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Expectation values of kinetic and potential energy are calculated for some lower antibonding 
orbital states of simple diatomic molecules using H2+ and HeH2+ as test cases. Common LCAO-MO 
theory and a scaling procedure are applied which allow an analysis of atomic orbital interactions 
in terms of RUEDENBERG'S 1 promotion and interference effect at various internuclear distances. 
Contributions to the total energy at different regions of interatomic separations are discussed in 
detail. A characteristic increase of the kinetic energy is observed for antibonding linear combina-
tions at distances where chemical bonding occurs. 

I. Introduction 

In his review on "The Physical Nature of the 
Chemical Bond" RUEDENBERG concludes that chemi-
cal bonding in terms of potential and kinetic energy 
change is not correctly understood unless the validity 
of the virial theorem is preserved The seemingly 
incompatibility of the opinions that bonding is 
either due to a decrease of the kinetic energy (HELL-
MANN 2) or is originated from a drop of potential 
energy (see e. g. PITZER 3) could be clarified by a 
closer analysis of various energy contributions upon 
molecule formation. The fallacy in the previous ar-
guments was found in the omission of "energy pro-
motion effects" which were introduced in order to 
satisfy the virial theorem1. Energy promotions for 
bonding states of simple molecules are obtained by 
increased orbital exponents which lead to a con-
tracted electron density close to the nuclei compared 
to corresponding charge distributions in the free 
atoms. Another accumulation of charge is due to the 
atomic overlap in the bond region (interference ef-
fect) yielding a large decrease of kinetic energy 
which is crucial for covalent bond formation. 

Approximate wave functions which fulfill the 
virial theorem are obtained e. g. by scaling the co-
ordinate system and varying the scaling parameter t] 
such that the energy is minimized 4. These functions 
at optimal scale, in general, may still be far from 
the exact solution, however, if the molecular func-
tions are in particular linear combinations of cor-

1 K. RUEDENBERG, Rev. Mod. Phys. 34, 326 [1962]. 
2 H . HELLMANN, Einführung in die Quantenchemie, Deuticke, 

Leipzig 1937. 
3 K. S. PITZER, Quantum Chemistry, Prentice Hall, Engle-

wood Cliffs, N.Y., 1953. 
4 V. FOCK, Z. Physik 63, 855 [1930]. 

rect atomic functions the scaling procedure leads to 
a substantial improvement of the wave functions 
which for small molecules are close to the exact 
solution 5. For the present problem the approximate 
solution is preferred to the exact one in order to dis-
cuss the energy contributions in terms of atomic 
promotion and interference effects. In bond orbitals 
at internuclear distances close to the molecular equi-
librium the scaling parameter is rj > 1 which pro-
duces a promotion effect showing all features dis-
cussed by RUEDENERG. However, at intermediate 
internuclear distances (5 to 15 Bohr radii for the 
hydrogen molecular ion) the situation is different: 
The bonding orbital not withstanding the virial theo-
rem is expanded compared to the atomic consti-
tuents 6. This type of interaction which is essentialh 
different from chemical bonding perhaps indicates 
some sort of LONDON forces. Corresponding results 
are obtained if the ^-parameter is determined by 
maximizing the overlap integral of the scaled and 
the exact wave function 7. 

In this context a closer investigation of corre-
sponding antibonding orbitals is interesting. Because 
of larger corrections due to the differential term 
in the molecular virial theorem entirely different 
results may be obtained compared to bond orbital 
states. The energy destabilization of anibonding 
liniear combinations is generally considered as 
being due to the necessary introduction of node 
planes: those orbitals having the greatest number of 
nodes are expected to be highest in energy. From 

5 See J. C. SLATER, Quantum Theory of Molecules and Solids. 
Vol. I. Electronic Structure of Molecules, McGraw-Hill, 
New York 1963. 

