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A B S T R A C T

Electrocardiograms (ECG) record the heart activity and are the most common and reliable method to detect
cardiac arrhythmias, such as atrial fibrillation (AFib). Lately, many commercially available devices such as
smartwatches are offering ECG monitoring. Therefore, there is increasing demand for designing deep learning
models with the perspective to be physically implemented on these small portable devices with limited energy
supply. In this paper, a workflow for the design of small, energy-efficient recurrent convolutional neural
network (RCNN) architecture for AFib detection is proposed. However, the approach can be well generalized
to every type of long time series. In contrast to previous studies, that demand thousands of additional network
neurons and millions of extra model parameters, the logical steps for the generation of a CNN with only 114
trainable parameters are described. The model consists of a small segmented CNN in combination with an
optimal energy classifier. The architectural decisions are made by using the energy consumption as a metric
in an equally important way as the accuracy. The optimization steps are focused on the software which can be
embedded afterwards on a physical chip. Finally, a comparison with some previous relevant studies suggests
that the widely used huge CNNs for similar tasks are mostly redundant and unessentially computationally
expensive.
1. Introduction

Monitoring, analysis and classification of the heart electrical activity
have attracted the interest of the scientific community and became a
field with a variety of commercial applications [1,2]. Small portable
devices, such as smartwatches, or implantable heart recorders [3]
are capable of monitoring a heart’s rhythm and activity. Their small
size and their high production and placement costs require hardware
with low energy consumption. Consequently, the embedded software
on these devices, which is responsible for the detection of abnor-
mal heart rhythm (arrhythmia), must have restricted computational
requirements.

Atrial fibrillation (AFib) is a type of arrhythmia caused by disorga-
nized atrial functionality. It is the most common cardiac arrhythmia
with a rate of 1% in the general population [4]. AFib can be diagnosed
by the electrocardiograph (ECG), as the irregular, fast heartbeat leads
to the absence of the P-wave, irregularities of the R-peaks and quite
often in narrow QRS complexes. Although these fibrillatory waves are
one of the major causes of strokes, early diagnosis of AFib and prompt
treatment can inhibit the risk adequately [5].

∗ Corresponding author at: Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany.
E-mail address: katsaouni@em.uni-frankfurt.de (N. Katsaouni).

Artificial intelligence has permitted the design of models which
are able to address this issue instantly, by classifying in real-time the
ECGs, indicating different types of heart arrhythmia and giving recom-
mendations for further investigation and treatment by a cardiologist.
Before the extended usage of deep learning, researchers alluded models
for the automatic detection of arrhythmia based on heavy feature
extraction strategies, which are application specific and require domain
knowledge.

Databases, such as the PhysioBank [6], provide a large collection of
digital recordings. Goldberger et al. are also introducing an open-source
online software to preprocess and analyze ECG signals. Additionally,
for cases when the datasets are not enough or they are damaged
(because of noise or other measurement artifacts), ECG trajectories can
be simulated [7]. Hernandez–Matamoros et al. [8] proposed a method
for heartbeat classification by an 11-layer CNN which can detect 5 types
of arrhythmias and achieves an average accuracy of 97%.

Nowadays, the Convolutional Neural Networks (CNNs) and the
Recurrent Neural Networks (RNNs) are the most common approaches
used for the detection of miscellaneous types of arrhythmias, with
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results that pledge high performances. The success of CNNs is mainly
due to their ability to ‘‘learn’’ all the essential features and classify them
accordingly.

Hannun et al. [9] proposed a 34-layer CNN for the detection and
categorization to rhythm classes with higher accuracy than trained
cardiologists. Before this, other studies used CNNs to develop accurate
models for arrhythmia classification and Afib detection [10–15]. While
the task of the diagnosis of congestive heart failure was the main focus
of Acharya et al. [16]. Furthermore, recurrent connections between the
segments of ECG signals were used in [17,18]. In the former study the
final dense decision layer was replaced by a Support Vector Machine
(SVM), while in the latter one additional attention layer was included.
Finally, skip connections were used by Xiong et al. [19].

However none of the above mentioned studies, whose main objec-
tive is to detect accurately these heart abnormalities, has considered
the resulting energy consumption of these models which is an important
aspect once they are placed on portable, wearable devices. Specifically,
when the only concern is the accuracy of the CNN it is straightforward
that deeper architectures will perform better, given that more detailed
features are detected (certainly if overfitting is avoided). But when we
are interested in the implementation of the model on actual integrated
circuits this is a point that we should contemplate. Having energy
efficient hardware components can obviously minimize the need for
energy supply but software-wise speaking implementing huge models
with hundreds of thousands of neurons and millions of connections is
almost certainly energy-inefficient.

Some previous studies, in different domains of application, have
already addressed this issue by developing techniques that simplify
the CNN architecture and decrease the number of weights. Structured
sparsity is first mentioned at the early years of neural networks [20].
Since then, multiple works have used it to compress the network’s
architecture. Han et al. [21] proposed a pruning strategy with quan-
tization of the trained weights in order to enable weight sharing and
Huffman encoding. They achieved four times layerwise speedup and
seven times more energy efficiency. A structured pruning method by
particle filtering on kernels and feature maps was introduced by Anwar
et al. [22]. The different structures were evaluated by the classification
accuracy with proved good performance on small CNNs. The not im-
portant parameters were excluded in the studies of Alvarez et al. [23]
and Zhou et al. [24] taking advantage also of the structured sparsity.
Another approach for generating simplified versions of neural networks
while maintaining all the predicting capabilities of the bigger ones is
the Knowledge Distillation(KD). In the works of Bucila et al. [25,26] KD
was applied and a smaller student network was trained simultaneously

ith a much bigger teacher network by optimizing the loss function
between them, proving the satisfactory performance of the student
etwork although its much smaller, compressed architecture.

