
736 H. J . W EBER  AND W?. GREINER

funktionen selbst kann also allenfalls darin gesehen 
werden, daß die ersten beiden Koeffizienten in ( 1) 
ungefähr gleich dem arithmetischen Mittel der Ko­
effizienten in Tab. 3 sind.

Vergleicht man dagegen bei den nach den beiden 
Methoden bestimmten Zustandsfunktionen die Elek­
tronendichte im 3-dimensionalen Raum, so findet 
man nur geringfügige Unterschiede. Als Beleg dafür 
ist in der Abb. 6 die Elektronendichte längs der 
Kernverbindungslinie gezeichnet, und zwar in ge­
strichelten Kurven für die Ransil-Funktion, in aus­
gezogenen Kurven für und nur durch einige 
Kreuze angedeutet für • Obgleich nun die Abbil­
dungen für das Dichte„plateau“ um die Molekül­

mitte deutlich einen höheren Wert bei der Ransil- 
Funktion zeigen, ist doch die Folgerung zu ziehen, 
daß die drei Funktionen V ’ R a n s i l ,  Y’a , iph in diesem 
Gebiet zu fast gleicher Dichte führen würden, wenn 
die Kernabstände gleich wären; denn bei der Ver­
kürzung des Abstands von 5,224 und 5,051 ist na­
türlich eine Erhöhung der Dichte um den Faktor 
(5,224/ 5,051)3, d .h . um 11% zu erwarten. Nur 
der über diese 11% hinausgehende Unterschied zwi­
schen den Dichten ist also als echter Unterschied an­
zusehen. Er ist sehr klein und rührt her von der 
Gleichheit der Koeffizienten für homöopolare und 
ionische Anteile und dem Aufbrechen der K-Schale 
bei der Ransilschen Zustandsfunktion.
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Within the framework of the eigenchannel reaction theory above the two-particle threshold 
cluster channels are introduced. The eigenchannels of the S-matrix are used, i. e. continuum states 
which diagonalize both the S-matrix and the nuclear Hamiltonian and represent for each reaction 
energy a discrete set of coupled channel wave functions with a common (eigen-) phase. Especially 
the emission of a deuteron is discussed. It is shown that the cluster channels supplement the energy- 
correlated channels describing the energy partition £1 +  e2 =  E —E f and that asymptotic channel 
orthogonality holds. The characteristic feature of the cluster channels as compared to the energy- 
correlated channels is that their final state interaction is not limited to a finite matching volume 
comparable to nuclear sizes.

In nuclear reactions above the two-particle thresh­
old one has to consider several types of two-, and 
many-particle channels besides the one-particle chan­
nels which are characterized by the escape of one, 
two or several particles into the continuum. The 
emission of two non-interacting, i. e. free, nucleons 
of momenta k t , k 2 with fixed energy k 2 =  k t2 +  k 22 
represents a limiting case of two energy-correlated 
particles whose final state interaction occurs in a 
region (and reaction time) comparable to the size 
of the nuclear compound system.

At a given total channel energy E of the com­
pound ^-particles system the energies , c2 of the
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two emitted particles are continuous in the range 

e1 + e2 = E - E f , ( 1)

where E[ denotes the final energy of the residual 
(A — 2) particle system.

This characteristic energy partition can be de­
scribed, as shown in ref. 1 and independently in 
ref. 2, by introducing suitable coordinates. If 
the emitted particles are detected at asymptotic dis­
tances rx and r2 from the compound nucleus (target) 
so that the lifetime of the excited compound state 
involved in this particular two-particle emission 
channel becomes extremely small compared to their

1 L. M . D e l v e s ,  Nucl. Phys. 9, 391 [1959] ; 20, 275 [I9 6 0 ] ,
— N. F .  M o t t  and H. S.W. M a s s e y . The Theory of Atom­
ic Collisions, Clarendon Press, Oxford 1965, Ch. XIV, 
p. 399.

2 M . D a n o s  and W. G r e i n e r ,  Z. Phys. 202. 125 [1967].
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common time of flight t, then

r j r 2 = v j v 2 =  ( e j e 2) (2)

In other words, a =  arc cot( r j r 2) defines the (asym­
ptotic) energy-correlation angle of the two emitted 
particles.