6 J. O. HIRSCHFELDER and J. F . KINCAID, Phys. Rev. 5 2 , 658 
[1937]. 

7 K . HELFRICH. Proceedings of the Seminar on Computational 
Problems in Quantum Chemistry, Straßburg 1969, in print. 



RUEDENBERG'S results obtained for bonding orbitals 
it has been concluded 8 that in antibonding orbitals 
the increased energy is almost entirely due to a raise 
of kinetic energy. If this is true various consequen-
ces would result: e . g . orbital transitions which are 
important in optical spectroscopy are then explained 
essentially by a change of kinetic energy of the val-
ence electrons (Leuchtelektronen). However, these 
arguments are only correct if the energy partition-
ing is strictly reversed in bonding and antibonding 
orbital states. In addition would molecules with 
hetero atoms further complicate the problem because 
of internal charge transfer processes. 

We want to investigate this question by calculat-
ing two very simple diatomic molecules which are 
used as a model for more complicated systems. Ex-
pectation values of the kinetic and potential energy 
for antibonding states of H2 + and of the smallest 
heteroatomic molecule, i. e. HeH2+, are calculated. 
The latter molecule has only antibonding states and 
is therefore of particular interest for the present 
problem. The promotion and interference effect and 
its dependence on the internuclear distance are dis-
cussed in detail. 

II. Calculation 

The method applied is the common MO-LCAO 
procedure with scaled Is hydrogen-like atomic func-
tions with charges a and ß on the two nuclei 

cpaW = r)s'*(a/ji)1'* e~ar>r-; 
(pß(n)=vs't(ß/7i)1'te-^. (1) 

In this problem all overlap, coulomb and resonance 
integrals can be expressed analytically. The coeffi-
cients Cij of the atomic orbitals are then determined 
by solving a 2 x 2 secular equation yielding two 
electronic energies Ea and E^ for the antibonding 
and bonding states, respectively. For a given set of 
nuclei a and ß these energies are functions of the 
scaling parameter rj and the internuclear distance R. 
The rfs are then varied at each R in such a way 
that the energy becomes a minimum: 

3 T] R = const 
= 0 . (2) 

This procedure, of course, does not yield the "best 
LCAO-approximation for the optimal basis set" 
since the coefficients and the orbital exponent rj 

8 C. K. JORGENSEN, Intern. J . Quantum Chem. 2 , 4 9 [ 1 9 6 8 ] . 

are not varied simultaneously. However, the func-
tions obtained by successive variation of Cij and J? 
fulfill the virial theorem, too, which is of main im-
portance for the present problem. Expectation values 
for kinetic and potential energies of the electrons as 
function of R are obtained from the calculated mo-
lecular orbital (i = a or b for the antibonding 
and bonding orbital, respectively) by 

Vi(R) = fVi(r)VTl(R) d r , 
T[(R) = correspondingly. (3) 

Numerical calculations were performed on a Honey-
well 120 electronic computer. The program was 
written in Fortran IV language. 

III. Results and Discussion 

The results of the computations are presented in 
Table 1 and 2. Scaling parameters, coefficients, en-
ergies and expectation values are listed as function 
of the internuclear distance R, given in Bohr units. 
Also, the differential term in the molecular virial 
theorem 

F , aß T , pWi + aßlR) E,+ R = - T l + R dR (4) 

is presented in which the nuclear repulsion a ß/R 
is included. One notices that for almost all distances 
this corection term is larger for the antibonding 
linear combination than for the bonding one. This 
relation is reversed only for HeH2+ at intermediate 
distances. For bonding states at equilibrium separa-
tion the molecular theorem Eq. (4) simplifies to 

Eh + aß/R=-Th (5) 

which is apart from the term a ß/R identical with 
the atomic theorem. Deviations from the latter theo-
rem are certainly large for strongly antibonding 
states. In the tables potential energies without inter-
nuclear repulsions, i. e. electronic potential energies, 
are also listed. They are always negative for all sta-
tes and distances because of a general gain of poten-
tial energy due to the addition of another nucleus 
on molecule formation. 