These methods propose a lightweight version of the initial network.
espite the benefits they may have by reducing the network size, they
re mainly considering the efficiency of the network only after training.
upposing we care about a future implementation on hardware, we are
nterested on a stable architecture that can be updated by changing the
odel parameters, while maintaining the basic structure. By pruning

he network weights and architecture in a second step, the general-
zability of the network is affected and a future update will demand
rastic intervention on the network design. And this is a condition
hat results to additional time and financial burdens for the hardware
roducers. Therefore, we deem it necessary to consider the energy
fficiency while designing the models. An attempt in this direction was
one by Amirshahi et al. in [27], where an ECG classification algorithm
as developed for energy efficient wearable devices with the use of

piking neural networks. They suggested the transformation to the spike
omain by encoding the heartbeat signals into spikes and using the
pike-timing dependent plasticity to train the weights of the layers
ccording to the spike timings. They show that, since the calculations
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are done in the spike domain, the energy consumption is significantly
reduced.

In this study we are presenting an accurate energy-efficient archi-
tecture to detect arrhythmia with minimized number of nodes and
connections in a way that a possible implementation of the model on
physical chips can benefit low energy constraints and actual area. For
the purpose of the paper we apply our method on the detection and
classification of atrial fibrillation. The input ECG signals are segmented
to non-labeled windows of equal length. Although the labels of our
dataset are provided per signal, the networks are generated in such a
way that can detect Afib per segment. The models can lead to devices
with more durability, less charge cycles and reduced computation
power while at the same time the high detection capabilities are pre-
served. Our method is not scenario specific. It can be applied on every
kind of time series, generalized to more classes, different kinds of inputs
and addresses the aspect of energy-efficient neural networks assessing
that large architectures are mostly redundant. In the context of this
paper, we are focusing on the software implementation with features
that will allow us to embed it later on a physical chip. In the next
sections the exact workflow for energy-optimized models is described.
The performances are analyzed and compared to other relevant recently
published studies, which suggest networks with thousands of extra
nodes and millions of additional trainable parameters.

2. Materials and method

2.1. Overview

In the following subsections, the workflow for the design of energy-
efficient CNNs is presented. Our method suggests a pipeline for the
construction of CNNs for time series that has as guideline not only
the precision in the detection but also the energy efficiency. The
energy consumption, defined here by the network size, number of
computations and amount of trainable parameters, contributes to the
choice of the final model architecture and it is coupled with the training
of the network. The network optimization consists of a grid search
in thousands of models, network segmentation and application of the
optimal energy classifier. An overview is shown in Fig. 1. The exact
steps are the following:

1. preprocessing of the input signal for noise reduction,
2. construction of multiple model architectures with a grid search

for different number of filters, filter kernels, layers and pooling
sizes.

3. training of the models
4. comparison of the candidate models using as a metric the accu-

racy and the energy consumption. The choice of the candidate
models is done by setting an accuracy threshold and searching
for the ones that minimize the energy consumption.

5. model segmentation to enable predictions per segment
6. find best parameter values for the optimal energy classifier

After the last steps of energy optimization (model segmentation,
optimal energy classifier) the optimal model which has the fewest
trainable parameters while preserving high accuracy can be selected.

2.2. ECG dataset

The data used for this study was provided by the Bundesministerium
für Bildung und Forschung(BMBF)1 in the context of the project "En-
ergieeffizientes KI-System". The dataset consists of 16.000 ECG signals,
8.000 with AFib and 8.000 control cases of sinus rhythm. The signals

1 https://www.elektronikforschung.de/service/aktuelles/
ilotinnovationswettbewerb

https://www.elektronikforschung.de/service/aktuelles/pilotinnovationswettbewerb
https://www.elektronikforschung.de/service/aktuelles/pilotinnovationswettbewerb
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Fig. 1. Workflow for the generation of energy-efficient models for time series.
Fig. 2. Two example ECG signals of the dataset, one of each class, are illustrated. The subfigure (a) is a control case that corresponds to the sinus rhythm and the subfigure (b)
is an example of atrial fibrillation. In both of the cases one segment of 7 s is depicted.
were measured by a portable device PM1000, GETEMED AG and the
two channel ECGs (leads I and II) were provided. The device is a 1-
button technology for easy operation with integrated GSM module for
mobile ECG transmission. The record of 2-lead ECG is accomplished
via 4 electrodes, which are placed on the chest of the individual and
connected on the back of the unit. Each of channels has a duration of
approximately 120 s with sampling rate 512 Hz. Examples of the signal
data are shown in Fig. 2. The data is private and distributed under the
license of BMBF.

