [68]. In essence, the FM algorithm computes for a

given input stream an estimate of its number of distinct elements. For this, every input

element is mapped by a hash function and incorporated into a later modi�ed and returned

proxy value. Due to the output variance being intolerably large, standard median-of-

means techniques are employed which in turn, however, require more independent hash

functions.

For several graph classes, we employed the FM algorithm in the sampling step of

the Karger-Klein-Tarjan algorithm with an increasing number of hash functions. To

accurately assess the returned estimates we separately ran the Karger-Klein-Tarjan

algorithm with the same seed and explicitly counted the correct number of nodes in

each sampling step.

We found that the number of hash functions needed in order to get a useful precision

in the estimate was so high that it impacted the running time. Additionally, the errors in

the estimation are two-sided, which �ts badly with the fact that invoking a Union-Find

based base case when not actually being semi-external will have disastrous e�ects on

the running time. Combined, this made us decide not to include this method in the �nal

experiments.
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Karger-Klein-Tarjan

For the contraction steps in the Karger-Klein-Tarjan algorithm we tried both standard

and randomized Borůvka steps, as well as the PQ based version of Sibeyn, and the latter

proved to be the better option.

When varying the sampling parameter p in Karger-Klein-Tarjan, we observed

a rather clear correlation (see Figure 6.2 and Figures 6.10 to 6.16): the best choice for

both I/O volume and running time seems to be p equal to the inverse density V/E of

the input graph, likely for the reasons conjectured in Section 6.4: a sampled subset of

edges containing around V nodes will often by itself contract the node set considerably,

while the left recursion will be cheap if this is achieved for small p, which may happen

more often for high densities.

Also, when visualizing the recursion trees, a clear pattern was a balanced tree for

this value of p, whereas quite strongly left-leaning and right-leaning trees appeared for

larger and smaller values, respectively. Pro�ling of the distribution of time spent in the

nodes of the recursion trees showed the root to be dominating, which is aligned with

the analysis in [108]. Often, the contraction step was dominating (as can also be seen

in Figure 6.2). There was also a small tendency for Karger-Klein-Tarjan to improve

relative to the other algorithms when V grew compared to M (for �xed density and

graph class). These observations (which are visible in the plots in Figures 6.10 to 6.17)

inspired us to implement variants of the Karger-Klein-Tarjan which do not use

contraction at the root, and adaptive variants which in all recursion tree nodes choose

contractions only for low (estimated) density and also choose a sampling parameter

close to V/E.

Choice of Contraction Target in Sibeyn

Perhaps our most interesting observation in phase one was the in�uence on Sibeyn

of the choice of which neighbor to contract (see Section 6.4). We tried the choices of

nearest, random, and farthest in node-ID order (i.e., the “timeline” in the time-forward

processing by the PQ). Of these, the random choice intuitively can be expected to behave

like the MSF variant of the algorithm (where each node must choose the neighbor of its

lightest incident edge, and where the node IDs are randomly permuted). As exempli�ed

by the �rst plot of Figure 6.6, where a message is a PQ entry (i.e., an edge in its original

form or a later replaced form) each inducing O(1) PQ operations, the choice of nearest

is by far the worst and was not considered again. On the other hand, farthest is always

better than random (see rest of plots in Figure 6.6).

This e�ect was �rst studied in [167], where an expected bound of O(E log log(V ))

messages was claimed (but the proof omitted) for Gilbert graphs. As seen in Figure 6.3,

we here verify that claim empirically, and also demonstrate that it does not hold for the

random choice. Even more interesting, for random grid graphs and random hyperbolic

graphs, the empirical evidence even suggests a better bound of expectedO(E) (Figure 6.8

and Figure 6.9). These �ndings suggest that Sibeyn in practice is strictly faster for CC
than for MSF , and that it for the former may often run in costO(sort(E)). Additionally,
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Figure 6.3: (Copy of Figure 6.7) Number of forwarded messages divided by m log n (le�) or m log logn (right) for Gilbert

graphs for increasing values of n. The value p is chosen s.t. a density of five is fixed. In (le�) we observe that the total number

of produced messages is dominated by m log n whereas in (right) we see that the volume asymptotically matches with

m log log n if messages are forwarded to the last neighbor.

the bulk of the messages seem concentrated very late in the time-forward process, which

in the external version is preempted by entering the semi-external Union-Find case,

which in turn has lower overhead per edge/message than a PQ. Combined with the

general simplicity of Sibeyn, these �ndings indicate that it may be very hard to surpass.

For our �nal Sibeyn implementations, we naturally used the farthest neighbor choice.

6.7.3 Phase 2 – Final Algorithms

For the second and �nal phase of experiments we selected the following algorithms

(with implementation choices �xed as described above).

• Karger-Klein-Tarjan in several versions: One with contractions in all recursion

tree nodes and �xed sampling parameter p = 1/2. Four versions omitting con-

traction at the root of the recursion tree and having �xed sampling parameters of

1/2, 1/4, 1/8, and 1/16, respectively. Two adaptive versions which in each node

of the recursion tree choose (among the values above) the sampling parameter

closest to the estimated inverse density V/E of the input graph of the node, and

also omit contraction if the estimated density E/V is below a �xed threshold of 4

or 8, respectively. Two similar adaptive versions where instead the threshold is

4 or 8, respectively, when the estimated V is close to the base case, but tends to

2 for growing V . These nine algorithms are denoted default, p = 1/2, p = 1/4,

p = 1/8, p = 1/16, CT = 4, CT = 8, AT = 4, and AT = 8, respectively.

• Sibeyn’s algorithm based on buckets, using Union-Find for solving CC in buckets,

as described in [167] (where buckets are called bundles). We tried four increasing

bucket sizes, all without and with relinking to minimize edges straddling buckets

(Section 6.4 and [167]). These eight algorithms are denoted bundle-x and min-x
for x = 1, 2, 3, 4.

• The basic Sibeyn using a PQ. This algorithm is denoted sibeyn.
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Figure 6.4: (Copies

of Figure 6.10b, Fig-

ure 6.13b, Figure 6.16d

and Figure 6.17c)

Running times and I/O

volumes for two Gilbert

graphs and the two

largest generated RGG

and RHG instances.
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(a) Gilbert graph, smallest node set, m/n = 5
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(b) Gilbert graph, largest node set, m/n = 5
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(c) Random Geometric Graph

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le-
1

m
in

-1
bu

nd
le-

2
m

in
-2

bu
nd

le-
3

m
in

-3
bu

nd
le-

4
m

in
-4

sib
ey

n

0

1

2

tim
e (

ho
ur

s, 
ba

rs)

0.0

0.5

1.0

I/O
 v

ol
um

e (
Ti

B,
 d

ot
s)

(d) Random Hyperbolic Graph

Comparing Karger-Klein-Tarjan Variants

We �nd based on Figures 6.10 to 6.17 that among the Karger-Klein-Tarjan variants

the adaptive ones are either winning or performing close to the best variant. This can be

observed for all considered graph classes (see Figure 6.4 for an overview). In almost all

cases, �xed contraction thresholds tend to perform better than adaptive ones. Further,

setting the threshold to a small value seems preferable. This behaviour is consistent

when increasing the number of nodes while keeping the density �xed (see for instance

Figure 6.10b, Figure 6.11b, Figure 6.12b and Figure 6.13b) where it is clear that relative

performances remain unchanged.

The good performance of these adaptive variants and the comparatively generally

weak performance of the default variant support our claim that contractions can be

intolerably costly.

Comparing Sibeyn Variants

We �nd that both versions of Sibeyn’s algorithm are strong contenders. While the PQ

based Sibeyn algorithm generally performs better on low density graphs (see Figure 6.4c

and Figure 6.4d), its relative performance gets worse with increasing V (see Figure 6.4a,

Figure 6.4b and Figures 6.10 to 6.13). Additionally, while the overall I/O volume may be

near optimal (see Figure 6.4d), the achieved wall clock time does not always re�ect this,

indicating that the I/Os incurred by the PQ may be more costly than those for sorting.

In comparison, the bucket based Sibeyn algorithm performs consistently among

the studied graph classes (see Figure 6.4 and Figures 6.10 to 6.17). We notice two clear

trends, larger buckets generally perform better and adding relinking typically improves

performance for graphs with higher densities.
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6.8 Conclusion

The results of our experiments in phase two on the above set of algorithms can be

seen in Figures 6.10 to 6.17. Sibeyn’s algorithm is a strong contender. One reason is

that it is very simple, using essentially only a priority queue (or repeated Union-Find

in the bucket version). A tuned implementation of external priority queues can be

highly e�cient: our measurements on STXXL show that sorting by its priority queue is

less than a factor of 2.5 slower than its sorting routine. Another reason is that for its

CC variant, the choice of farthest neighbors seems to lower the number of messages

generated to essentially linear (with the exact observed bound depending on the graph

class) in E, which translates into a similar number of priority queue operations. Very

few sorting and scanning steps on the input edge list can be performed by a competing

algorithm before it will lose to Sibeyn.