Now, considering the scaling parameter (Fig. 1) 
we observe similar behaviour for r\ in H2 + and 
HeH2+. For small nuclear distances the bonding 
orbitals xp̂  are contracted (>?>1) and the antibond-
ing orbitals t/'a a r e expanded (*7<1) compared to 
the separated atom limit. However, the promotion 
effect in eeneral is smaller for HeH2+ than it is for 



(1) bonding orbital Y>b(cba = Cbß) 

R(a0) V T 
d(E+l/R) 

R dR V 

0.2623 
0.5750 
0.9664 
1.4546 
2.0393 
2.6447 
3.8676 
4.9891 
6.0299 

10.0085 

1.9062 
1.7392 
1.5521 
1.3750 
1.2308 
1.1344 
1.0342 
1.0022 
0.9950 
0.9950 

1.9221 
0.0565 

- 0.4230 
- 0.5623 
- 0.5864 
- 0.5749 
- 0.5405 
- 0.5194 
- 0.5089 
- 0.5003 

1.7231 
1.3128 
0.9708 
0.7303 
0.5799 
0.5009 
0.4469 
0.4507 
0.4669 
0.4976 

0.1990 
- 1.2563 
- 1.3938 
- 1.2926 
- 1.1663 
- 1.0758 
- 0.9874 
- 0.9701 
- 0.9758 
- 0.9979 

- 3.6452 
- 1.3693 
- 0.5478 
- 0.1680 

0.0065 
0.0740 
0.0936 
0.0687 
0.0420 
0.0027 

- 3.6134 
- 2.9954 
- 2.4286 
- 1.9801 
- 1.6567 
- 1.4539 
- 1.2460 
- 1.1705 
- 1.1425 
- 1.0978 

(2) antibonding orbital ya(caa = - ~c&ß) 

0.4890 
1.0934 
1.5449 
1.9584 
2.3701 
3.0141 
3.9391 
4.9232 
9.9912 

0.5112 
0.6859 
0.8091 
0.8936 
0.9493 
0.9953 
1.0155 
1.0156 
1.0009 

1.5759 
0.3517 
0.0238 

- 0.1521 
- 0.2646 
- 0.3692 
- 0.4420 
- 0.4751 
- 0.4997 

0.5417 
0.7267 
0.8012 
0.8102 
0.7848 
0.7224 
0.6399 
0.5798 
0.5024 

1.0342 
- 0.3750 
- 0.7774 
- 0.9623 
- 1.0494 
- 1.0916 
- 1.0819 
- 1.0549 
- 1.0021 

- 2.1176 
- 1.0784 
- 0.8250 
- 0.6581 
- 0.5202 
- 0.3532 
- 0.1979 
- 0.1047 
- 0.0027 

- 1.0108 
- 1.2896 
- 1.4247 
- 1.4729 
- 1.4713 
- 1.4234 
- 1.3358 
- 1.2580 
- 1.1022 

Table 1. H2+ (a=/ ? = 1) internuclear distances R are in Bohr units. Energies are given in atomic units (1 a. u. = 27.21 eV). 

(1) positive linear combination yJb(cbalcbß ^ 0) 

R(ao) Cba CbP T 
M 

d(E + 2/R) 
R dR 

V 

0.2 0.9714 0.2373 2.0688 5.8364 3.7370 2.0994 - 9.5734 - 7.9006 
0.6 0.8524 0.5228 1.3917 - 0.0769 2.5433 - 2.6202 - 2.4664 - 5.9535 
1.0 0.7099 0.7042 1.1537 - 0.9719 2.1543 - 3.1262 - 1.1824 - 5.1262 
1.2 0.6403 0.7681 1.1002 - 1.1615 2.0728 - 3.2343 - 0.9113 - 4.9010 
1.5 0.5373 0.8433 1.0534 - 1.3371 2.0155 - 3.3526 - 0.6784 - 4.6859 
2.0 0.3804 0.9247 1.0186 - 1.5028 1.9936 - 3.4964 - 0.4908 - 4.4964 
2.5 0.2559 0.9666 1.0064 - 1.6010 1.9953 - 3.5963 - 0.3943 - 4.3963 
3.5 0.1065 0.9943 1.0007 - 1.7143 1.9994 - 3.7137 - 0.2851 - 4.2851 
5.0 0.0262 0.9996 1.0000 - 1.8000 1.9998 - 3.7998 - 0.1998 - 4.1998 

10.0 0.0002 0.9999 1.0000 - 1.8999 2.0001 - 3.9001 - 0.1001 - 4.1001 

(2) negative linear combination Va(*Wca0 ^ 0) 