2.3. Dataset with ECG signals

For the purpose of our approach the 2 min were sectioned into 17
segments with equal duration of 7 s. The 7 s duration for the windows
was selected after trials, where we searched for the minimum necessary
duration which can lead to accurate Afib detection. Specifically, for
segments of different duration in the range between 4 and 10 s the
performance of the model was estimated. By setting a threshold of 95%
accuracy, we chose the smallest duration that meets this condition. In
this way, we could restrict the size of the input signal to the minimum,
while preserving high performance. Though, the labels are assigned
to the whole signal and not to each segment. The AFib signals have
not only persistent fibrillatory waves in the entire duration but also
paroxysmal events, where AFib can be detected only for some seconds
and then the normal rhythm recurs. It is observed that at the beginning
of the ECGs, a noisy, not periodical wave is appearing as a results of the
placement and initial calibration of the device. Thus, the first segment
of each of the ECGs was excluded by the training process. The rest of
the noise that arises by the hardware measurement device or by the
human movement was handled partially by the preprocessing step and
by our proposed model that is robust to disturbed signals.

2.4. Band-pass filter for ECG signal preprocessing

One of the main difficulties that we should overcome when monitor-
ing continuous ECG signals is the noise by muscle stimulators, magnetic
fields, corrupted signal caused by electrode misplacement, baseline
wander or even noise generated by the respiration of the individuals.
In order to distinguish the main artifacts of the ECG from the noise a
band-pass Butterworth filter was applied on the raw signal.

In order to enable the transfer of our architecture design on a
physical hardware, the preprocessing strategy was chosen properly. A
14th order Infinite Impulse Response (IIR) filter was used, which could
3

be energy efficiently implemented in analog or digital hardware. The
parameters of the 7 biquad blocks of the second order stage (SOS)
architecture can be determined to achieve the wanted transfer function
of the bandpass filter. The high order of the filter enables a very
good suppression of baseline errors and noise. The future hardware
implementation will of course need a proper rearrangement of the
second order stages to keep the amplitude in between the filter stages
in a reasonable range.

The application of the filter was done on the frequency domain by
eliminating all the frequencies smaller than 5 and bigger than 30 Hz.
In Fig. 3 one ECG signal is plotted before and after the denoising by
the bandpass filter. By doing so, the CNN is capable of finding optimal
patterns in both of the classes and extract features that differentiate
them. The bandpass filter has not only a smoothing effect on the signal
but also centers the signal around zero.

2.5. Convolutional neural networks (CNNs)

CNNs are a popular type of deep learning models that have huge
potential in a variety of disciplines. Many studies have used them for
image and signal classification, object detection, signal denoising and
many others. They are mainly consisting of three different operations
constructed as layers. The convolutional layer, the activation function and
the pooling layer. A CNN’s ability to extract highly complex and data-
driven features for all the above mentioned scenarios is mainly due to
the convolution operations. More precisely, each convolutional layer
applies a cascade of filters, commonly known as kernels, on the input
signal and is arranged in feature maps, each of which extracts different
kinds of features.

Considering the complexity of the input signals, the linear nature of
the convolution cannot capture all the underlying information. There-
fore, the activation functions serve as a mapping of the previous layer
to the next one in a non-linear manner. However, the application of
multiple filters on the same input often dramatically increases the di-
mensions of the feature maps, thus the pooling operation is responsible
of condensing the complexity of the CNN simply by down-sampling
information. Commonly, the generated features of the CNN are fed
into fully connected layers with dense connections between them. The
number of the layers, the kernel, pooling size and the number of nodes
in the fully connected layers are some of the hyperparameters, that
define the structure of the CNN and should be chosen appropriately
with regard to network performance and learning ability.

Nevertheless, when there is a need of energy efficiency and limited
network size, it is recommended to minimize the number of nodes,
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Fig. 3. ECG signal before and after the application of the bandpass filter. The red line is the signal before the preprocessing. After the elimination of the frequencies smaller than
5 Hz and bigger than 30 Hz the ‘‘clean’’ signal is centered and shown in blue color. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
𝑐

edges and the overall computations, while preserving high accuracy.
The property of CNNs to apply the same kernel along the whole signal
without changing its weights is called weight sharing. This attribute can
scale down excessively the number of trainable parameters that should
be calculated during learning and also limit the memory requirements
for the weight storage.

2.6. Initial CNN architecture

The first training of the candidate networks was done as follows. All
the 16 segments of each signal are passed through the feature extractor
of the CNNs. The output of the last pooling layer is flattened and fully
connected to 4 nodes. At the end 4 ∗ 16 = 64 nodes were saved for
he whole approximately 2 min signal and were fully connected to
he output node using the sigmoid activation function. By doing so,
e are forcing the CNN to learn general representations based on the
hole signal, reducing the risk of filters which are performing well only

ocally (for example at the beginning or at the end of the signal).

.7. CNN learning

The initial CNNs were trained with the adaptive moment (Adam)
ptimizer [28]. For the convergence of the CNN to an optimal value,
he binary cross entropy loss function was applied:

𝑜𝑠𝑠 = − 1
𝑜𝑢𝑡_𝑠𝑖𝑧𝑒

𝑜𝑢𝑡_𝑠𝑖𝑧𝑒
∑

𝑖=1
𝑦𝑖 log 𝑦𝑖 + (1 − 𝑦𝑖) log 1 − 𝑦𝑖 , (1)

here y is the ground truth and 𝑦̂ the predicted class.
Also, a dropout layer with parameter 0.5 is implemented before the

ully connected layer to avoid overfitting. This means that during the
raining only 50% of all the weights are updated at each iteration.