Besides these quasi-free two- and many-particle 
channels a bound system of several nucleons can be 
emitted. These continuum channels are called cluster 
channels, and correspond to a discrete set of energy 
partitions of the available total channel energy E,

E = Ef + (Ecu — | Ex |), (3)

where £Yjm denotes the center-of-mass energy and 
Eb the binding energy of the cluster. Then the only 
two-particle cluster channels are outgoing deuterons 
on which wTe concentrate.

The characeristic feature of such cluster channels 
is the fact that their final state interaction extends 
to the asymptotic region.

The objective of this paper is to introduce the 
cluster channels and show that asymptotic channel 
orthogonality holds for the cluster and energy- 
correlated channel wave functions. Numerical esti­
mates are given for the overlap of two channel wave 
functions depending on the center-of-mass distance 
of the cluster from the target nucleus which is sup­
posed to be heavy compared to the emitted particles.

We use the eigenchannel reaction theory 3 as an 
extension of the bound-state particle-hole shell mo­
del to describe in general terms the solution of the 
nuclear Hamiltonian including the continuum. The 
essential procedure of this shell model version of 
reaction theory is that one constructs solutions of 
the nuclear Hamiltonian in the continuum which are 
also eigenfunctions of the 5-matrix. This is achieved 
by dividing the physical space into an inside and 
an outside region and imposing natural boundary 
conditions on the discrete inside solutions.

Due to the boundary condition only those energy- 
correlated two-particle channels can be taken into 
account whose final state interaction is confined to 
an internal region of the order of 5 to 20 times the 
nuclear size. In other words, one adopts as basis 
states for the energy-correlated outgoing pairs of 
nucleons only those channel wave functions 1( 2’ 4

i?i+|(7,+Z 2+ 1 )  / r ,  \

of the few lowest quantum numbers n, lx , l2 .

3 M. D a n o s  a n d  W. G r e i n e r ,  Phys. Rev. 138, B 93 [1965] ;
146, 708 [1966],

Here we treat explicitly cluster channels. These 
channels are contained in the energy-correlated ba­
sis. However, they correspond to superpositions of 
energy-correlated wave functions with large quan­
tum number n. The motive to introduce in addition 
this cluster basis is, of course, to keep the effective 
approximate configuration space small, i. e. to dia- 
gonalize small energy matrices. We have to pay for 
this approach which explicitly includes the most im­
portant experimental channels by the fact that the 
cluster channel and the correlated two-particle chan­
nel wave functions are no more strictly orthogonal. 
Therefore, one problem studied here is the asym­
ptotic orthogonality between cluster and correlated 
two-particle channels. From the numerical estimate 
of the orthogonality overlap integral depending on 
the center-of-mass distance of the cluster from the 
residual nucleus it is found that orthogonality can 
be practically achieved if the inside (interaction) 
region is chosen large enough.

In this paper it is assumed that all processes take 
place at non-relativistic energies so that one can pro­
perly treat the center-of-mass motion by eliminating 
the spurious states through a diagonalization of the 
center-of-mass Hamiltonian.

In Section I the energy-correlated two-particle 
channels are reviewed and the correlations involved 
are studied while in the second section the cluster 
channel wave functions are defined. In Section III 
the channel orthogonality is investigated and a prac­
tical method to solve the nuclear Hamiltonian in the 
internal region is suggested in Section IV.

3

2 1

Fig. 1. Relative coordinates for a three-particle channel, the 
residual nucleus 3 and two light emitted particles 1 and 2.