Still, with the right tunings, the Karger-Klein-Tarjan algorithm can be imple-

mented to be competitive in many cases. The best Karger-Klein-Tarjan variant often

either wins over PQ based Sibeyn, but not bucket based Sibeyn, or vice versa. If nothing

is known about the graph type and density, an adaptive variant such as CT = 4 may be

a robust choice. In general, higher graph density seems to bene�t Karger-Klein-Tarjan

relative to Sibeyn. If choosing the bucket based Sibeyn variant, using the largest bucket

size is clearly preferable (and often the min variant has a slight advantage). Borůvka’s

algorithm was not able to compete with neither Sibeyn nor Karger-Klein-Tarjan.

Natural future work suggested by this work include: 1) To investigate theoretically

the observed positive e�ects on Sibeyn of the farthest neighbors choice. As demonstrated

in Figures 6.7 to 6.9, di�erent results seem plausible for di�erent graph classes. 2) To

compare empirically also the MSF versions of the algorithms.
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Appendix 6.A Plots
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(a) m = 1.34 · 109
, m/n = 2.04
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(b) m = 3.36 · 109
, m/n = 5.00
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(c) m = 6.71 · 109
, m/n = 10.00
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(d) m = 1.34 · 1010
, m/n = 20.00

Figure 6.10: Running times and I/O volumes for G(n, p) graphs with a node set size of 5GiB

and varying density. For m/n = 20, the default variant exceeded the local hard disk’s capacity

leading to a halt in the algorithm’s execution. We thus only report the elapsed wall time up

until that point.

The considered algorithms are in fixed order from le� to right:

default : fixed sampling p = 1/2, always contract

p = 1/x: fixed sampling p = 1/x, always contract except in root

CT = x : adaptive sampling, contract if estimated density below fixed threshold x

AT = x : adaptive sampling, contract if estimated density below adaptive threshold x

bundle-x : Sibeyn’s algorithm based on buckets, without linking

min-x : Sibeyn’s algorithm based on buckets, with linking

sibeyn: Sibeyn’s algorithm based on priority-queues
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(b) m = 6.71 · 109
, m/n = 5.00
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(c) m = 1.34 · 1010
, m/n = 10.00

Figure 6.11: Running times and I/O volumes for G(n, p) graphs with a node set size of 10GiB

and varying density. For m/n = 10, the default variant exceeded the local hard disk’s capacity

leading to a halt in the algorithm’s execution. We thus only report the elapsed wall time up

until that point.
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(a) m = 4.03 · 109
, m/n = 2.04
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(b) m = 1.01 · 1010
, m/n = 5.00

Figure 6.12: Running times and I/O volumes for G(n, p) graphs with a node set size of 15GiB

and varying density.
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(a) m = 5.37 · 109
, m/n = 2.04
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(b) m = 1.34 · 1010
, m/n = 5.00

Figure 6.13: Running times and I/O volumes for G(n, p) graphs with a node set size of 20GiB

and varying density.
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(a) m = 1.34 · 109
, m/n = 2.00
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Figure 6.14: Running times and I/O volumes for (a) a grid graph with (w, h) = (25,905, 25,905)

and (b) a path graph. For both instances the parameters were chosen to generate a 20GiB graph.

Node IDs are permuted.
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Figure 6.15: Running times and I/O volumes for cubes with the parameters (a) one layer and

(w, h, d) = (18,000, 18,000, 2) and (b) 100 layers and (w, h, d) = (2600, 1300, 2).
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(d) n = 1.07 · 109
, m = 8.14 · 109
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Figure 6.16: Running times and I/O volumes for RGGs with roughly n = 230 and varying density.

Node IDs are permuted.
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(a) n = 6.54 · 108
, m = 2.61 · 109

, m/n = 3.99,

γ = 3

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le-
1

m
in

-1
bu

nd
le-

2
m

in
-2

bu
nd

le-
3

m
in

-3
bu

nd
le-

4
m

in
-4

sib
ey

n

0

1

tim
e (

ho
ur

s, 
ba

rs)

0.0

0.5

I/O
 v

ol
um

e (
Ti

B,
 d

ot
s)

(b) n = 6.46 · 108
, m = 2.36 · 109

, m/n = 3.65,

γ = 4
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(c) n = 6.70 · 108
, m = 5.57 · 109

, m/n = 8.30,

γ = 3
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(d) n = 6.70 · 108
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γ = 4

Figure 6.17: Running times and I/O volumes for RHGs with roughly n = 230, degree exponent

γ ∈ {3, 4} and varying density. Node IDs are permuted.
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7Certifying Induced Subgraphs in Large Graphs

joint work with U. Meyer, and K. Tsakalidis

We introduce I/O-optimal certifying algorithms for bipartite graphs, as well as for

the classes of split, threshold, bipartite chain, and trivially perfect graphs. When

the input graph is a class member, the certifying algorithm returns a certificate

that characterizes this class. Otherwise, it returns a forbidden induced subgraph

as a certificate for non-membership. On a graph with n vertices and m edges,

our algorithms take optimal O(sort(n+m)) I/Os in the worst case or with high

probability for bipartite chain graphs, and the certificates are returned in optimal

I/Os. We give implementations for split and threshold graphs and provide an

experimental evaluation.

This chapter is based on the peer-reviewed conference article [134]:

[134] U. Meyer, H. Tran, and K. Tsakalidis. Certifying induced subgraphs in large

graphs. In C. Lin, B. M. T. Lin, and G. Liotta, editors, WALCOM: Algorithms
and Computation - 17th Int. Conference and Workshops, WALCOM 2023, Hsinchu,
Taiwan, March 22-24, 2023, Proceedings, volume 13973 of Lecture Notes in Computer
Science, pages 229–241. Springer, 2023. doi:10.1007/978-3-031-27051-2_20 .

My contribution

I am the main author of this paper and its implementation.
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Certifying Induced Subgraphs in Large Graphs

7.1 Introduction

Certifying algorithms [127] ensure the correctness of an algorithm’s output without

having to trust the algorithm itself. The user of a certifying algorithm inputs x and

receives the output y with a certi�cate or witness w that proves that y is a correct

output for input x. Certifying the bipartiteness of a graph is a textbook example where

the returned witness w is a bipartition of the vertices (YES-certi�cate) or an induced

odd-length cycle subgraph, i.e. a cycle of vertices with an odd number of edges (NO-

certi�cate).

Emerging big data applications need to process large graphs e�ciently. Standard

models of computation in internal memory (RAM, pointer machine) do not capture the

algorithmic complexity of processing graphs with size that exceed the main memory.

The I/O model by Aggarwal and Vitter [1] is suitable for studying large graphs stored in

an external memory hierarchies, e.g. comprised of cache, RAM and hard disk memories.

The input data elements are stored in external memory (EM) packed in blocks of at most

B elements and computation is free in main memory for at most M elements. The

I/O-complexity is measured in I/O-operations (I/Os) that transfer a block from external to

main memory and vice versa. I/O-optimal external memory algorithms for sorting and

scanning n elements take sort(n) = O
(

(n/B) logM/B(n/B)
)

I/Os and scan(n) =

O(n/B) I/Os, respectively.

7.1.1 Previous Work

Certifying bipartiteness in internal memory takes time linear in the number of edges by

any traversal of the graph. However, all known external memory breadth-�rst search [2]

and depth-�rst search [42] traversal algorithms take suboptimal ω(sort(n+m)) I/Os for

an input graph with n vertices andm edges. Heggernes and Kratsch [96] present optimal

internal memory algorithms for certifying whether a graph belongs to the classes of

split, threshold, bipartite chain, and trivially perfect graphs. They return in linear time a

YES-certi�cate characterizing the corresponding class or a forbidden induced subgraph

of the class (NO-certi�cate). The YES- and NO-certi�cates are authenticated in linear

and constant time, respectively. A straightforward application to the I/O model leads to

suboptimal certifying algorithms since graph traversal algorithms in external memory

are much more involved and no worst-case e�cient algorithms are known.

7.1.2 Our Results

We present I/O-optimal certifying algorithms for split, threshold, bipartite chain, and

trivially perfect graphs. All algorithms return in the membership case, a YES-certi�cate

w characterizing the graph class, or a O(1)-size NO-certi�cate in the non-membership

case. As a byproduct, we show how to e�ciently certify graph bipartiteness in external

memory using standard I/O-e�cient techniques. Additionally, we perform experiments

for split and threshold graphs showing scaling beyond the size of main memory.
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7.1.3 Preliminaries and Notation

For a graph G = (V,E), let n = |V | and m = |E| denote the number of vertices V and

edges E, respectively. For a vertex v ∈ V we denote by N(v) the neighborhood of v and

by N [v] = N(v) ∪ {v} the closed neighborhood of v. The degree deg(v) of a vertex v is

given by deg(v) = |N(v)|. A vertex is called simplicial if N(v) is a clique and universal
if N [v] = V .

Graph Substructures and Orderings The subgraph of G that is induced by a

subset A ⊆ V of vertices is denoted by G[A]. The substructure (subgraph) of a cycle

on k vertices is denoted by Ck and of a path on k vertices is denoted by Pk. The

substructure 2K2 is a graph that is isomorphic to the following constant size graph:

({a, b, c, d}, {ab, cd}).