We used the following procedure to assess the performance of the
odels: The training set was randomly split into 80% for training, 20%

or testing and 10% of the training subset was used for validation (see
able 1). Parameter optimization was done only on the validation set,
hereas performance computation was done on the test set. By design it

annot happen that a full ECG, or a segment of it, from the same person
s part of the training and test set. All ECGs which are part of the test
r validation set, are independent of the ones used for training in order
o avoid an overoptimistic performance assessment of the models.

.8. CNN architecture comparison

Choosing the right CNN architecture can be quite challenging,
ecause many hyperparameters need to be learned as mentioned above.
n our application, the accuracy is not the only metric that we want to
ptimize. Although a model can be accurate enough for AFib detection,
f its complexity is quite high and with many nodes and connections,
hen the energy consumption for the prediction of one ECG signal will
4

be very large if the model will be integrated on a hardware with limited
energy supply.

We conducted a grid search over the number of filters, kernel size
and pooling size to find the optimal architecture. A predefined range
for the values of filters, kernels and pooling size was defined. Filters
in the range 1–5 for each of the layers, kernel size between 4 and 11
and polling sizes between 2 and 6 were tested. For all combinations
the performances were evaluated. By setting an accuracy threshold,
we can pick models that are less complex but well performing. The
complexity of the models is calculated in terms of neurons by the
following equations:

𝑁 =
𝑠𝑒𝑔𝑚𝑠
∑

𝑖=1
𝑖≠0

𝑖𝑛𝑝𝑢𝑡 +
𝑙𝑎𝑦𝑒𝑟𝑠
∑

𝑗=1
𝑗≠0

(𝑓𝑖𝑙𝑡𝑒𝑟𝑠𝑗 ∗ 𝑐𝑜𝑛𝑣_𝑜𝑢𝑡𝑝𝑢𝑡𝑗+ (2)

𝑓𝑖𝑙𝑡𝑒𝑟𝑠𝑗 ∗ 𝑝𝑜𝑜𝑙_𝑜𝑢𝑡𝑝𝑢𝑡𝑗 + 𝑓𝑐) + 1 ,

𝑜𝑛𝑣_𝑜𝑢𝑡𝑝𝑢𝑡𝑖 = [
𝑛𝑖 + 2 ∗ 𝑝 − 𝑘𝑒𝑟𝑛𝑒𝑙

𝑠𝑖
] + 1 , (3)

𝑝𝑜𝑜𝑙_𝑜𝑢𝑡𝑝𝑢𝑡𝑖 = ⌊

𝑛𝑖
𝑝𝑜𝑜𝑙_𝑠𝑖𝑧𝑒 ⌋ , (4)

where N is the total amount of neurons of the CNN, segms denotes
the number of segments for the signal, layers the number of layers
(convolution, pooling), filters the number of filters, pool the pooling
size and fc the nodes in the fully connected layer. The addition of 1
at the end of the equation corresponds to the output node. Concerning
the calculation of the output for each convolution conv_output the n
denotes the input to be convolved, p is the padding, kernel the size of
the filters and s the stride for the application of the convolution. Finally
the pool_size is the window size of the pooling operation.

By following this strategy, the CNNs with the higher accuracy and
less complexity are selected. However, these are not the final archi-
tectures. Further optimizations are done in the next steps as described
afterwards.

2.9. Recurrent CNN and energy optimization

The model as it is described in the previous section requires the
whole 2 min ECG signal in order to make the final decision. Howbeit,
in cases of paroxysmal AFib the fibrillatory waves can be spotted only
in some parts of the ECG. Assuming that the AFib is detected at the
early seconds, it is straightforward that the process of the rest of the
signal is meaningless and it should be classified as AFib. Feeding the
whole ECG in the CNN needs extra computation power that in some
cases is unnecessary. With regard to this fact, we developed a fully
segmented model which is capable of making a decision for each of
the 7 s windows (Fig. 5). The new architecture is combining the output
of the current segment with information by the previous segments to
make decisions. Using segments in such a recurrent manner allows us to

have a temporal dynamic behavior. At the end, although each segment
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Fig. 4. Model for segmented signal classification. In this architecture the input signal is segmented into windows of predefined length. The whole 2 min signal is fed into the
same CNN in segments. For each segment a number of nodes is stored. Once all the segments are passed and their outputs are concatenated, the final classification is performed.
As we do not have labels for each of the segments, this architecture allows us to train the network using only one label per signal while training the same network to extract the
important features, using the information of all the segments.
Fig. 5. Recurrent CNN architecture with energy optimization. The decision of our model is now done per signal segment, by considering recurrently the outputs of the previous
segments. This recurrent flow of information is achieved by using the optimal energy classifier and transforms the network to a recurrent CNN. The recurrent module of the CNN
has parameters that need to be optimized, as it is described in the Optimal energy classification subsection.
is treated individually by the recurrent CNN (RCNN), the decision is
made based on all the previous observations.

In more details, we are using transfer learning to train the RCNN.
The nodes with their weights of the feature extractor part of the model
are preserved and the part of the models until the last pooling is frozen.
The flattened output is now fully connected to one output with the use
of the sigmoid activation function. The output of the sigmoid though, is
not the prediction of the model. The final decision is made by using the
optimal energy classification approach (Fig. 5), which is the memory
and decision unit of our RCNN.