I. Energy-Correlated Channels

For a two-particle emission channel only the total 
energy Ea is specified. In terms of the relative and

4 P. M . M o r s e  and H. F e s h b a c h ,  Methods of Theoretical 
Physics, McGraw-Hill, New York 1953, Ch. 12.3, p. 1731.
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center-of-mass coordinates for the 3-body system, 
viz.

r, = r
r.,

R

p i

' p2 pi m1+m3 (4)

r Pl + m 2 rp 2 +  m3 r ,  
m1Jrm 2-\-m3

the Schrödinger equation at asymptotic distance 
from the target nucleus (labeled 3 in Fig. 1) , i. e. 
in the force-free region, is the sum of kinetic ener­
gies,

V 2(r .)
h- 
2 /u2

(5)

with the reduced masses

ju1= m1 ms/ ( m 1 + m3),
ju2= m2(m1 + m3) / {m1 + m2 + m3) (6)

and the channel energy

Ea = h 2 k12/ (2ju1) + h 2 k / / ( 2 f x 2).  (7)

Let us assume that the target or residual nucleus 3 
is heavy compared to the two emitted particles. 
Then ju1 = m1 and /i2 = m2 . Furthermore, r 1 and r 2 
represent the distance of particles 1 and 2 from the 
residual nucleus 3, respectively. The uncorrelated

product wave functions <p(V1 , r 2) of

( V 2(Ti) +  V 2( r 2) + k 2 + k 2)<p(r1 , r 2) =  0 (8)

with sharp particle energies k 2, k22 do not represent 
a suitable basis because only the total channel energy 
Ea = E — E[ is sharp. An expansion of the scattering 
matrix in terms of these single-particle wave func­
tions with sharp energies would require a continuum 
of channels. Experimentally one measures a prob­
ability distribution associated with the continuous 
energy partition among the two emitted particles 
suggesting to describe the energy partition by suit­
able coordinates either in the coordinate or in the 
momentum space.

For simplicity let us consider the emission of 
two light particles of equal mass, ml =  m2 . Using 
the energy-correlation angle a defined by

r1 =  rco sa , r2 =  r sin a (9)

so that asymptotically

rl/ r2 =  vll v2 = VEl/ £2 — const 

holds, Eq. (5) separates into a radial equation4

1 d (r5 d ] + k 2
r5 dr dr (10) 

R(r)  =  0

(lx, l2,n) 

(0, 0, re) 

(0, 1, re) 

(0, 2. re)

(1) 2, re)

1)

2)

12 n+l1+l2+ 2\i l,+ l)+ n  \
\ sin 2 a /  ^

4 sin 2 (re +  1) a 
|/jt sin 2 a

2 ( M i )  ____ i ____
\ re+  2 ]  sin a sin 2 a 

re +  3

sin2(re +  l ) a — ”  ̂ sin 2 (re +  2) an~T 2

(re +  f )  (re +  f )  (re+1) Jt J  sin2 a sin 2 a
(re+ f )  sin 2 (re +  1) a —2 (re +  1) sin2(re +  2) a

(re+1) (2 re+3)
2 (re +  3)

sin 2 (re +  3) a

1 /  (re+  4) (re+  3)_ \ * ___ 1
4 \ (re +  2) (re+1) 7i)  sin3 a cos2 a

re +  1
sin 2 (re+1) a — - sin 2 (re +  2) a 

re +  3
re  + 1 . 9 1 i (re + 1) (re + 2) .
— —  sm 2 (re +  3) a +  — sm 2 (re+4) a
re +  3 (re +  3) (re +  4)

2 r ( l 1 +  l2 +  3)
r  (Zj+ 4) r  (z2+  f)
r  (Z1 +  Z2 +  3) (Z^Zo +  4) \i

2 r (/!+!) r ( u +  i) J
1 /  (Z1+Z2+ 6 )  J ’ (Z1 +  Z2+ 4 )  Y* 
4 V 2 T &  +  1) T(Z2+  i

(cos a) h (sin a) h

(cos a) h (sin a) h  [2 Z2 +  3 — 2 (Zx +  Z2 +  3) sin2 a]

(cos a) h (sin a)*. [ (2 Z2 +  5) (2 Z2 +  3) - 4 ( Z t +  Z2 +  4)

(2 Z2 +  5) sin- a + 4 (Zj +  Z2 +  5) (Zj +Z2 +  4) sin  ̂a]

Table of Energy Correlated Channel ''S ave Functions.
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whose regular and irregular solutions R{r ) are 
Bessel and Neumann functions

r~2 J il+ii+2n+2 {k r) and r ~2 Nit+it+2n+2 (k r)
(ID

with
n = 0, 1, 2, . . .  