Henceforth we refer to di�erent types of orderings of vertices: an ordering (v1, . . . , vn)

is a (i) perfect elimination ordering (peo) if vi is simplicial in G[{vi, vi+1, . . . , vn}] for

i ∈ {1, . . . , n}, and a (ii) universal-in-a-component-ordering (uco) if vi is universal

in its connected component in G[{vi, vi+1, . . . , vn}] for i ∈ {1, . . . , n}. For a sub-

set X = {v1, . . . , vk}, we call (v1, . . . , vk) a nested neighborhood ordering (nno) if

(N(v1) \X) ⊆ (N(v2) \X)) ⊆ . . . ⊆ (N(vk) \X). Finally for any ordering, we parti-

tion N(vi) into lower and higher ranked neighbors, respectively, L(vi) = {x ∈ N(vi) :

vi is ranked lower than x} and H(vi) = {x ∈ N(vi) : vi is ranked higher than x}.

Graph Representation We assume an adjacency row representation where the graph

G = (V,E) is represented by two arrays P = [ Pi ]ni=1 andE = [ ui ]mi=1. The neighbors

of a vertex vi are then given by the vertices at position P [vi] to P [vi+1]− 1 in E. We

use the adjacency row representation to allow for e�cient scanning of G: (i) computing

k consecutive adjacency lists consisting of m edges requires O(scan(m)) I/Os and (ii)

computing the degrees of k consecutive vertices requires O(scan(k)) I/Os.

Time Forward Processing Time Forward Processing (TFP) is a generic technique to

manage data dependencies of external memory algorithms [123]. These dependencies

are typically modeled by a directed acyclic graphG = (V,E) where every vertex vi ∈ V
models the computation of zi and an edge (vi, vj) ∈ E indicates that zi is required for

the computation of zj .

Computing a solution then requires the algorithm to traverse G according to some

topological order≺T of the vertices V . The TFP technique achieves this in the following

way: after zi has been calculated, the algorithm inserts a message 〈vj , zi〉 into a minimum

priority-queue data structure for every successor (vi, vj) ∈ E where the items are sorted

by the recipients according to ≺T . By construction, vj receives all required values zi of

its predecessors vi ≺T vj as messages in the data structure. Since these predecessors

already removed their messages from the data structure, items addressed to vj are

currently the smallest elements in the data structures and thus can be dequeued with a

delete-minimum operation. By using suitable external memory priority-queues [14],

TFP incurs O(sort(k)) I/Os, where k is the number of messages sent.
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7.2 Certifying Graph Classes in External Memory

7.2.1 Certifying Split Graphs in External Memory

A split graph is a graph that can be partitioned into two sets of vertices (K, I) where

K and I induce a clique and an independent set, respectively. The partition (K, I) is

called the split partition. They are additionally characterized by the forbidden induced

substructures 2K2, C4 and C5, meaning that any vertex subset of a split graph cannot

induce these structures [93]. Since split graphs are a subclass of chordal graphs, there

exists a peo of the vertices for every split graph. In fact, any non-decreasing degree

ordering of a split graph is a peo [96].

Our algorithm adapts the internal memory certifying algorithm of Heggernes and

Kratsch [96] to external memory by adopting TFP. As output it either returns the split

partition (K, I) as a YES-certi�cate or one of the forbidden substructures C4, C5 or

2K2 as a NO-certi�cate.

First, we compute a non-decreasing degree ordering α = (v1, . . . , vn) and relabel
1

the graph according to α. Thereafter it checks whether α is a peo in O(sort(n+m))

I/Os by Proposition 7.1. In the non-membership case, the algorithm returns three vertices

vj , vk, vi where {vi, vj}, {vi, vk} ∈ E but {vj , vk} /∈ E and i < j < k, violating that

vi is simplicial in G[{vi, . . . , vn}]. In order to return any of the forbidden substructures

we �nd additional vertices that complete the induced subgraphs. Note that (vk, vi, vj)

already forms a P3 and may extend to a C4 if N(vk) ∩N(vj) contains a vertex z 6= vi
that is not adjacent to vi. Computing (N(vk) ∩N(vj)) \N(vi) requires scanning the

adjacencies of O(1) many vertices totaling to O(scan(n)) I/Os. If (N(vk) ∩N(vj)) \
N(vi) is empty we try to extend the P3 to a C5 or output a 2K2 otherwise. To do so, we

�nd vertices x 6= vi and y 6= vi for which {x, vj}, {y, vk} ∈ E but {x, vk}, {y, vj} /∈ E
that are also not adjacent to vi, i.e. {x, vi}, {y, vi} /∈ E. Both x and y exist due to the

ordering α [96] and are found using O(1) scanning steps requiring O(scan(n) I/Os. If

{x, y} ∈ E then (vj , vi, vk, y, x) is a C5, otherwise G[{vj , x, vk, y}] constitutes a 2K2.

Determining whether {x, y} ∈ E requires scanning N(x) and N(y) using O(scan(n))

I/Os.

In the membership case, α is a peo and the algorithm proceeds to verify �rst the

cliqueK and then the independent set I of the split partition (K, I). Note that for a split

graph the maximum clique of size k must consist of the k-highest ranked vertices in α

[96] where k can be computed using O(sort(m)) I/Os by Proposition 7.2. Therefore, it

su�ces to verify for each of the k candidates vi whether it is connected to {vi+1, . . . , vn}
since the graph is undirected. For a sorted sequence of edges relabeled by α, we check

this property using O(scan(m)) I/Os. If we �nd a vertex vi ∈ {vn−k+1, . . . , vn} where

{vi, vj} /∈ E with i < j then G[{vi, . . . , vn}] already does not constitute a clique and

we have to return a NO-certi�cate. Since the maximum clique has size k, there are k

vertices with degree at least k− 1. By these degree constraints there must exist an edge

{vi, x} ∈ E where x ∈ {v1, . . . , vi−1} [96]. Additionally, it holds that {x, vj} /∈ E and

1

If a vertex vi has rank k in α it will be relabeled to vk .
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Algorithm 8: Recognizing Perfect Elimination in EM

Data: edges E of graph G, non-decreasing degree ordering α = (v1, . . . , vn)

Output: bool whether α is a peo, three invalidating vertices {vi, vj , vk} if not

1 Sort E and relabel according to α

2 for i = 1, . . . , n do
3 Retrieve H(vi) from E

4 if H(vi) 6= ∅ then
5 Let u be the smallest successor of vi in H(vi)

6 for x ∈ H(vi) \ {u} do
7 PQ.push(〈u, x, vi〉) // inform u of x coming from vi
8

9 while 〈v, vk, vj〉 ← PQ.top() where v = vi do // for each message to vi
10 if vk /∈ H(vi) then // vi does not fulfill peo property

11 return false, {vi, vj , vk}
12 PQ.pop()

13 return true

there exists an edge {z, vj} ∈ E where z ∈ {v1, . . . , vi−1} that cannot be connected to

x, i.e. {x, z} /∈ E [96]. Thus, we �rst scan the adjacency lists of vi and vj to �nd x and

z in O(scan(n)) I/Os and return G[{vi, vj , x, z}] as the 2K2 NO-certi�cate. Otherwise

let K = {vn−k+1, . . . , vn}.
Lastly, the algorithm veri�es whether the remaining vertices form an independent

set. We verify that each candidate vi is not connected to {vi+1, . . . , vn−k}, since the

graph is undirected. For this, it su�ces to scan over n − k consecutive adjacency

lists in O(scan(m)) I/Os. More precisely, we scan the adjacency lists from vn−k to

v1 and in case an edge {vi, vj} where i < j ≤ n − k is found we �nd two more

vertices to again complete a 2K2. For the �rst occurrence of such a vertex vi, we

remark that {vi+1, . . . , vn−k} and {vn−k+1, . . . , vn} form an independent set and a

clique, respectively. Therefore there exists a vertex y ∈ K that is adjacent to x but not

to vi [96]. We �nd y by scanning N(x) and N(vi) in O(scan(n)) I/Os. To complete

the 2K2 we similarly �nd z ∈ N(y) \ (N(x) ∪ N(yi)) in O(scan(n)) I/Os which is

guaranteed to exist [96].

Proposition 7.1. Verifying that a non-decreasing degree ordering α = (v1, . . . , vn)

of a graph G with n vertices and m edges is a perfect elimination ordering requires

O(sort(n+m)) I/Os. J

Proof. We follow the approach of [82, Theorem 4.5] and adapt it to the external memory

using TFP , see Algorithm 8.