2.10. Optimal energy classification

In order to build a simplified small RCNN, we used the optimal
energy classifier. The memory and decision unit of the RCNN has
three additional parameters that need to be optimized. The detailed
algorithm, presented in pseudocode Algorithm 1, takes as input the
down limit D, upper limit U and the number of successive segments S of the
same class that should be detected in order to have a decision. These
three values are set by a grid search on the training set. For example,
let us assume that these three values are set to 0.47, 0.53, and 5. If the
output of each segment after the application of the activation function
is smaller than 0.47 the whole signal is classified immediately as sinus
rhythm and no more segments are streamed into the network. If it is
bigger than 0.53 the whole signal is classified as arrhythmia. In the
case that the output of the current segment is between these two values,
then the next 7 s segment is fed into the network until we get an output
smaller than 0.47, bigger than 0.53 or 5 successive segments of possible
arrhythmia (> 0.50) or 5 successive segments of possible no arrhythmia
(< 0.50) (Alg. 1).

By doing so, we are permitting the RCNN to make a decision faster
and shut it down. Even though our hybrid model does not contain
any kind of complex modules for recurrent connection between the
segments, like long short-term memory (LSTM) [29], we have managed
to have a temporal dynamic behavior.
5

Results

In order to test our method, a dataset of 16.000 ECGs measured by a
portable device was used. The dataset was balanced for both cases and
controls randomly split for training and testing. The ECG signals were
divided into 80% for training, 20% for testing. Also, a 10% subset of
the training set was used for validation. A more detailed description of
the numbers can be seen in Table 1. The noise generated by the device,
the movement of the patients and the respiration was eliminated by the
application of a band-pass filter in the range of 5–30 Hz. The lengths
of the signals were approximately 2 min with a sampling frequency
of 512 Hz. After downsampling, the remained signals have a sampling
rate of 128 Hz. The ECGs were segmented in 7 s windows. In total 16
segments per signal were acquired.

After denoising and normalizing the signals, a grid search of multi-
ple CNN architectures is performed to compare their performance. As
the strategy is to keep the models small enough to allow low energy
needs, we restricted the search on 3 layers. However the number of
filters varied in the range of 1–5 for each of the layers, different kernel
sizes between 4 and 11 were tested and pooling sizes between 2 and 6
were examined.

Due to absence of labels for each individual segment, the decision
for each of the signal was made after passing all the 16 segments into
the network. More precisely, each of the 16 segments was fed into
the network successively. The output of the last convolutional-pooling
layer is flattened, fully connected and stored to a predefined amount
of nodes. These nodes of the fully connected layer were restricted in
the range 2 to 5 for the grid search. These nodes are concatenated for
all the segments and fully connected to the output (Fig. 4). In this way
we allow the feature extraction to be learned on features by the whole
signal and capture the important ones. In Fig. 6 a comparison between
model accuracy and model complexity is depicted. The complexity of
the models denotes the sum of a model’s nodes, see Eq. (2).
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Fig. 6. CNN model architecture comparison. A subset of the tested models is displayed. Each dot in the scatter plot is one distinct model with its architecture. By setting a
threshold of 94% for the accuracy, the model with the smallest complexity above this threshold is considered to be the most energy-efficient. The red dashed line represents this
threshold and the selected dots are the chosen candidate models that fulfill the requirements.
Algorithm 1 Optimal energy classification
Energy_Optim(SuccessiveSet S, upper limit U, down limit D)

𝑎𝑟𝑟ℎ𝑦𝑡ℎ𝑚𝑖𝑎 ← 0
𝑠𝑖𝑛𝑢𝑠 ← 0
for all <segments> do
if 𝑠𝑒𝑔𝑚𝑂𝑢𝑡𝑝𝑢𝑡 ≤ 0.5 then

𝑠𝑖𝑛𝑢𝑠 ← 𝑠𝑖𝑛𝑢𝑠 + 1
𝑎𝑟𝑟ℎ𝑦𝑡ℎ𝑚𝑖𝑎 ← 0
if 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 == 𝑡𝑜𝑡𝑎𝑙_𝑎𝑚𝑜𝑢𝑛𝑡_𝑜𝑓 _𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 then

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝑆𝐼𝑁𝑈𝑆
𝑏𝑟𝑒𝑎𝑘

end if
if 𝑠𝑖𝑛𝑢𝑠 == 𝑆 or
𝑠𝑒𝑔𝑚𝑂𝑢𝑡𝑝𝑢𝑡 ≤ 𝐷 then

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝑆𝐼𝑁𝑈𝑆
𝑏𝑟𝑒𝑎𝑘

else
continue

end if
else

𝑠𝑖𝑛𝑢𝑠 ← 0
𝑎𝑟𝑟ℎ𝑦𝑡ℎ𝑚𝑖𝑎 ← 𝑎𝑟𝑟ℎ𝑦𝑡ℎ𝑚𝑖𝑎 + 1
if 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 == 𝑡𝑜𝑡𝑎𝑙_𝑎𝑚𝑜𝑢𝑛𝑡_𝑜𝑓 _𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 then

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝐴𝑅𝑅𝐻𝑌 𝑇𝐻𝑀𝐼𝐴
𝑏𝑟𝑒𝑎𝑘

end if
if 𝑎𝑟𝑟ℎ𝑦𝑡ℎ𝑚𝑖𝑎 == 𝑆 or
𝑠𝑒𝑔𝑚𝑂𝑢𝑡𝑝𝑢𝑡 ≥ 𝑈 then

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝐴𝑅𝑅𝐻𝑌 𝑇𝐻𝑀𝐼𝐴
𝑏𝑟𝑒𝑎𝑘

else
𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

end if
end if

end for

Setting a threshold of 94% for the test set, which renders applica-
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bility in practice, the models with the least complexity are chosen. As
Table 1
Split of raw ECG signals.