and an energy-correlation equation

4___ d
sin2 2 a da

1 - 2 0  d — sin- 2 a —  
4 da

h  (h  + 1 )  _j_ h  (̂ 2 +  1) j 
cos2 a sin2 a )

0 (12)+ (/j +  Z2 + 2 n) ' {lx +  lo +  2 n +  4) j A (a) 

with the solutions

AUUn (at) =  (sin 2 a) (2 a) (13)

where lt and U denote the angular momenta of the 
two particles. These energy-correlation components 
Aij^n (a) of the complete channel wave function are 
given in Table 1 for a selection of quantum numbers 
(/i, /2 , n ).

The continuous energy spectrum of the two emit­
ted particles associated with the angle a defining 
the sharp energy partition, in other words the cross 
section of particle pairs emitted with the energy par­
tition between a and a +  da, is proportional to

(2 c.))2 sin 2 a da. (14)

In particular for n =  0 the energy-correlation wave 
Aij^o (^) is proportional to (see Table 1)

(cos a ) ?1 (sin a ) 1*
exhibiting precisely one maximum in the energy 
spectrum at tan a =  Vl2/lx which moves toward a = 0 
for lx U and a =  ti/2 for l2 ^  . For n  = 1 and 
arbitrary angular momenta lx , l2 there are two ma­
xima etc., indicating that one can read off an ex­
perimental spectrum the maximum channel quantum 
number n  involved.

On introducing the radial wave function u(r) in­
stead of

R(r) =  r~s,tu(r)  (15)

and the energy-correlation wave function D ( ol) in­
stead of

l / 2 n+^ + lz +  2 j|(Zi+Z;+l)+w (o
\ sin 2 a iA + ^ + 1). h(h~ Ü  ̂ '  sin a cos a

(16)

the radial and energy partition £qs. ( 10) , ( 12) 
transform into

d2 (Z,+ /2+ 2  n + f )  ( /1 +  Z2-H2n^+_|)^ , 2\
dr2 ~l r~ " K J

u(r) =  0 (17)

and

( -  dl  +  /l(fl+ 1} + f2(j2+ -1) -  (/1 +  /., +  2 n +  2 )2 
\ da- cos- a sin2 a

0 (a) = 0 . (18)

From Eq. (17) it is obvious that the channel index 
l = l1 + l 2 + 2 n  +  I  plays the role of a generalized 
angular momentum. In particular, it enforces a node 
of the order I +  f  on the radial wave function at 
t =  0 so that high channel indices are suppressed at 
given energy k2 for small pair impact parameters. 
Likewise the angular momenta lx , l2 in Eq. (18) en­
force nodes of the orders lx and l2 at a =  cr/2 and 
a = 0, respectively, on the energy partition compo­
nent of the channel wave function.

The lowering and raising operators associated 
with the symmetric projection quantum number 
5 (Zi +  /2 +  1) are obtained by factorization of Eq. 
(1 8 ), yielding

P± = (h  +  D  cot 2 a +  /2“ Zl +  (19)1  ̂ sin 2 a da
and

liih +  1) , Z2(Z2 +  1)
P ~ da2 - ( / 1  +  /2) 2.

The raising and lowering operators for the channel 
index are similarly obtained by factorization of Eq. 
( 1 7 ) ,

1̂+ Z2+2 71 + j  — d 
t drc+ = (20)

The channel wave functions

D ( a ) [ y w ( f , )  x y w ( f , ) ] S ?

build up representations of SO (6) , and the raising 
and lowering operators are closely related to the 
generators of the Lie algebra of SO (6) 5’ 6.