After relabeling and sorting the edges by α we iterate over the vertices in the order

given by α. For a vertex vi the set of neighbors N(vi) needs to be a clique. In order to

verify this for all vertices, for a vertex vi we �rst retrieve H(vi). Then let u ∈ H(vi) be

the smallest ranked neighbor according to α. In order for vi to be simplicial, u needs to

be adjacent to all vertices of H(vi) \ {u}. In TFP-fashion we insert a message 〈u,w〉
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Algorithm 9: Maximum Clique Size for Chordal Graphs in EM

Data: edges E of input graph G, peo α = (v1, . . . , vn)

Output: maximum clique size χ

1 Sort E and relabel according to α

2 χ← 0

3 for i = 1, . . . , n do
4 Retrieve H(vi) from E // scan E

5 if H(vi) 6= ∅ then
6 Let u be the smallest successor of vi in H(vi)

7 PQ.push(〈u, |H(vi)| − 1〉) // vi simplicial⇒ G[N(vi)] is clique

8 S(vi)← −∞
9 while 〈v, S〉 ← PQ.top() where v = vi do
10 S(vi)← max{S(vi), S} // compute maximum over all

11 PQ.pop()

12 χ← max{χ, S(vi)}
13 return χ

into a priority-queue where w ∈ H(vi) \ {u} to inform u of every vertex it should be

adjacent to. Conversely, after sending all adjacency information, we retrieve for vi all

messages 〈vi,−〉 directed to vi and check that all received vertices are indeed neighbors

of vi.

Relabeling and sorting the edges takes O(sort(m)) I/Os. Every vertex vi inserts at

most all its neighbors into the priority-queue totaling up to O(m) messages which re-

quires O(sort(m)) I/Os. Checking that all received vertices are neighbors only requires

a scan over all edges since vertices are handled in non-descending order by α. �

Proposition 7.2. Computing the size of a maximum clique in a split graph requires

O(sort(m)) I/Os. J

Proof. Note that split graphs are both chordal and co-chordal [93]. For chordal graphs,

computing the size of a maximum clique in internal memory takes linear time [82, The-

orem 4.17] and is easily convertible to an external memory algorithm usingO(sort(m))

I/Os. To do so, we simulate the data accesses of the internal memory variant using

priority-queues to employ TFP , see Algorithm 9. Instead of updating each S(vi) value

immediately, we delay its consecutive computation by sending a message 〈vi, S〉 to vi
to inform vi, that vi is part of a clique of size S. After collecting all messages, the overall

maximum is computed and the global value of the currently maximum clique is updated

if necessary. �

By the above description it follows that split graphs can be certi�ed usingO(sort(n+m))

I/Os which we summarize in Lemma 7.3.

Lemma 7.3. A graph with n vertices andm edges stored in external memory is certi�ed

whether it is a split graph or not in O(sort(n+m)) I/Os. In the membership case
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the algorithm returns in O(scan(K + I)) I/Os the split partition (K, I) as the YES-

certi�cate, and otherwise it returns a O(1)-size NO-certi�cate. J

7.2.2 Certifying Threshold Graphs in External Memory

Threshold graphs [53, 82, 121] are split graphs with the additional property that the

independent set I of the split partition (K, I) has an nno. Its corresponding forbidden

substructures are 2K2, P4 and C4. Alternatively, threshold graphs can be characterized

by a graph generation process: repeatedly add universal or isolated vertices to an initially

empty graph. Conversely, by repeatedly removing universal and isolated vertices from

a threshold graph the resulting graph must be the empty graph. In comparison to

certifying split graphs, threshold graphs thus require additional steps.

First, the algorithm certi�es whether the input is a split graph. In the non-membership

case, if the returned NO-certi�cate is a C5 we extract a P4 otherwise we return the

substructure immediately. For the membership case, we recognize whether the input

is a threshold graph by repeatedly removing universal and isolated vertices using the

previously computed peo α in O(sort(m)) I/Os by Proposition 7.4. If the remaining

graph is empty, we return the independent set I with its non-decreasing degree ordering.

Note that after removing a universal vertex vi, vertices with degree one become isolated.

Since low-degree vertices are at the front of α, an I/O-e�cient algorithm cannot deter-

mine them on-the-�y after removing a high-degree vertex. Therefore pre-processing

is required. For every vertex vi we compute the number of vertices S(vi) that become

isolated after the removal of {vi, . . . , vn}. To do so, we iterate over α in non-descending

order and check for vi with L(vi) = ∅. Since vi has no lower ranked neighbors, it would

become isolated after removing all vertices in H(vi), in particular when the successor

with smallest index vj ∈ H(vi) is removed. We save vj in a vector S and sort S in

non-ascending order. The values S(vn), . . . , S(v1) are now accessible by a scan over S

to count the occurrences of each vj in O(scan(m)) I/Os.

In the non-membership case, there must exist a P4 since the input is split and cannot

contain a C4 or a 2K2. We can delete further vertices from the remaining graph that

cannot be part of a P4. For this, let K ′ ⊂ K and I ′ ⊂ I be the remaining vertices of the

split partition. Any v ∈ K ′ whereN(v)∩I ′ = ∅ and any v ∈ I ′ whereN(v)∩K ′ = K ′

cannot be part of a P4 [96] and can therefore be deleted. We proceed by considering and

removing vertices of K by non-descending degree and vertices of I by non-ascending

degree. After this process, we retrieve the highest-degree vertex v in I where there

exists {v, y} /∈ E and {y, z} ∈ E where y ∈ K and z ∈ I [96]. Additionally, there

is a neighbor w ∈ K of v for which {w, z} /∈ E [96] and we return the P4 given by

G[{v, w, y, z}]. Finding the P4 therefore only requires O(scan(n+m)) I/Os.

Proposition 7.4. Verifying that a non-decreasing degree ordering α = (v1, . . . , vn) of

a graph G with n vertices and m edges emits an empty graph after repeatedly removing

universal and isolated vertices requires O(sort(n) + scan(m)) I/Os. J

Proof. Generating the values S(vn), . . . , S(v1) requires a scan over all adjacency lists

in non-descending order and sorting S which takes O(sort(n) + scan(m)) I/Os. Afte
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Algorithm 10: Recognizing Threshold Graphs for Split Graphs in EM

Data: edges E of split graph G, max. clique size k, peo α = (v1, . . . , vn)

Output: bool whether G is threshold

1 Sort E and relabel according to α

2 Vector S

3 for i = 1, . . . , n do
4 if L(vi) = ∅ then
5 Let vj be the smallest successor of vi in H(vi)

6 S.push(vj ) // vi would be isolated a�er deleting {vj , . . . , vn}

7 Sort S in non-ascending order

8 ndel ← 0 // number of deleted universal/isolated vertices

9 for i = n, . . . , 1 do
10 if L(vi) 6= ∅ then // vi not isolated in G[{v1, . . . , vn}]
11 if |L(vi)| < (n− 1)− ndel then // vi not universal

12 return false

13 ndel ← ndel + 1 + occurrences of vi // vi removed, scan S

14 return true

pre-processing, the algorithm only requires a reverse scan over the degrees dn, . . . , d1,

see Algorithm 10. We iterate over α in reverse order, where for each vi we check

whether L(vi) = ∅. If vi is not isolated it must be universal. Therefore we compare its

current degree deg(vi) with the value (n− 1)− ndel where ndel =
∑n

j=j+1 S(vj). All

operations take O(scan(m)) I/Os in total. �

We summarize our �ndings for threshold graphs in Lemma 7.5.

Lemma 7.5. A graph with n vertices andm edges stored in external memory is certi�ed

whether it is a threshold graph or not in O(sort(n+m)) I/Os. In the membership case

the algorithm returns in O(scan(β)) I/Os a nested neighborhood ordering β as the

YES-certi�cate, and otherwise it returns a O(1)-size NO-certi�cate. J

Proof. Certifying that the input graph is a split graph requires O(sort(n+m)) I/Os

by Lemma 7.3. If it is, we check if the input is a threshold graph directly by checking

whether the graph is empty after repeatedly removing universal and isolated vertices in

O(sort(m)) I/Os by Proposition 7.4. Otherwise we have to �nd a P4, since the input is

a split but not a threshold graph. Hence, this step requires O(scan(n+m)) I/Os and

the total I/Os are O(sort(n+m)). �

7.2.3 Certifying Trivially Perfect Graphs in External Memory

Trivially perfect graphs have no vertex subset that induces a P4 or a C4 [82]. In contrast

to split graphs, any non-increasing degree ordering of a trivially perfect graph is a

uco [96]. In fact, this is a one-to-one correspondence: a non-increasing sorted degree

sequence of a graph is a uco i� the graph is trivially perfect [96].
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Algorithm 11: Recognizing Universal-in-a-Component Orderings in EM

Data: edges E of graph G, non-increasing degree ordering γ = (v1, . . . , vn)

Output: bool whether γ is a uco

1 Sort E and relabel according to γ

2 for i = 1, . . . , n do
3 Vector L = [0] // initialize with 0

4 while 〈v, vj , `〉 ← PQ.top() where v = vi do // vi’s received labels

5 L.push(`)

6 PQ.pop()

7 for i = 1, . . . ,L.size/2 do // L.size() is even

8 if L[2i] 6= L[2i+1] and L.size > 1 then // mismatch / anomaly

9 return false

10 `(vi)← L[L.size()] // assign label of vi
11 Retrieve H(vi) from E // scan E

12 for u ∈ H(vi) do
13 PQ.push(〈u, vi, `(vi)〉)
14 PQ.push(〈u, vi, i〉)

15 return true

In external memory this can be veri�ed using TFP by adapting the algorithm in [96],

see Algorithm 11. After computing a non-increasing degree ordering γ the algorithm

relabels the edges of the graph according to γ and sorts them. Now we iterate over the

vertices in non-descending order of γ, process for each vertex vi its received messages

and relay further messages forward in time.