Training Validation Testing

Atrial fibrillation 4994 554 2452
Sinus rhythm 5086 566 2348
Total 10080 1120 4800

depicted in Fig. 6, there are five models that have the fewest number
of nodes, while preserving the accuracy above the threshold. These
models are the candidates, which are selected to undergo the further
energy optimization steps when included into the RCNN, such that
classification can be done potentially without reading all segments.

A more detailed description of the chosen models’ architectures can
be found in Table 2. Specifically, all the models have three layers of
convolutions with 1, 2 and 2 filters respectively. Each convolutional
layer is followed by a ReLU activation function and a pooling layer
for dimensionality reduction of size 3, 6 and 6. However, the kernel
sizes of the convolutions are varying in the range of 7 to 11. The
sizes of the filters are affecting the number of trainable parameters and
computations in the network. Namely, by increasing the kernel size,
an increased number of neighbor nodes will contribute to the current
calculation.

2.11. Energy optimization for reduced energy consumption

Using one of the CNN architectures for the classification of arrhyth-
mia in a continuous fashion, for example 12 h while wearing a smart
watch, would be very energy inefficient. In practice, it makes sense
to limit the detection of arrhythmia to short repeated intervals, here
we are using 7 s intervals, but this may differ. Ideally, the classifier
can decide about arrhythmia or non-arrhythmia, without exploring the
whole 2 min.

As the CNN’s feature extraction part has been trained on the whole
2 min signal, it has the ability to extract the necessary features for
the detection of Afib. Having created an accurate classifier we need to
force the model to make decisions independently per segment. Since
the features of all the segments are extracted in the same way, we
assume that if the flattened output of the last convolution-pooling is
fully connected to one node then the weight of this node will reveal
the decision of the segment. Therefore, by freezing the weights of all
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Table 2
Network architectures of 5 most energy-efficient candidate models. All the models consist of 3 1D convolutional layers followed by pooling
operations. The number of filters, the kernel and pooling sizes are displayed in the table. All the convolutional layers have ReLU as activation
function and the dense layer a sigmoid.

Model Parameters

Layer 1 Layer 2 Layer 3 Dense layer

Conv1D
filters

Conv1D
kernel

Pooling
size

Conv1D
filters

Conv1D
kernel

Pooling
size

Conv1D
filters

Conv1D
kernel

Pooling
size

Nodes

1 1 8 3 2 8 3 2 8 6 1
2 1 9 3 2 9 3 2 9 6 1
3 1 10 3 2 10 3 2 10 6 1
4 1 11 3 2 11 3 2 11 6 1
5 1 7 3 2 7 3 2 7 6 1
Table 3
Performance and size of the most energy-efficient RCNN models before and after optimization. The accuracies for all the models before and after energy optimization are presented
for the training and test set. Also, the average number of 7 s segments that are needed for the whole 2 min ECG classification is provided. The average number of segments in
this table corresponds to the results on the test set.

Model Performance before energy
optimization

Performance after segmentation
and energy optimization

Training set Test set Training set Test set Down limit Upper limit Successive
number of
segments

Average
number of
segments

Energy
reduction

Parameters

1 0.951 0.943 0.926 0.918 0.30 0.80 4 4.798 70% 93
2 0.952 0.949 0.914 0.920 0.40 0.60 6 3.844 76% 100
3 0.974 0.968 0.934 0.946 0.40 0.60 6 3.276 80% 107
4 0.974 0.966 0.956 0.953 0.40 0.60 6 3.092 81% 114
5 0.960 0.949 0.936 0.942 0.42 0.58 4 5.702 64% 88
the convolutional layers (feature extractor), flatten the last convolution-
pooling layer’s output, connect it to only one node (output-decision)
and retrain only the last classification layer, we have a fully segmented
model. The restriction of the absence of labels per segments can now be
overcome by using the addition of all the segments’ outputs as a final
decision (after the application of the sigmoid to restrict the values in
the range of [0–1].

The integration of the optimal energy classifier into the CNN permits
the judgement for each signal without processing all the 2 min. Using
the signal segments in a recurrent way we can make decisions per
signal window while considering at the same time the previous signal
segments. The final RCNN architecture that is the combination of the
previously described CNN and the optimal energy classifier is generated
as following: For the training set the outputs after application of sig-
moid for all the segments are saved. For multiple combinations of upper
limit, down limit and number of successive segments (see Algorithm 1)
the average number of needed segments per signal and the accuracy
of all the candidates are computed. If the output of the segment is
smaller than the down limit, or bigger than the upper limit the deci-
sion is immediately defined as Afib and no arrhythmia, respectively.
Otherwise, the rest segments of possible Afib or no arrhythmia are
needed. After testing all the combinations for the algorithm, we choose
the best performing. For our models of interest the chosen parameters
can be found in Table 3. The tested values for the down limit were
set in the range 0.20 till 0.48 with step size 0.02 and for the upper
limit in the range 0.52 till 0.80 with the same step size. The number
of tested successive segments was set in the interval of 2 till 8. One of
the combinations that minimizes the number of needed segments while
retaining high accuracy is selected. The decision for the final model is
done after all the optimization steps are completed.