The energy-correlation generator Xa correspond­
ing to the coordinate a is obtained by transforming 
the two-particle wave function t/.’ ( f*i, 1*2) ,

xp (rx +  r cos a r1 da, r 2 — r sin a r ,  da)
= w(r1, r2) + (i/h) daZaV(r1, r2)

h 3
where Xa — r2 ri ' P i — ri r2' P 2 — 3a

(21)

so that Xa commutes with L x and L 2 .
The isotropic pair flux component is given by

]  p — 2 i m V > *(* i,r2) d r y { r x , r 2) (22)

5 A. J o s e p h ,  Rev. Modern Phys. 39, 829 [1967].
6 We use the notation of U. F a n o  and G. R a c a h ,  Irreducible 

Tensorial Sets, Academic Press, Inc., New York 1959.
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and yields as eigenvalue for the plane pair wave which is used to normalize the channel wave func-

y>(rt , r2) = exp[i k r tion to unit incominS Pair fluXl
, o i - • ■ a i * m The complete energy-correlated channel wave• (cos a cos p k, • r. +  sin a sin p r0) I 1 «• • ,1 1  function ol phase o is, upon incorporating the nor-

the pair velocity malization to incoming pair flux v = ( v 12 + v22)^
v =  ( f 12 +  t;22)^ (23) per unit area into the radial wave, given by

2 V ' 1+£ t o 2 a + 2  <2 “ ) (*7ji  [ cos « ! , + ( , +2»+2 (k r)  -  sin M , 1+,,+2„+2 (k  r) ]

X  [ ^ ( r j x y ^ ^ l l i 1. (24)

The corresponding volume element is

dr =  rx2 drj drx r22 dr2 dr2 =  r2 cos2 a d ^ r 2 sin2 a d 2̂ r da dr =  r5 dr J  sin2 2 a da d^ d 2̂ • (25)
3 In

The natural boundary condition g - y -  _ for the radial part cp of the asymptotic wave function is for­

mulated in terms of the distance r = ( r 12 +  r22)  ̂ only2.
In order to be able to apply shell model techniques of discrete states to the inner (interaction) region 

we incorporate into the effective Hilbert space in which the Hamiltonian is eventually diagonalized only 
those correlated two-particle channels whose final state interaction is limited to the interaction volume of 
the size of the single-particle matching radius. This restriction amounts to considering only the channels 
{/ j, l2, I, m, n}  with the lowest few quantum numbers n and means essentially only those two-particle 
channels which besides the energy correlation k x2 +  k22 = k2 are uncorrelated.

Since in the asymptotic region the proton and neutron in the deuteron cluster have the same distance 
from the residual nucleus (target) one has r1 = r2 or a = Ji/4. One suspects, therefore, that the expectation 
value of sin2 a is 2 for large correlated-diannel quantum numbers n. This turns out to be true.

The orthogonality of the energy-correlated channel wave functions with respect to the quantum number n 
( 2 n+l1+l2+ 2\j h(li+li+1)+n
I sin 2 a ) “ !(*.+*.+!). 1 & - U  [Z a} (26)

=  ( {2 n +  l1 + k  + 2 ) ^ ^ ^ ^ - f  - ( c o s .) ' ,  (s in a )<./>«.+*•'.+« (c „ s2 a)

reduces to that of the Jacobi polynomials P n ’ßH%) 7,

f (1 —x) a (1 +x)P  P (a,/3) (x) P (a’/3) (x) d x -<5 __ 23+l +1__ r ( n + a + 1) r {n+ß+l)j  11 X) (xj r m (X) a x - o nm2 n + a + ß + l  n[ r { n + a + ß + 1 )  ■
-1

Upon using the recurrence relation 8 

2 (n +  l ) ( n  +  a +  /S +  l )  (2 n +  a +  ß) (x)
= \ (2 n + a + ß  + 1 ) (a2 - ß 2) + x (2 n + a + ß) (2 n + a + ß  + l )  (2 n +  a + ß  -  2) ] P\ ^  (x) (28) 

- 2 (n + a) (n + ß ) (2 n + a + ß + 2 ) P (A  (x ), 

the expectation value of sin2 a is
2/71

(sin2 a) iu it,n =  (2 n + +  Z2 +  2) J y  (2 a) ] -  sin-a sin 2 a da

1
= 2

i. e. tends to I as n goes to infinity.