Initially all vertices are labeled with 0. Then, at step i vertex vi checks that all

adjacent vertices N(vi) have the same label as vi. After this, vi relabels each vertex

u ∈ N(vi) with its own index i and is then removed from the graph. In the external

memory setting we cannot access labels of vertices and relabel them on-the-�y but

rather postpone the comparison of the labels to the adjacent vertices instead. To do so,

vi forwards its own label `(vi) to u ∈ H(vi) by sending two messages 〈u, vi, `(vi)〉 and

〈u, vi, i〉 to u, signaling that u should compare its own label to vi’s label `(vi) and then

update it to i. Since the label of any adjacent vertex is changed after processing a vertex,

when arriving at vertex vj an odd number of messages will be targeted to vj , where the

last one corresponds to its actual label at step j. Then, after collecting all received labels,

we compare disjoint consecutive pairs of labels and check whether they match. In the

membership case, we do not �nd any mismatch and return γ as the YES-certi�cate.

Otherwise, we have to return a P4 or C4.

In the description of [96] the authors stop at the �rst anomaly where vi detects a

mismatch in its own label and one of its neighbors. We simulate the same behavior

by writing out every anomaly we �nd, e.g. that vj does not have the expected label

of vi via an entry 〈vi, vj , k〉 where k denotes the found label of vj . After sorting the

entries, we �nd the earliest anomaly 〈vi, vj , k〉 with the largest label k of vi’s neighbors.

Since vj received the label k from vk, but vi did not, it is clear that vk is not universal
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in its connected component in G[{vk, vk+1, . . . , vn}] and we thus return a P4 or C4.

Note that (vk, vj , vi) already constitutes a P3 where deg(vk) ≥ deg(vj), because vj
received the label k. Since vj is adjacent to both vk and vi and deg(vk) ≥ deg(vj), there

must exist a vertex x ∈ N(vk) where {vj , x} /∈ E. Thus, G[{vk, vj , vi, x}] is a P4 if

{vi, x} /∈ E and a C4 otherwise. Finding x and determining whether the forbidden

substructure is a P4 or a C4 requires scanning O(1) adjacency lists in O(scan(n)) I/Os.

Proposition 7.6. Verifying that a non-increasing degree ordering γ = (v1, . . . , vn) of a

graph G with n vertices and m edges is a universal-in-a-component-ordering requires

O(sort(m)) I/Os. J

Proof. Every vertex vi receives exactly two messages per neighbor in L(vi) and veri�es

that all consecutive pairs of labels match. Then, either the label i is sent to each higher

ranked neighbor ofH(vi) via TFP or it is veri�ed that γ is not a uco. Since at mostO(m)

messages are inserted, the resulting overall complexity isO(sort(m)) I/Os. Correctness

follows from [96] since Algorithm 11 performs the same operations but only delays the

label comparisons. �

We again summarize our results in Lemma 7.7.

Lemma 7.7. A graph with n vertices andm edges stored in external memory is certi�ed

whether it is a trivially perfect graph or not inO(sort(n+m)) I/Os. In the membership

case the algorithm returns in O(scan(γ)) I/Os the universal-in-a-component ordering

γ as the YES-certi�cate, and otherwise it returns a O(1)-size NO-certi�cate. J

7.2.4 Certifying Bipartite Chain Graphs in External Memory

Bipartite chain graphs are bipartite graphs where one part of the bipartition has an

nno [184] similar to threshold graphs. Interestingly, for chain graphs one side of the

bipartition exhibits this property if and only if both partitions do [184]. Its forbidden

induced substructures are 2K2, C3 and C5. By de�nition, bipartite chain graphs are

bipartite graphs which therefore requires I/O-e�cient bipartiteness testing.

We follow the linear time internal memory approach of [96] with slight adjustments

to accommodate the external memory setting. First, we check whether the input is

indeed a bipartite graph. Instead of using breadth-�rst search which is very costly in

external memory, even for constrained settings [2], we can use a more e�cient approach

with spanning trees which is presented in Lemma 7.8. In case the input is not connected,

we simply return two edges of two di�erent components as the 2K2. If the graph is

connected, we proceed to verify that the graph is bipartite and return a NO-certi�cate

in the form of a C3, C5 or 2K2 in case it is not. In order to �nd a C3, C5 or 2K2 some

modi�cations to Lemma 7.8 are necessary. Essentially, the algorithm instead returns a

minimum odd cycle that is built from T and a single non-tree edge. Due to minimality

we can then �nd a 2K2. The result is summarized in Corollary 7.9.

Then, it remains to show that each side of the bipartition has an nno. Let U be the

larger side of the partition. By [121] it su�ces to show that the input is a chain graph i�

the graph obtained by adding all possible edges with both endpoints in U is a threshold
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graph. Instead of materializing the mentioned threshold graph, we implicitly represent

the adjacencies of vertices in U to retain the same I/O-complexity and apply Lemma 7.5

using O(sort(n+m)) I/Os. If the input is bipartite but not chain, we repeatedly delete

vertices that are connected to all other vertices of the other side and the resulting isolated

vertices, similar to Section 7.2.3 and [96]. After this, the vertex v with highest degree has

a non-neighbor y in the other partition. By similar arguments y is adjacent to another

vertex z that is adjacent to a vertex x where {v, x} /∈ E [96]. As such G[{v, y, z, x}] is

a 2K2 and can be found in O(scan(n)) I/Os and returned as the NO-certi�cate.

Lemma 7.8. A graph with n vertices andm edges stored in external memory is certi�ed

whether it is a bipartite graph or not in O(sort(n+m)) I/Os, given a spanning forest

of the input graph. In the membership case the algorithm returns in O(scan(n)) I/Os a

bipartition (U, V \ U) as the YES-certi�cate, and otherwise it returns an odd cycle as

the NO-certi�cate. J

Proof. In case there are multiple connected components, we operate on each individually

and thus assume that the input is connected. Let T be the edges of the spanning tree and

E \T the non-tree edges. Any edge e ∈ E \T may produce an odd cycle by its addition

to T . In fact, the input is bipartite i� T ∪ {e} is bipartite for all e ∈ E \ T 2
. We check

whether an edge e = {u, v} closes an odd cycle in T by computing the distance dT (u, v)

of its endpoints in T . Since this is required for every non-tree edge E \ T , we resort to

batch-processing. Note that T is a tree and hence after choosing a designated root r ∈ V
it holds that dT (u, v) = dT (u, LCAT (u, v)) + dT (v, LCAT (u, v)) where LCAT (u, v)

is the lowest common ancestor of u and v in T . Therefore for every edge E \ T we

compute its lowest common ancestor in T using O((m/n) · sort(n)) = O(sort(m))

I/Os [51].

Additionally, for each vertex v ∈ V we compute its depth in T in O(sort(m)) I/Os

using Euler Tours [51] and inform each incident edge of this value by a few scanning and

sorting steps. Similarly, each edge e = {u, v} is provided of the depth of LCAT (u, v).

Then, after a single scan over E \ T we compute dT (u, v) and check if it is even. If any

value is even, we return the odd cycle as a NO-certi�cate or a bipartition in T as the

YES-certi�cate. Both can be computed using Euler Tours in O(sort(m)) I/Os. �

Corollary 7.9. If a connected graph G contains a C3, C5 or 2K2 then any of these

subgraphs can be found in O(sort(n+m)) I/Os given a spanning tree of G. J

Proof. We extend the algorithm presented in Lemma 7.8 since it does not return an

induced cycle. While iterating over the edges to �nd an odd cycle we save the smallest

seen odd cycle by keeping a copy of the edge e ∈ E \ T and the length of the minimum

odd cycle. In case we �nd a C3 or a C5 we are done and return the NO-certi�cate

immediately otherwise for a Ck with k = 2` + 1 > 5 we return a 2K2 by �nding a

matching edge to the non-tree edge e ∈ E \ T in the cycle.

Let C = (u1, . . . , uk, u1) be the returned cycle where {uk, u1} is the non-tree edge.

In this case we return for the 2K2 the graph ({u`, u`+1, u1, uk}, {{u1, uk}, {u`, u`+1}}).
2

Since T is bipartite, one can think of T as a representation of a 2-coloring on T .
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Figure 7.1: Running times of the external memory algorithms for certifying split (le�) and

threshold graphs (right) for di�erent random graph instances. The black vertical lines depicts

the number of elements that can concurrently be held in internal memory.

If ` is odd, the non-edges of the 2K2 cannot exist since otherwise any of the following

smaller odd cycles (u1, u2, . . . , u`+1, uk, u1), (u1, u2, . . . , u`, u1), (u`, u`+1, . . . , uk, u`)

and (u1, u`+1, u`+2, . . . , uk, u1) would be present, contradicting the minimality of C .

For the other case where ` is even, a similar argument can be found. The I/O-complexity

therefore remains the same. �

We summarize our �ndings for bipartite chain graphs in Lemma 7.10.

