Table S1. Sensitivity of state-of-the-art analysis of SPMs using LC-MS/MS of exemplary methods.

Shown is the lower limit of quantification of the instrument (LLOQ on column and the corresponding concentration) and the injection volume. Moreover, the effective LLOQ for liquid biological samples in pg/ml is shown, as well as the sample preparation technique, the initial sample volume, the reconstituted volume and the %-injected. All methods use electrospray ionization with triple-quadrupole analyzer listed either from Agilent (6470), Thermo (TSQ Quantum), Waters (Xeno TQS) or SCIEX (6500, 5500, 4000). Finally, the method used for definition of the LLOQ during method validation is given. Please note this table serves as orientation for the concentration range of the LLOQ (summarizing all covered SPM and exemplary LXA₄ and RvD2) and is not a comprehensive review about all available methods for oxylipin quantification.

Laboratory	Reference	SPMs covered (AA, EPA, DHA)	Instrument L	LOQ	Injection volume	LLOQ plasma/s erum/ fluid	Sample prepara tion	Initial volume	reconstituted volume (% injected sample)	Instrument	LLOQ definition	Comment
			pg on column	pg/ml vial	μΙ	pg/ml		μΙ	μΙ (%)			

Dalli	(Colas et	5S,15S-	0.05-0.22* [,] #	1.3-5.5,	3)	0.05-0.22,	SPE	1000	3)	6500	matching
	al., 2014)		",								RI, MIN. 6
		LAA4		LXA4 1.3							lagnostic
						0.05					IONS
		15R-LXA4,	0.05	RVD2 2.3							
		LXB4, $RVE1$,				d5-RVD2					
		RVE2, RVE3,	d5-RVD2								
		LXA_5 , LXB_5 ,				0.09					
		RvD1, 1 <i>1R</i> -	0.09								
		RvD1, RvD2,									
		RvD3, 17 <i>R</i> -									
		RvD3, RvD5,									
		RvD6, PD1,									
		17 <i>R</i> -PD1,									
		15 <i>E</i> -PD1,									
		10 <i>R</i> -15 <i>E</i> -									
		PD1, PDx,									
		22-OH-PD1,									
		22-COOH-									
		PD1, MaR1,									
		12E-MaR1,									
		7S-12E-									
		MaR1,									
		7S,14S-									
		diHDHA,									
		4S,14S-									
		diHDHA,									
		14S,21-									
		diHDHA									

Dalli	(Gomez et	LXA₄, LXB₄, 15R-I XA₄	0.05-5.00,	1.4-142,	35	0.05-5.00,	SPE	1000	40	5500		matching
	(Koenis et	15-LXB ₄ ,	LXA4 0.1	LXA4 2.9		LXA4 0.1						RT, ≥ 4
	al., 2021)	RvE1, RvE2,										data
		RvE3, RvD1,	RvD2	RvD2 2.9		RvD2 0.1						
	<u>10.21203/r</u>	RvD2, RvD3,	0.1** ^{, #}									points, >
	<u>s.3.pex-</u>	RVD4, RVD5,										2000
	<u>1147/v1</u>	RvD0, 17R-										counts, 6
		RvD3, MaR1,										diagnostia
		MaR2,										diagnostic
		4S,14S-										ions, min.
		diHDHA,										1
		7S,14S-										backhone
		OH-MaR1										Dackbone
		14-oxo-										fragment
		MaR1, PD1,										
		17R-PD1,										
		10S,17S-										
		diHDHA, 22-										
		OH-PD1										
Dennis		LXA4, 6S-	1*	25	40	2.8	SPE	900	100 (20)	4000	S/N ≥ 3	
	(Dumlao et	LXA4,15R-									(m-2)	
	al., 2011)	LXA ₄ , LxA ₅ ,	LXA ₄ 1								(n=3)	
	(Deems of	LXB4, RVE1,									(LOD)	
	al 2007)	15E-PD1										
	u., 2007)	10S,17SdiHD										
	(Quehenb	HA										
	erger et											
	al., 2011)											

Geisslinger	(Toewe et al., 2018)	LXA4, 15R- LXA4, 6R- LXA4, LXB4,	1-2,	100-200,	10	25-50,	SPE	200	50 (20)	5500	S/N ≥ 10,	Chiral chromatog
	. ,		LXA ₄ 2	LXA ₄ 200		LXA4 50					± 20%	raphy
		RvD1, RvD2, 17R-RvD1	RvD2 2	RvD2		RvD2 50					accuracy	
		PDx, PD1,		200		1002 00					and	
		dinor-PD1, tetranor-PD1, LXA₅, MaR1									precision	
Giera	(Jónasdótti r et al.,	LXA4, 6S- LXA4, LXB4,	0.5	25	20	200	Protein precipit	40	320 (6.3)	6500	S/N > 10	
	2015)	RvE1, RvE2,18S-	LXA4 0.5	LXA4 25			ation with					
		RvE3, 18R- RvE3, RvD1, RvD2, 10,17- diHDHA, MaR1	RvD2 0.5	RvD2 25			MeOH (96 well plate)					
Giera	(Jonasdotti	LXA4, 15R- LXA4, LXB4,	0.4	10 +	40	Synovial fluid	SPE	Synovi al fluid	150 (27)	6500	S/N > 10	
	r et al.,	RvE1, RvE2	LXA ₄ 0.4	LXA ₄ 10								
	2017)	18R-RvE3, 18S-RvE3		PyD2 po		12		125				
	(Giera et	RvD1, 17R-		calibratio								
	al., 2012)	RvD1, RvD2, 10S,17S- diHDHA, MaR1, 7S- MaR1		n								
Hammock	(Yang et al., 2009)	LXA ₄	0.21	21	10	8	SPE	250	100	4000	S/N ≥ 10	