(29)
, ______(Zt +  Zz +  l) (2 n + lx + L + 2) _  1 ,r\t  - i>\
i +  (2 n+ll+ l2 + l ) (2 n+l1+l2+ 2) (2 n+ll + l2+3) ~  2 + U [n >*

7 One of the projection quantum numbers i  (Zt -}-Z2 1) and 8 M. A b r a m o w i t z  and I. A. S t e g u n ,  Handbook of Mathe-
i  h) energy-correlation channel wave function matical Functions, National Bureau of Standards, Wash­
ed jj (2 a) is always an integer while the ington D.C. 1964, Ch. 22.7.15, p. 182. 
other is a half-integer.
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Moreover, sin2 a goes to I for large angular momenta l1 = L +  o (L)  and l2 = L + o(L)  if the center-of- 
mass orbital angular momentum L of the cluster becomes large. Hence one is justified to conclude that 
a = 7if4 and its neighborhood represent energy correlations typical for a cluster and are contained in the 
basis of energy-correlated channels in the form of large channel quantum numbers n.

However, the mean square deviation

=  ( (sin2 a -  (sin2 2)i1,it,n
. (n +  î +  i )  (n +  Z2 +  l )  ra(ra +  /1 +  Z2 +  l )  (2 n +  Zj +  Zg-t-3)

=  J2 n +  l1 +  l2 + 1) (2 n +  Zt +  Z2 +  2) (2 n +  Z + Z .,+ 3) (2 n +  l'1 +  l2- 2 ) ( 2  n +  ̂ + L - 1 ) '   ̂ '

(n-\-Zj— J) (n +  Z2— J) (n +  1) {n-\-ll -\-l2-\-2) (2 n +  Zj +  Ẑ +  l)
(2 n +  Zt +  Z2) 2 (2 n -f-Z j+Z 2 +  l ) 2 (2 n +  Zx +  Z2 — 1)

is 5 +  0 ( l/n)  for large n and arbitrary orbital angular momenta , /2 of the particle, pair, whereas 
A = n/[4 (n + L) ] +  o ( n ~1 Z,- 1 ) for large center-of-mass orbital angular momentum L of the cluster, i. e. 
/j =  Z/ -|- o (Z/), l2 = L o (Z )̂.

The first result, A=\  for n —> oo, indicates that there are substantially more correlations included in 
the basis of energy-correlated channel wave functions than just cluster type correlations while the estimate 
z l~ l/ 4 L  for large L says that cluster correlations are the only correlations contained in the correlated 
channels for large angular momentum L = li +  o { L ) .

The interchange of the particles representing the pair corresponds to the transformation a = \ n  — a 
under which the energy-correlation wave function

2 * < # J £ 8 .W .-U

transforms into 2 (2 « ) ( - ) " >  (3 1 )

indicating the exchange correlations contained in the energy-correlated channel wave function multiplet 
characterized by fixed channel index l1 + l2 +  2 n  +  § . Each member of the multiplet has the same radial 
wave function (1 1 ). Consequently an antisymmetrized outgoing channel wave function is given by

(2 «0 [ y w ( * . )  x  y i« ( f ,) ]S S

-  ( -  ) ”+ M ( 2 [ Y W (f T) x  yI!‘1 f t )  B ) .  (32)

II. Cluster Channels

Since asymptotically the two-particle cluster (deu- 
teron) wave function 9?d({?) is concentrated at 
a =  jr/4 with a range of a few fermi’s an expansion 
of 9?d(^) in terms of energy-correlated wave func­
tions would require large quantum numbers n as 
shown previously. Hence if we restrict the energy- 
correlated basis of the effective Hilbert space to the 
few lowest values of n, the cluster channels supple­
ment the correlated channels and are approximately 
orthogonal to the latter in the asymptotic region, as 
shown in the next section, i. e. for large r or, equi­
valently, for large center-of-mass cluster coordi­
nate R.

The channel wave function of the outgoing cluster 
consists of a product of the center-of-mass wave 
^L.w(ß) ° f  orbital angular momentum L, M

1>L„(R) = -PL(k R) Y ?  (R) (33)

=  - 7-  [coscS ii(iÄ ) - s i n (5nL( k R ) ]  Y% (R)
V vc

and the bound cluster wave function <pv(p)  in rela­
tive coordinates with respect to its center of mass 
(see Fig. 2 ) ,

uv,lm(Ri P) =  & lm(R) <MP)
=  '<Pv, lm{P, R) - (34)

The spherical Bessel and Neumann functions in (33) 
of the free cluster have to be replaced by the cor­
responding regular and irregular Coulomb wave 
functions for charged clusters.