0.2 - 0.7380 0.6747 0.9443 8.9571 0.9678 7.9893 - 9.9249 - 2.0107 
0.6 - 0.7303 0.6830 0.8959 2.3000 1.1181 1.1819 - 3.4819 - 2.2152 
1.0 - 0.7472 0.6645 0.9965 0.8288 1.5287 - 0.6999 - 2.3575 - 2.6999 
1.2 - 0.7783 0.6278 1.0485 0.4321 1.5568 1.1247 1.9889 2.7914 
1.5 - 0.8378 0.5459 1.1081 0.0438 1.4373 - 1.3935 - 1.4811 - 2.7268 
2.0 - 0.9246 0.3809 1.1482 - 0.2829 1.0835 - 1.3664 - 0.8006 - 2.3664 
2.5 - 0.9700 0.2429 1.1243 - 0.4126 0.8040 - 1.2166 - 0.3914 - 2.0166 
3.5 - 0.9950 0.0991 1.0485 - 0.4850 0.5775 - 1.0625 - 0.0925 - 1.6339 
5.0 - 0.9996 0.0257 1.0062 - 0.4990 0.5081 - 1.0071 - 0.0091 - 1.4071 

10.0 - 0.9999 0.0001 1.0000 - 0.4999 0.5000 - 0.9999 0.0000 - 1.1999 

Table 2. HeH2+ (a = l ; ß = 2) units are given in Table 1. 

H2+ . At larger internuclear separations the para- spectively, of HeH2+ are both with 
meters and r]h for the functions and T/^, re- Again we observe at intermediate distances an effect 



Fig. 1. Dependence of the scaling parameter rj from the inter-
nuclear distance R for the positive and negative xpa, atomic 

linear combination in HeH2+. 

which is similar to that in H 2 + ; it is, however, more 
distinct; the ^-values are increased in HeH2+ up to 
1.15. This probably simulates an interaction (VAN 
DER WAALS or LONDON forces?) which is non-bond-
ing or weakly bonding in character and which is dif-
ferent from interactions obtained for usual chemical 
bonding because of reversed promotion effects. It is 
larger for molecules with hetero atoms. 

More interesting than looking at the scaling para-
meter is an investigation of the /^-dependence of the 
kinetic and potential energy contributions due to 
molecular bond formation. These energies are ob-
tained by substracting from the kinetic and potential 
energies in Table 1 and 2 the respective values for 
the separated atoms. For H2+ this limit at infinite 
internuclear separations is identical with the ground 
state energy of the hydrogen atom, i. e. the kinetic 
energy is ^00 = 0.5, and the potential energy is 

= —1.0 atomic units. The lower state of HeH2+ 

changes for infinite distances into the ground state 
of He+, i. e. T b x = 2 and Vboo = — 4, and the excited 
state of HeH2+ goes into the ground state energy of 
the hydrogen atom. Kinetic and potential energies 
due to the interaction of the atomic components, i. e. 
T—T^ and V + a ß/R — V^ , respectively, are plot-
led in Fig. 2 and 3. 

E 

Fig. 2. Kinetic (T — T^) and potential (V— V^) energy con-
tributions to the bond energy for bonding (b) and antibond-

ing (a) molecular orbital states of H.,+. 

Fig. 3. Corresponding energy curves for HeH2+. Notice that 
the separated atom limits are different for positive and nega-

tive linear combinations. 

Kinetic and potential energy curves for the bond 
orbital of H2 + calculated from the exact solution 
have been discussed earlier 5. Corresponding curves 
obtained from scaled approximate functions are very 
close to the exact solution 5 . In the following we want 
to discuss the behaviour of these curves in terms of the 
promotion effect for which the scaling parameter r\ 
is an indication. At first, as R decreases from in-