Hersberger	(Hartling et al., 2021)	RvE1, LXB4, RvD2, RvD3, RvD1, 15R- LXA4, 17R- RvD1, 6S- LXA4, RvD4, PDx, PD1, RvD5, MaR1, MaR2,	0.002- 0.063, LXA4 0.008 RvD2 0.002	0.2-6.3, LXA4 0.8 RvD2 0.2	10	0.4-12.5, d5-LXA4 0.4 d5-RvD2 3.2 #	SPE	200	50 (20)	6500+	S/N > 10	Use of alkaline mobile phase
Mori	(Mas et al., 2012)	RvD1, 17R- RvD1, RvD2, 10S17S- diHDHA, PD1	6	250	not provided	25	SPE	1000	100	TSQ Quantum	S/N ≥ 10	No individual values provided
Newmann	(Pedersen et al., 2021)	LXA4, LXB4, RvD1, RvD2, PDX, MaR1	0.2-1, LXA₄ 0.4 RvD2 0.8	40-199 LXA ₄ 80 RvD2 159	5	201-995 LXA₄ 398 RvD2 794	Protein precipit ation with ACN/M eOH (96 well plate)	50	250 (2)	6500	3 × <i>t</i> n- 1,0.95 × STD §	
Nicholson	(Wolfer et al., 2015)	LXA4, LXB4, RvD1, RvD2, 10S,17S- diHDHA	0.05-5, LXA₄ 1.3 RvD2 0.5	10-1000, LXA₄ 260 RvD2 100	5	12-1200, LXA₄ 312 RvD2 120	SPE	100	120 (4)	Xeno TQS	S/N > 5, intraday RSD < 20% (n=4), accuracy ±20%	

Ramsden	(Yuan et al., 2018)	LXA4, LXB4, RvD1, RvD2, RvD3, RvD4, MaR1, PDX,	1-5, LXA₄ 2 RvD2 5	100-500, LXA₄ 200 RvD2 500	10	20-100, LXA4 40 RvD2 100	SPE	200	40 (25)	5500	S/N > 5, intraday RSD < 20% (n=4), accuracy ±30%
Schebb	(Kutzner et	LXA4, 15 <i>R</i> -	0.6-3.6,	61-360,	10	6-36,	SPE	500	50 (20)	6500	S/N ≥ 5,
	al., 2013)	LXA4, UXB4,	LXA4 0.6	LXA4 61		LXA ₄ 6					± 20%
		LXA₅, RvE1, RvE2, 18 <i>S</i> - RvE3, 18 <i>R</i> - RvE3, RvD1, 17 <i>R</i> -RvD1, RvD2, RvD3, RvD5, MaR1,7 <i>S</i> - MaR1, NPD1, PDx	RvD2 1.4	RvD2 141		RvD2 14					accuracy
Werz	(Werner et	LXA4, RvE3, RvD2, RvD4,	0.195- 1.56,	19.5- 156,	10	1-8,	SPE	Supern atant of	100 (10)	5500	S/N > 3, > 5 data
	al., 2019)	RvD5, PD1, 17R-PD1	I XA4			LXA ₄ 1		cell			points (I OD)
	(Werner et al., 2020)	10S,17S- diHDHA,	0.195	19.5		RvD2 8*		ions 2000			
	·	MaR1	RvD2 1.56*	RvD2 156*							

Zhu	(Wang et	LXA4, LXB4,	0.18-4.5,	1.8-45,	100	5.4-135	online-	50	150 (67)	6470	S/N > 7
	al., 2020)	RvE1 RvD1,					SPE				
		RvD2, RvD3,	LXA4 0.18	LXA4 1.8		LXA4 5.4					
		RvD4, RvD5,									
		MaR1, PD1,	RvD2 0.9	RvD2 9		RvD2 27					

* only LLOD is given in the publication

** not specified between LLOD/LLOQ

[#] determined in plasma matrix

⁺ lowest calibration level injected

[§] LLOD/LLOQ was determined based on a significant change (one-tailed t-test) in the sensitivity between successive calibration standards using the standard deviation (STD) of the concentration level significantly different than the preceding concentration level and the t-distribution (t-value: one-tailed, 95% confidence)

¹calculated based on given parameters (blue)

²no information provided assumed based on common/given parameters (red)

³no information provided highest volume assumed