Lemma 7.10. A graph with n vertices and m edges stored in external memory is

certi�ed whether it is a bipartite chain graph or not in O(sort(n+m)) I/Os with high

probability. In the membership case the algorithm returns in O(scan(n)) I/Os the

bipartition (U, V \ U) and nested neighborhood orderings of both partitions as the

YES-certi�cate, and otherwise it returns a O(1)-size NO-certi�cate. J

Proof. Computing a spanning tree T requires O(sort(n+m)) I/Os with high probabil-

ity by an external memory variant of the Karger, Klein and Tarjan minimum spanning

tree algorithm [51]. By Corollary 7.9 we �nd a C3, C5 or 2K2 if the input is not bi-

partite or not connected. We proceed by checking the nno’s of both partitions in

O(sort(n+m)) I/Os using Lemma 7.5. �

7.3 Experimental Evaluation

We have implemented our external memory certifying algorithms for split and threshold

graphs in C++ using the STXXL library [60]. To provide a comparison of our algorithms,

we also implemented the internal memory state-of-the-art algorithms by Heggernes

and Kratsch [96]. STXXL o�ers external memory versions of fundamental algorithmic

building blocks like scanning, sorting and several data structures. Our benchmarks are

built with GNU g++-10.3 and executed on a machine equipped with an AMD EPYC

7302P processor and 64 GB RAM running Ubuntu 20.04 using six 500 GB solid-state

disks.

In order to validate the predicted scaling behaviour we generate our instances

parameterized by n. For yes-instances of split graphs we generate a split partition (K, I)

with |K| = n/10 and add each possible edge {u, v} with probability 1/4 for u ∈ I and
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v ∈ K . Analogously, yes-instances of threshold graphs are generated by repeatedly

adding either isolated or universal vertices with probability 9/10 and 1/10, respectively.

We additionally attempt to generate no-instances by adding O(1) many random edges

to the yes-instances. In a last step we randomize the vertex indices to extend the e�ect

of random accesses on the running time of the algorithms.

In Figure 7.1 we present the running times of all algorithms on multiple yes- and

no-instances. It is clear that the performance of both external memory algorithms is not

impacted by the main memory barrier while the running time of their internal memory

counterparts already increases when at least half the main memory is used. This e�ect

is ampli�ed immensely after exceeding the size of main memory by only a small fraction

for split graphs, Figure 7.1 (left) and we expect the same for threshold graphs.

Certifying the produced no-instances of split graphs seems to require less time

than their corresponding unmodi�ed yes-instances as the algorithm typically stops

prematurely. Furthermore, due to the low data locality of the internal memory variant

it is apparent that the external memory algorithm is superior for the yes-instances. The

performance on both yes- and no-instances is very similar in external memory. This is

in part due to the fact that the algorithm �rst performs a relabeling which increases the

ratio of common computation signi�cantly.

For threshold graphs, the external memory variant outperforms the internal memory

variant due to improved data locality. Analogously to split graphs, the di�erence in

performance between yes- and no-instances is more profound for the internal memory

variants.

7.4 Conclusions

We have presented the �rst I/O-e�cient certifying recognition algorithms for split,

threshold, trivially perfect, bipartite and bipartite chain graphs. Our algorithms require

O(sort(n+m)) I/Os matching common lower bounds for many algorithms in external

memory. It would be interesting to further extend the scope of certifying algorithms to

more graph classes for the external memory regime.
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Appendix 7.A Further Discussion on the Returned Certificates

We note that reverting any relabeling again requires only O(sort(n+m)) I/Os by a

constant number of scanning and sorting steps. Authenticating the YES-certi�cates of

all our algorithms requires O(sort(n+m)) I/Os anyway which is why we assume that

the graph is given in its relabeled form.

Proposition 7.11. Authenticating (K, I) for a given split graph with n vertices and m

edges requires O(sort(n+m)) I/Os. J

Proof. Since we can assume relabelled vertex indices, let I = {v1, . . . , vk} and K =

V \ I . After sorting the edges inO(sort(m)) I/Os, we check that no edge between I and

K exists by comparing the indices. Verifying that K is a clique only requires looking at

the

(|K|
2

)
last edges where both are done in O(scan(m)) I/Os. �

Proposition 7.12. Authenticating β = (u1, . . . , uk) for a given threshold graph with n

vertices and m edges requires O(sort(n+m)) I/Os. J

Proof. We can again assume that the vertices in the ordering of β are given by I =

{v1, . . . , vk}. Verifying (K, I) is done as described in Proposition 7.11 usingO(sort(m))

I/Os. It remains to verify that β is a nno. For increasing i we verify N(vi) ⊆ N(vi+1)

by a concurrent scan over both neighborhoods requiring in total O(scan(m)) I/Os for

all i. �

Proposition 7.13. Authenticating γ = (v1, . . . , vn) for a given trivially perfect graph

with n vertices and m edges requires O(sort(n+m)) I/Os. J

Proof. We rerun the Algorithm 10 using O(sort(n+m)) I/Os as the certi�cate is the

ordering itself. �

Proposition 7.14. Authenticating (U, V \ U) with two nested neighborhood orderings

for a given bipartite chain graph with n vertices and m edges requires O(sort(n+m))

I/Os. J

Proof. Similar to Proposition 7.11 we check that U and V \ U are both independent

sets using O(sort(n+m)) I/Os. Thereafter similar to Proposition 7.12 we verify that

both orderings are indeed nested neighborhood orderings using again O(sort(n+m))

I/Os. �
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8Summary

The present thesis considers algorithmic aspects for the generation and

analysis of graphs. First, we develop e�cient sequential, shared-memory

parallel and I/O-e�cient algorithms that obtain uniform samples of random

graphs with prescribed degrees based on the following stochastic processes.

• Edge Switching R Chapters 2 and 3

• Global Edge Switching R Chapter 3

• Curveball R Chapter 4

• Global Curveball R Chapter 4

Additionally, speci�cally for power-law graphs we engineer an implemen-

tation of the exact uniform sampling algorithm Inc-Powerlaw and provide

crucial details that were previously not discussed including previously

overlooked gaps leading to a compromised running time.

• Inc-Powerlaw R Chapter 5

Second, we present algorithms for the analysis and processing of large

networks. In particular, we provide I/O-e�cient algorithms and implemen-

tations for the following two problems.

• Connected Components R Chapter 6

• Certifying Graph Recognition R Chapter 7

In this chapter, we summarize our results for both parts of the thesis and

give an outlook for further future research opportunities.
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8.1 Uniform Sampling of Simple Graphs with Prescribed Degrees

In this section, we summarize our results for the problem of uniformly sampling simple

graphs from a prescribed degree sequence. It is a common task in the analysis and

synthesis of networks; e.g., to randomize existing graphs, as a subroutine in more

complex generators or to construct null-models [55, 102, 163]. Our results are two-

fold; �rst we give a multitude of algorithms implementing Markov-Chain-Monte-Carlo

(MCMC) processes for the e�cient randomization of graphs while maintaining the

degrees, see Figure 8.1 for a comprehensive overview. Finally, we present an exact

uniform generation algorithm for power-law degree sequences in Section 8.1.3.

8.1.1 Edge Switching and Global Edge Switching

Chapter 2 is based on our article [90] and presents EM-LFR, a complex assembly of

several I/O-e�cient subroutines to generate largeLFR:

R Section 2.3

LFR graph instances exceeding the size

of main memory. In EM-LFR the most challenging component is to uniformly sample

a simple graph from a prescribed degree sequence. To realize this, EM-LFR splits the

graph sampling into two steps following the Fixed-Degree-Sequence-Model (FDSM). First,

a biased simple graph is deterministically generated that matches the prescribed degrees.

Then, the obtained graph is perturbed using Edge Switching (ES) while maintaining the

prescribed degrees. In its original formulation, EM-LFR employs the algorithms EM-HH

EM-HH und EM-ES:

R Sections 2.4 and 2.5

and EM-ES to implement the aforementioned steps where EM-HH is an I/O-e�cient

realization of a generator due to Havel and Hakimi [95, 89] and EM-ES provides an

I/O-e�cient algorithm to perturb a given graph using Edge Switching. As the graphs

generated by EM-HH are highly biased and therefore may require many perturbation

steps of EM-ES, we consider the Con�guration Model (CM) as a substitute for the �rst

step and adjust the pipeline of EM-LFR accordingly.

• EM-CM/ES:EM-CM/ES:

R Section 2.6

We provide EM-CM/ES as an alternative to the originally proposed

combination of EM-HH and EM-ES. For this, we implement an I/O-e�cient

generator sampling from the Con�guration Model substituting EM-HH in the

�rst step. As the initial graph is unlikely to be a simple graph, we adjust the

perturbation phase to adhere to the potentially non-simple input.

To do so, EM-ES is modi�ed to accept non-simple inputs without an increase in

I/O-complexity. In order to arrive at a simple graph, the algorithm accepts all

switches that neither produce further multi-edges nor introduce self-loops. To

additionally accelerate this process, non-simple edges are switched more often

than legal edges.

As the samples obtained by this rewiring process are still biased [5, 17], further

perturbation using ES is necessary requiring additional applications of EM-ES.