finity to intermediate distances, it is the "inference 
effect" due to the orbital overlap which is the im-
portant factor for the kinetic and potential energy 
change. The "promotion effect" at these distances 
is very small ( r j ^ l ) since the atomic virial theorem 
is still well obeyed. A piling up of charge in the 
overlap region for the bonding orbital leads to an 
increase of potential energy and to a more than com-
pensating drop of kinetic energy. On the other hand 
a removal of charge due to the node plane in the 
antibonding orbital correspondingly has the opposite 
effect on the energy distribution. The reversed pro-
motion effect discussed in the preceding paragraph 
also causes energy changes in the same sense as ob-
tained for the interference effect. These are, how-
ever, of minor importance as is seen by inspecting 
the energy curves at points without promotion effect 
where the scaling parameter has exactly the value 
rj = 1. At smaller internuclear distances the promo-
tion effect becomes more and more important and 
changes the situation completely. Energy contribu-
tions in bonding and antibonding orbital states in 
general do not have opposite signs. While in the 
bonding linear combination both kinetic and poten-
tial energy change sign due to promotion effects, the 
kinetic energy in the antibonding state remains al-
ways positive and goes through a maximum close 
to the equilibrium distance at /?e = 2.0 at. u. The 
potential energy at smaller R-values becomes also 
positive because of the increased internuclear re-
pulsion. For distances between R = 0 and Re all en-
ergy contributions for the antisymmetric linear com-
bination are positive. The virial theorem is fulfilled 
due to the large negative differential term by 
which the atomic virial theorem is corrected. The 
potential and kinetic contributions to bond energy 
at equilibrium distance is therefore primarily de-
termined by the virial theorem which causes large 
promotion effects. An understanding of chemical 
bonding in terms of kinetic and potential energy is 
therefore only possible if the validity of the virial 
theorem is accounted for. Although promotion ef-
fects are predominant in the two energy contribu-
tions they are of minor importance to the total 
energy since they operate in opposite direction: the 
decrease in potential energy due to promotion is 
compensated by an increase in kinetic energy. The 
drop in total energy on molecular formation is caus-
ed by atomic interference. At very small interatomic 
distances the potential energy goes to infinity be-

cause of the increased internuclear repulsion. The 
kinetic energies, however, assume fixed values de-
termined by the united atom. It should be pointed 
out that for antibonding states these limits are not 
correctly obtained from the present method. There-
fore respective curves for these states cannot be 
drawn up to the united atom limit in Fig. 2 and 3. 

The shapes of energy curves for the heteroatomic 
molecule HeH2+ (see Fig. 3) are largely similar to 
corresponding H2+ curves. Only the potential curve 
of the positive linear combination behaves entirely 
different. Due to the strong nuclear repulsion this 
curve is positive for all interatomic separations. In 
the negative linear combination the nuclear repul-
sion term in the potential curve is compensated by 
a charge transfer process within the molecule. Since 
the separated atom limit for this state consists of a 
hydrogen atom H and a helium nucleus He2+, a 
transfer of electronic charge from H to He2+ by 
molecule formation is accompanied by a gain of po-
tential energy due to the higher coulomb attraction. 
The total energy, however, is repulsive because of 
the large increase of kinetic energy which results 
from a combined interference and promotion effect 
in the higher orbital state. Since these effects operate 
in the Tb-curve in opposite direction, a slight de-
crease in energy is observed. The promotion en-
ergy is increased for relatively small internuclear 
distances. In this region theTa-curve drops because 
of a continuous decrease of the ^-parameter (see 
Fig. 1) . Close to the united atom the curve becomes 
more and more incorrect since the present proce-
dure is not able to reproduce the correct state for 
this limit. This error is obviously larger for HeH2+ 

than for H2+. 

The striking similarity of the two kinetic energy 
curves Ta—^Taoo for HeH2+ and H2+ deserves special 
interest. They both go through a maximum at inter-
atomic distances where chemical bonding occurs. 
Corresponding potential curves on the other hand 
deviate only very little from their separated atom li-
mits: with other words, potential energy contributes 
very little to the total (anti)-bonding energy. This 
may be an indication that negative linear combina-
tions are destabilized primarily by an increase of 
kinetic energy. The result favours the opinion 8 that 
the destabilization of antibonding orbitals is almost 
entirely due to the presence of nodes in negative 
linear combinations of molecular orbitals. This is 
certainly true for homonuclear molecules like H2+ 



where the increase in kinetic energy is entirely due 
to the interference effect which raises the energy in 
the antisymmetric linear combination. However, for 
heteronuclear molecules this increase is also due to 
promotion energy which enhances the maximum of 
the antibonding kinetic energy curve at normal bond 
distances. 