The average number of segments, presented in Table 3, corresponds
to the average number of 7 s segments needed by each of the models
for the correct classification of the whole approximately 2 min ECG sig-
nals. Although the parameters of the algorithm for the optimal energy
classification are calculated for each of the models on the training set,
the average number of needed segments is estimated on the test set for
an unbiased evaluation.

The most energy efficient RCNN was model 4 that has overall 114
distinct variable parameters (weights, biases and 3 parameters for the
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Table 4
Confusion matrix for the test set for the best performing Model 4.

Actually
positive

Actually
negative

Predicted
positive

2,308 77

Predicted
negative

144 2,271

classifier), resulting to a very small architecture with the potential to
classify long ECG signals. A confusion matrix for this model can be
found in Table 4 Also, in cases of continuous monitoring and classi-
fication, without shutting down the whole system after the decision, it
can be a powerful, lightweight model for uninterrupted AFib detection.
Using this architecture and the optimal energy classifier in the model,
the RCNN’s classification decision on the test set was made only by
streaming 3.092 segments on average. Instead of feeding the whole
2 min ECG in the model we can get an accurate prediction only by
testing 27.44 s This can reduce the computational cost to almost 1

5
while preserving 95.3% accuracy (see Fig. 7).

Before the energy optimization step, the model 5 seems to be the
more efficient option, as it has a smaller kernel and consequently less
operations are needed at each application of the filters. Howbeit, after
the conversion to RCNN, with the use of the optimal energy classifier
we need on average 5.702 segments for the classification, in contrast
to model 4 that needs only 3.092. Hence, the use of 26 extra trainable
parameters is an acceptable trade-off while considering the reduced
number of segments needed.

The proposed RCNN architecture consists of 3 layers of convolutions
with 1,2 and 2 filters followed by average pooling of size 3,3 and 6
and one output node with sigmoid activation function. The upper and
down limits of the optimal energy classification are set to 0.60 and 0.40
and the parameter for the successive segments is chosen to be 4 (the
exact architecture and the code for the proposed model can be found
in https://github.com/nikatsaouni/Energy-efficient-CNN) It should be
mentioned that the selection of these parameters is not absolute but
they must be adjusted according to the predefined accuracy and energy
restrictions for each application. Yet, it was a proper decision for our
case study.

https://github.com/nikatsaouni/Energy-efficient-CNN
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Fig. 7. Architecture of the most efficient architecture Model 4. In this scheme the exact
architecture of the RCNN is displayed. The CNN and the optimal energy classifier with
the recurrent connections are highlighted in yellow frames. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

2.12. Comparison with recently published architectures

The main advantage of the proposed models through our workflow
is their small size, not only in terms of their ability to classify long
time series, but also in comparison with other recently published
architectures in the same field of application. A summary can be found
in Table 5.

Chaur et al. [30] generated similarly an 1D CNN for the detection
of atrial fibrillation. The CNN architecture consists of 10 layers of
convolutions followed by pooling operations and 2 fully connected
layers followed by one softmax layer output. The number of filters
at each convolutional layer varies in the range of 32 to 512, which
results in 3,933,634 trainable parameters. This denotes 34,505 times
more parameters than our proposed model 4.

For a fair comparison with our approach, we reproduced the net-
work architecture and trained it on our dataset with the suggested
parameters. The network was trained using the Adam optimization
algorithm and cross-entropy as loss function. The batch size was fixed
to 50 and the network was trained for 100 epochs. Due to absence
of labels for each of the segments we cannot perform segment-wise
training and therefore the full length signal is inserted as input. Anyhow
this is not affecting the final number of parameters and network size, as
all the segments had to be fed. We calculated the test set accuracy for
comparison, where Chaur’s model achieved an accuracy of 98.8%. This
performance is 3,5% higher than our model’s accuracy. Though, when
the energy efficiency is equally important as an accurate detection rate,
our model overpowers Chaur’s approach by a factor of 34,505 when
8

Table 5
Architectures and performances of three competing models and our proposed energy
efficient Model 4 and the best performing Model 6.

Model Layers Filters Parameters Accuracy

Energy-efficientmodel 3 5 114 95.2%
Best performingmodel 3 19 2,347 98.2%
Chaur et al. [30] 10 1,984 3,933,634 98.8%
Fujita et al [15] 8 34 239,245 97.9%
Yıldırıma et al [12] 16 1,216 13,274,690 94.6%

it comes to trainable parameters. Considering these results, one must
decide if the 3,5% is a reasonable compromise for such a huge energy
saving.

Following the same strategy, we compared our model with the
CNNs generated by Fujita et al. [15]. Fujita’s model consists of 8
convolutional layers followed by a max pooling operation. The number
of filters at each convolutional layer is maximum 12 and it has one
fully-connected layer of size 12. After training this architecture on our
dataset an accuracy of 97.9% was achieved. This performance is slightly
worse than our proposed best performing architecture and 2.7% better
than the most energy-efficient alternative. Although, when it comes
to the efficiency, Fujita’s model has 2098 times more parameters than
model 4 (in total 239,245).