While this approach is much more involved, we provide empirical evidence that

EM-CM/ES can converge faster to a uniform sample than the previously proposed

combination.

172



Uniform Sampling of Simple Graphs with Prescribed Degrees

Chapter 3 is based on our article [6] and considers shared-memory parallel ap-

proaches to randomize simple graphs. We provide a simple parallelization of the Edge
Switching Markov Chain (ES-MC) which, due to the dependencies arising in ES-MC, is

unlikely to scale well. As a means to alleviate this issue, we further propose Global
Edge Switching Markov Chain (G-ES-MC) a variant of ES-MC with easier dependencies

to enable better parallelism. Similar to ES-MC, we demonstrate that G-ES-MC also

converges to a uniform distribution on the set of graphs with matching degrees. In

our experiments, we provide empirical evidence that G-ES-MC uses at most the same

number of switches as the standard ES-MC and show the e�ciency and scalability of

our implemented algorithms.

• RobinES andGlobalES: We provide RobinES and GlobalES as sequential baseline

solutions of ES-MC and G-ES-MC, ES-MC and G-ES-MC:

R Section 3.2

respectively. Our implementations use hash-

sets to support edge insertion, deletion and existence queries in expected constant

time, further auxiliary data structures for the sampling of edges and prefetching

to accelerate the random I/Os to main memory.

In a comparison with NetworKit [171] and Gengraph [181], we show that our solu-

tions run 15-50 times faster than NetworKit and 5-10 times faster than Gengraph.

For large graphs, GlobalES outperforms RobinES as shu�ing the edges becomes

more e�cient than sampling, whereas RobinES is faster for smaller graphs.

• EagerES and SteadyGlobalES: In order to establish a performance baseline for our

parallel algorithms, we present EagerES, EagerES:

R Section 3.4.1

a simplistic parallelization of ES-MC. The

algorithm uses a concurrent hash-set and only deploys an implicit synchronization

scheme where each processing unit performs its switches independently. This

however results in an execution order that is dependent on the scheduler and

therefore does not faithfully represent the ES-MC.

For the G-ES-MC, we present SteadyGlobalES, SteadyGlobalES:

R Section 3.4.2

a parallel faithful implementa-

tion that processes uniform random global switches instead. By design, global

switches exhibit easier dependencies which we categorize into two types: erase
and insert dependencies. A global switch is then processed in parallel using multi-

ple rounds where in each round switches with no prohibiting dependencies are

resolved. Despite the increased algorithmic complexity, our experiments suggest

that SteadyGlobalES only incurs a slowdown of at most 2 compared to EagerES.

8.1.2 Curveball and Global Curveball

Chapter 4 is based on our article [48] and presents a variety of algorithms implementing

a di�erent type of randomization process, namely Curveball (CB) [174, 46] and Global
Curveball (G-CB) [47, 48]. CB proceeds similar to ES but instead randomly selects two

nodes u 6= v and performs a trade, shu�ing their neighborhoods. To do so, CB �rst

collects all non-common neighbors of u and v, excludes the trading nodes, and randomly

redistributes them while maintaining the degrees of the traded nodes. Since the entire
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neighborhoods of both nodes may be considered, a single trade possibly yields a larger

change in the graph compared to a single ES switch.

While CB draws its trade constituents uniformly at random, G-CB proceeds di�er-

ently by grouping multiple single trades into a superstep. These so-called global trades
target each node exactly once

1
and the execution of all its single trades is interpreted

as a single step of G-CB. Though G-CB initially was proposed for directed graphs, we

generalizeUndirected G-CB:

R Section 4.3.3

it for the undirected case and show that it converges to a uniform distribution.

Additionally, our experiments give empirical evidence that G-CB performs better than

CB. With further experiments we show the e�ciency and scalability of our algorithms

beyond the size of the main memory.

• EM-CB and IM-CB: We provide EM-CB,EM-CB:

R Section 4.4.1

an I/O-e�cient sequential algorithm for

CB. As neighborhood changes due to trade have to be re�ected for the partic-

ipating nodes as well, EM-CB abandons a classical static graph data structure

where unstructured accesses would need to be performed. By employing Time
Forward ProcessingTFP:

R Section 4.2.2

(TFP), we circumvent these unstructured access patterns and

dynamically manage the graph by interpreting each trade as a point in time. Then,

for each trade, only the neighborhoods of the constituents are required, which are

provided in TFP fashion. To realize this, EM-CB performs trades in batches where

for each batch all trade pairs are �rst randomly sampled and then organized in

auxiliary data structures to properly forward messages to trades accordingly.

In the case that memory accesses are not the bottleneck, we propose IM-CBIM-CB:

R Section 4.4.2

as a

faster alternative to EM-CB, especially for small graph instances. By discarding

the necessary data structures for TFP and using a classical adjacency vector data

structure, IM-CB accepts the unstructured accesses and therefore excels at small

and medium-sized graphs.

• EM-GCB and EM-PGCB: EM-GCBEM-GCB:

R Section 4.4.3

is our I/O-e�cient algorithm for undirected

G-CB. By exploiting the additional structure of global trades we can omit the

auxiliary data structures of EM-CB and IM-CB. More precisely, we interpret a

global trade as a random permutation of nodes and represent it implicitly using a

suitable type of hash-function enabling further optimizations.

Further engineering leads toEM-PGCB:

R Section 4.4.4

EM-PGCB, a parallel extension of EM-GCB. To

enable parallelism, we subdivide the global trades into even smaller so-called

macrochunks that are individually held in main memory. These macrochunks are

then equally divided into smaller microchunks where their size is carefully chosen

such that almost all trades can be independently performed in parallel. In the rare

cases where dependencies arise, we resort to a variant of work stealing to avoid

unnecessary waiting times. We give experimental evidence that, in some cases,

EM-PGCB is nearly one order of magnitude faster in comparison to EM-ES while

achieving the same randomization quality.

1

For the sake of simplicity we assume the number of nodes to be even; for the general case see

Section 4.4.3.
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unit-cost Ram
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Switching
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Figure 8.1: An overview of the described algorithms categorized into the machine models.
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8.1.3 Exact Uniform Sampling of Power-law Graphs

Chapter 5 is based on our article [9] and presents the Inc-Powerlaw algorithm in its

full description. Inc-Powerlaw improves on the Pld algorithm [78] by applying a

recently developed technique called incremental relaxation due to Arman et al. [17].

For the parts where incremental relaxation are used, we determine the order in which

the relevant graph substructures should be relaxed, how to count them and provide

appropriate lower bounds. In our investigation we �nd that incremental relaxation

compromised Inc-Powerlaw’s linear runtime in its original formulation due to too

many rejections. To solve this issue we add new switchings to Phases 4 and 5 of the

algorithm and provide proofs that the rejection probability is su�ciently small.

To verify our �ndings, we implement and engineer an Inc-Powerlaw implemen-

tation and consider parallelization options. In our empirical study, we observe that

Inc-Powerlaw is very e�cient for small average degrees and notice signi�cantly larger

constants for larger average degrees. Furthermore, we empirically con�rm the linear

expected runtime of Inc-Powerlaw.

• Inc-Powerlaw: Roughly speaking, Inc-PowerlawInc-Powerlaw:

R Section 5.2

�rst generates a random

graph according to the Con�guration Model and rewires illegal structures into

legal counterparts using a choreography of more than 20 di�erent switching types.

To ensure uniformity, rejection sampling is used such that all intermediate graphs

remain uniform samples in their respective class. More precisely, whenever a

random switching is sampled it may be rejected (f-rejection or b-rejection) and

the algorithm be forced to restart.

We present all necessary requirements to recover the linear runtime of Inc-

Powerlaw. For Phase 4 the addition of incremental relaxation eases the compu-

tational cost but compromises the b-rejection probability by causing too many

rejections. We address this issue by adding three booster switchings (ta, tb and

tc switchings) to the originally used t-switching. All four switchings create the

triplet structure and potentially additional edges depending on the switching.

By computing the appropriate constants and lower bounds we prove that the

probability of a b-rejection in Phase 4 is then o(1).

Similarly, for Phase 5 of Inc-Powerlaw the b-rejection probability is increased

by adding incremental relaxation. We again, add booster switchings (type-III,

type-IV, type-V, type-VI and type-VII switchings) to create the doublet structure

and reduce the probability of rejection. Analogously, we then provide a proof that

the probability of a b-rejection in Phase 5 is o(1).

• Intra-Run and Inter-Run Parallelism: In our experimental evaluation we show

that the sampling of the initial multi-graph and constructing the appropriate

data structures are the dominating factors in the algorithm. Our implementation

therefore incorporates parallelizationParallelization:

R Section 5.4.2

strategies to alleviate the impact of the

aforementioned bottleneck. We consider two orthogonal strategies: Intra-Run

and Inter-Run.
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While Intra-Run directly parallelizes the construction of the multi-graph and its

representative data structure, Inter-Run starts multiple runs and accepts the �rst

accepted one. We use synchronization to avoid a selection bias towards quicker

runs: all processors assign globally unique indices to their runs and we return the

run with smallest index that is accepting.