A generalization of the present results, of course, 
cannot be made without strong reservations. How-
ever, they may be taken as basis for a discussion 
of more complicated molecules which should in-
clude electronic repulsions. Such investigations 
would also have special interest in electronic spec-
troscopy. Since electronic transitions in particular 
occur between the highest occupied and the lowest 

empty orbital states which are essentially antibond-
ing in character it is important for an understand-
ing of these transitions if these are mainly due to a 
change in kinetic energy of the electrons. Moreover, 
if destabilization due to nodes in the electronic den-
sity is the main contribution to the total energy, it 
would be the kinetic energy which determines the 
order of antibonding orbitals in the orbital energy 
scheme. These questions, however, can only be settled 
if further results on more complex molecules are 
available. 
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Der Rotations-Zeeman-Effekt der /-Typ-Übergänge linearer Molekeln. 
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The high-field rotational Zeeman effect has been observed in several rotational transitions of the 
(010) vibrational state in OCS and HCN. The magnetic-field splittings are in agreement with a 
simple first-order energy expression which is derived to hold for the Zeeman energies of rotation-
vibrational states of a linear polyatomic molecule showing rotational /-type-doubling. In this way, 
the presence of intrinsic magnetic moments in the ^r-vibrational states has been shown experimen-
tally. The ^-values along the molecular axis are = +0.061 ±0.002 for OCS and ±0.38 
±0.06 for HCN. No magnetic anisotropics could be detected within the plane perpendicular to the 
molecular axis. The other parameters measured are = —0.0285 ± 0.0006 and X\\)(010> 

= (8.0 ±1.0) x 10-« erg/G2mole for OCS and g?10' = + 0.100 ±0.001 for HCN which "can be con-
sidered an approximate value for the vibrational ground-state. Either the upper or the lower signs 
hold for the ^-values of HCN. The intrinsic ^-values, <7<010) , are discussed in terms of nuclear and 
electronic contributions. A quantity measuring the slip of a rotating nuclear framework within its 
electronic environment is defined and also discussed. 

I. Einführung 

Der Rotations-Zeeman-Effekt in starken Magnet-
feldern wurde bisher an einer Vielzahl von Molekü-
len im Schwingungsgrundzustand untersucht. Die 
Feldaufspaltungen führen, in Ubereinstimmung mit 
der Theorie 2, zur Bestimmung der molekularen 
^-Faktoren und der Anisotropien der magnetischen 
Suszeptibilität. Von geringen Abweichungen abge-
sehen, die in einem Falle, beim Formaldehyd, ge-

* Sonderdruckanforderungen an Dr. W. HÜTTNER, Zentrum 
Chemie-Physik-Mathematik der Universität Ulm, D-7500 
Karlsruhe, Hertzstr. 16, Bau 35 II. 

1 J. R. ESHBACH U. M. W. P. STRANDBERG, Phys. Rev. 85, 
24 [1952]. 

funden wurden und die wahrscheinlich auf Zentri-
fugaleffekte zurückzuführen sind3 , konnten die ge-
messenen Aufspaltungen im Rahmen eines starren 
Molekülmodells beschrieben werden. Das gilt selbst 
für eine Untersuchung am Acetaldehyd-Molekül, in 
dem eine mit 1160cal/mol mittelstark drehgehin-
derte Methylgruppe vorliegt4. 

Abweichungen sowohl vom starren Molekülmodell 
als auch vom Aufspaltungsbild der Rotationsüber-

2 W . HÜTTNER U . W . H . FLYGARE, J. Chem. Phys. 4 7 , 4137 
[1967]. 

3 W . HÜTTNER, MEI-KUO Lo U . W . H . FLYGARE, J. Chem. 
Phys. 48,1206 [1968], 

4 W. HÜTTNER U . W. H . FLYGARE, Trans. Faraday Soc. 6 5 , 
1953 [1969]. 