Yildirim et al. [12] proposed a different architecture for the detec-
tion of arrhythmias, which we also trained on our data. This 16-layer
model reached an accuracy of 94.5% on our test dataset, after train-
ing. Yildirim’s model uses 1216 filters and has 13,274,690 trainable
parameters. Even though the filters are fewer than Chaur’s model the
kernel ranges from 3 to 50, which leads to an increase in the number
of trainable parameters. Despite the 13,274,576 additional parameters,
its performance lags behind our suggested models.

Additionally, we tried to generate the 1D-CNN as it is described
in [31,32] for atrial fibrillation and trained it on our data. However,
it was not feasible to achieve model convergence and produce a stable
accurate solution. Their model comprises a total of 232,214,329 pa-
rameters, 13 layers of convolutions 2 fully connected and one sigmoid
output layer. As this model has 2,036,967 more trainable parameters
than our model, it is likely that the amount of training data was not
sufficient for a model of this complexity.

Let us assume now that we want to generate a model with accuracy
as high as the two best performing models (Chaur’s or Fujitas’s model).
In that case, a model with higher classification performance from Fig. 6
can be selected. For this purpose we chose the model with 6, 6 and 7
filters, kernel size of 9 and pooling sizes equal to 3, 3 and 6 and named
it as model 6. After the energy optimization steps, this model has an
accuracy of 98.2% on our test set and on average 2.47 segments are
needed for the classification of one ECG signal. The final model has a
total of 2347 parameters. Although the accuracy is similar to Chaur’s
proposed architecture, they used 3,931,287 more trainable parameters.
The model by Fujita et al. performs worse and uses 101 times more
parameters than model 6. This suggests that Chaur’s and Fujita’s model
architectures are highly redundant at least for the variations observed
in our data. The architectures for comparison of Chaur’s, Fujita’s and
Yildirima’s models, our most energy efficient Model 4, and our Model
6 with the highest performance can be found in Table 5 and Fig. 8.

3. Discussion

In the present study, we are proposing energy efficient recurrent
CNN architectures for long time series and our approach is tested
on the detection of atrial fibrillation on ECG signals. Our workflow
suggests the development of lightweight, fully-segmented models with
drastically fewer model parameters than previous studies. The inclusion
of the energy consumption as an additional metric for the evaluation of
the performance, allows us to generate architectures that can be easily
embedded on physical small hardware devices.
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Fig. 8. Comparison of the most energy efficient model using the proposed workflow
(Model 4), the best performing model (Model 6) and Chaur’s [30], Fujita’s [15] and
Yildirima’s [12] models. The numbers on top of the bars indicate the size of the model
with respect to the trainable parameters.

Developing light-weight neural networks that can be incorporated
on tiny chips and placed on wearable devices is a challenge, as we
want to keep restricted energy requirements and high performance.
In our method, the choice of the model architecture is not absolute.
It can be done, by taking into consideration the accuracy and energy
restrictions. In other words, it is a trade-off between accuracy and
energy consumption. One should define these limitations beforehand.
Afterwards, the architecture that better meets the current needs is
selected.

The choice of the preprocessing method varies per task and nature
of signals. For the current task of Afib detection, band-pass filtering
was applied in the range of 5–30 Hz for signal denoising and nor-
malization. The filtering step could be replaced by some extra layers
of convolutions, but as the main idea of our implementation is to
maintain a small network with as few neurons and parameters as
possible, the band-pass filter was essential for noise canceling. While
some previous works apply in a similar manner filtering of small and
high frequencies [32], the transformation to the frequency domain by
a Fourier or wavelet transform is also used [14]. With the intention
of incorporating our designed model on a physical chip, the band-pass
filter can offer an ‘‘inexpensive’’ solution, given that it can be applied
directly in time domain, avoiding this way extra transformations and it
is a well established method for analog and digital chips. Furthermore,
a variety of papers are focusing on the detection of R-peaks [10]. We
considered this approach as energy inefficient, in a way as the detection
of spikes, demands many additional computations and it is difficult to
be generalized to general time series.

The optimal architecture for our application consists of 3 convolu-
tional layers with 1, 2 and 2 filters respectively and 1 fully connected
layer. The total number of parameters of the model is 114, which is
millions of times smaller than model sizes that others have suggested.
After energy optimization our model achieved an accuracy of 95.3%
on our test set of 4800 ECGs. The use of the optimal energy classifier
permitted us to reduce the energy by 81% for the classification of 2 min
signals. Specifically, only an average of 3.09 signal segments of 7 s,
or approximately 21 s, were needed for the classification of the whole
112 s. Mistakes due to wrong segment-wise decisions are avoided by
recurrently using the information of previous segments.
9

4. Conclusion

The focus of the paper is on the model generation in means of
software. It is describing a succession of steps that need to be followed,
in order to facilitate the future mitigation of the model on a chip. As
future work, we are concentrated on the transfer of the model on a sim-
ulated chip. This of course requires some additional optimizations such
as weight quantization to fit the requirements of the chip technology,
quantization of the filter coefficients to avoid numerical instabilities
and an iterative approach for the correction of inaccuracies between
the software and hardware implementation.
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