8.2 Experimental Algorithms for External Memory

In this section, we present our results that particularly focus on the large-scale analysis

of networks. Due to the ever-increasing size of data, large-scale algorithmic solutions

are necessary to facilitate a means to study large networks. As the classical assumption

of a unit-cost Random-Access Machine (unit-cost Ram) does not fully capture the practical

performance of algorithms in the presence of memory hierarchies, we turn our attention

to the External Memory Model (Emm).

8.2.1 Connected Components

Chapter 6 is based on our article [41] and presents an empirical study of the Connected
Components (CC) problem in External Memory Model. We consider several candidate

algorithms that are either theoretically e�cient or seem practically promising. Our

experiments are then executed on a variety of di�erent graph classes including popular

random models like Gilbert graphs, Random Geometric Graphs (RGGs) and Random
Hyperbolic Graphs (RHGs).

• Borůvka and Randomized-Borůvka: We provide an implementation of the

externalized version Borůvka:

R Section 6.3

of Borůvka’s algorithm [51] as a baseline for our external

memory algorithms. It computes the Connected Components of a graph by repeat-

edly performing Borůvka steps that reduces the number of nodes. Its translation

to external memory however, signi�cantly increases its algorithmic complexity re-

quiring the use of many auxiliary data structures leading to subpar performances

in practice.

To mitigate the use of these additional data structures, we propose a similar

but more light-weight algorithm called Randomized-Borůvka:

R Section 6.3

Randomized-Borůvka. Randomized-

Borůvka works essentially like Borůvka but produces smaller easier to handle

subgraphs that can be contracted more e�ciently. Both algorithms, however,

could not compete with the other candidates.

• Sibeyn: Sibeyn Sibeyn:

R Section 6.3

is a Minimum Spanning Forest (MSF ) algorithm that exhibits fur-

ther optimization possibilities when considering the easier problem of computing

Connected Components. We consider Sibeyn for its simplicity which resulted in

our highly e�cient implementation. In this setting, Sibeyn repeatedly lets some

node select an arbitrary incident edge which is contracted subsequently. This

process is realized lazily using Time Forward Processing and therefore produces

comparably very small I/O-volumes in practice.
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In our experiments we consider several edge selection strategies and a variety of

ways to implement the lazy contractions using either priority-queues or buckets.

• Karger-Klein-Tarjan: We consider the well-known algorithm ofKarger-Klein-Tarjan:

R Section 6.3

Karger, Klein

and Tarjan [108] for the MSF problem in a more general framework. For the exter-

nal memory setting, an externalized version exists and can again be translated to

the Connected Components problem. Our general framework proceeds recursively

and requires a few subroutines: reducing the set of nodes using contractions,

random sampling of the edges and merging recursively computed solutions of the

CC problem. Due to the increased variability, we are able to consider a plethora of

parameter combinations for Karger-Klein-Tarjan. Among these are Borůvka,

Randomized-Borůvka or Sibeyn for the node contractions and di�erent sampling

parameters that could even be adaptively set.

Even though Karger-Klein-Tarjan is the theoretically most e�cient algorithm,

a lot of tuning was necessary to provide a practical implementation. This is in part

due to its recursive nature and the additionally required auxiliary data structures.

In our experiments we �nd that Sibeyn is a strong contender due to its simplicity. Its

implementation essentially only requires the use of a single external memory priority-

queue. As such, any competing algorithm can only perform very few operations before

losing to Sibeyn. However, Karger-Klein-Tarjan is still a competitive choice; using

the right subroutines and tunings the algorithm provides a robust solution that performs

comparably well.

8.2.2 Certifying Graph Recognition

Chapter 7 is based on our article [134] and presents I/O-e�cient certifying recognition

algorithms for bipartite, split, threshold, bipartite chain and trivially perfect graphs.

On a graph with n vertices and m edges, our algorithms incur O(sort(n+m)) I/Os

in the worst-case or with high probability for bipartite and bipartite chain graphs. In

the positive membership case, a YES-certi�cate that characterizes the graph class is

returned. Contrary, in the non-membership case a O(1)-size NO-certi�cate is returned

for all graph classes except for the bipartite case.

We adapt the internal memory algorithms of Heggernes and Kratsch [96] to the

external memory setting using standard techniques including Time Forward Processing
and Euler tour computations. For all graph classes we exploit their key structural

properties to develop I/O-e�cient algorithms.

• Split Graphs: Split graphsCertifying Split Graphs:

R Section 7.2.1

are graphs where the vertices form a split partition

(K, I) meaning thatK and I are a clique and an independent set, respectively. We

additionally exploit the following key insights: (i) the maximum clique consists of

the highest degree vertices; and (ii) any non-decreasing degree ordering of a split

graph is a perfect elimination ordering. Computing this ordering and relabeling

the graph accordingly eases necessary further computational tasks, i.e., verifying

that K is indeed a clique and I is indeed an independent set.
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• Threshold Graphs: Certifying Threshold

Graphs:

R Section 7.2.2

Threshold graphs are split graphs with the additional prop-

erty that the independent set I has a nested neighborhood ordering. They are

additionally characterized by the following graph generation process: repeatedly

add universal or isolated nodes to an initially empty graph. Due to the relabeling,

we can I/O-e�ciently verify this property in reverse by repeatedly removing

universal and isolated nodes from the input graph.

• Trivially Perfect Graphs: Trivially perfect graphs Certifying Trivially Perfect

Graphs:

R Section 7.2.3

are graphs where in each of its

induced subgraphs the size of the maximum independent set equals the number

of maximal cliques. Similar to split graphs, we exploit that trivially perfect graphs

exhibit a distinguished feature in their degrees: any non-increasing degree order-

ing is a universal-in-a-component ordering. Using Time Forward Processing we

translate the iterative labeling scheme of Heggernes and Kratsch [96] and verify

this property I/O-e�ciently.

• Bipartite and Bipartite Chain Graphs: Certifying Bipartite and

Bipartite Chain Graphs:

R Section 7.2.4

Bipartite chain graphs are bipartite graphs

where the partitions emit a nested neighborhood ordering. As such, we �rst

develop an I/O-e�cient certifying algorithm for the recognition of bipartite graphs.

Instead of using graph traversal algorithms, we rely on spanning forests and batch-

processing to realize an I/O-e�cient certifying recognition algorithm for bipartite

graphs. By combining this and the developed algorithm for threshold graphs;

we also provide an algorithm for the case of bipartite chain graphs requiring

O(sort(n+m)) I/Os with high probability.

8.3 Future Research Opportunities

In this section, we highlight a few additional open questions related to Chapters 2 to 7

that may lead to further future research opportunities.

8.3.1 Uniformly Sampling Simple Graphs with Prescribed Degrees

While there exists a plethora of MCMC algorithms and many practical e�cient imple-

mentations thereof, a lack of rigorous mixing times for large families of degree sequences

still persists. Even comparisons among them are only scarcely available both in theory

and practice. Our empirical evaluations in Chapters 2 to 4 shed some light towards this

issue but further work is necessary for the reliable sampling of uniform simple graphs

with prescribed degrees. Especially for practical implications, new techniques inspired

by recent developments in machine learning may be of particular interest. In this con-

text, practitioners may use machine learning tools to systemically �nd experimental

lower bounds for any given MCMC algorithm.

On the other hand, e�cient exactly uniform samplers are less prevalent and further

theoretical work is required to facilitate more practical implementations. To this end,

dedicated algorithms similar to Inc-Powerlaw can provide a consistent means to

uniformly sample simple graphs with prescribed degrees. Further results in this direction
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may be achievable by adding even more switchings analogously to Inc-Powerlaw,

potentially increasing the range of permissible degree sequences.

8.3.2 Connected Components and Related Problems

In the external memory regime, extensive experimental studies are scarcely conducted

due to their heavy computational requirements. They, however, provide an important

view on the designed algorithms that are typically rooted in theoretical considerations.

As such, it would be interesting to execute a large-scale experimental study not only for

the Connected Components problem but also for related problems like Minimum Spanning
Forest or �nding any spanning forest in a given graph. The then gained insights may

inspire new algorithmic techniques to break current theoretical barriers; e.g., whether

computing Connected Components or Minimum Spanning Forest are equivalently hard in

external memory, �nding improved upper bounds and many more.

8.3.3 Certifying Graph Recognition

Naturally, it would be interesting to extend the scope of certifying algorithms in the

external memory regime; broadening the range of permissible graph classes that can be

certi�ed I/O-e�ciently. In internal memory, a plethora of graph classes are e�ciently

certi�able, while they currently have no e�cient external memory pendant, e.g. circular-

arc graphs [72], HHD-free graphs [147], interval graphs [111], normal helly circular-arc

graphs [44], permutation graphs [111], proper interval graphs [97], proper interval

bigraphs [97], unit interval graphs [57] and many more. Due to limited data locality,

straight-forward applications of these algorithms are highly ine�cient for use in external

memory. In turn, new algorithmic techniques are necessary to bridge the gap to larger

processing scales.

Furthermore, moving away from the static setting and rather considering dynamic

certifying algorithms is also a natural choice. Again, in internal memory some dynamic

recognition algorithms exist (e.g. [168, 58]) but have not been extended to larger scales.
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