The cluster wave function <Pv(q) represent the 
various excited states of the cluster. In the case of 
a deuteron cluster (see Fig. 2)

p =  l*i — 1*2. (35)
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The natural boundary condition

for the cluster continuum channel is imposed on the 
radial center-of-mass wave function ^^( kR ) .

Fig. 2. Relative coordinates with respect to the residual target 
nucleus of a two-particle cluster channel.

III. Channel Orthogonality

We discuss here the channel orthogonality between 
the energy-correlated two-particle wave functions 
and the two-particle cluster wave functions, i. e. the 
deuteron cluster. The extension to multi-particle 
channels and the Coulomb interaction will be dis­
cussed elsewhere.

The bound-state wave function ipn of the deuteron 
cluster including the center-of-mass motion is a 
solution of the Hamiltonian

H = X72(rx) +  V 2(r2) + k *  + V12 (37)

where the interaction V X2 extends to the asymptotic 
region while the energy-correlated two-particle wave 
functions represent the solutions of the free 
Hamiltonian

H' = \y2(rx) + V 2(r2) + k 2. (38)

The unbound solutions ^’f  of H are close to the 
energy-correlated wave functions (P n of H' because 
of the short-ranged potential V12 .

As we intend to use the instead of t/’f basis 
of the Hilbert space we have to estimate channel 
orthogonality which we know holds approximately 
in the asymptotic region.

First, let us write the center-of-mass coordinate of 
the deuteron

R =  i  (rx + r2)

and the relative cluster coordinate 

P = r 1- r 2

in terms of the asymptotic coordinates a, r, r x , r 0 , 

Q =  r [ l  — sin 2 a r x-r2] i  (3 9 a)

and R = \ r [ l  +  sin 2 a r x ■ r2] J . (3 9 b )

Since the bound-state wave function 9?d(i?) of the 
deuteron decreases exponentially beyond the deu­
teron volume characterized by the radius d, say, we 
consider only this region

o d , i .e .  a =  + 0 (\/R),

so that up to second order terms in = — a 
and cos 2 # =  rx • f 2 =  1 — 2 #2 one obtains upon ex­
panding

Q = r[  2 ( ( z h ) 2 +  tf2) ] i  (4 0 a )

and R =  (r/j/2) [ 1 - 1  ((zJa) 2 +  # 2)] , (4 0 b )

where consequently

Aoi = ( l /R)  f (o )  and # = ( 1  / R ) g ( o ) .
Aa = (1//?) f (o)  and d  = ( l/R)  g ( o ) .

The complete asymptotic channel wave function 
consists of a radial and a hypersurface component, 
depending on the (bounded) variables a, r x , f 2 , and 
the latter is used to project out the radial part from 
which the phase shifts are extracted. We are, there­
fore, only interested in the overlap of the cluster 
and correlated pair channel wave functions over the 
channel hypersurface.

Substituting Eq. (40  b) in the form

R =  r/j/2 and d/? =  dr/]/2 (41)

into the complete channel volume element in relative 
and center-of-mass coordinates,

R2 dR dR Q2 do d Q = r5 dr j  sin2 2 a da d^ d r 2 (42)

the channel hypersurface volume element

i  sin2 2 a da d ^  d ?2 =  (1/8 R3) dR o2 do do (43)

results.
Thus the hypersurface channel coordinates for 

the cluster are R and p. If we use the channel sur­
face volume in pair coordinates in the form

dS =  r5 • j  sin2 2 a da d rx d r., (44)

so that the channel volume element

dr = dr dS ,
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then the normalized surface channel wave function 
[see Eq. (24) ] is

2 n ~f" Zj “I- /* 2
“ K z . + z j + i ) , I 2 3 -' 

(45)

sin 2 a

■ x y i « ( r . ) ] S

with J  | [2 d S =  1 .

The radial outgoing component Oc behaves as

Oc =  Vn k r/ (2 v) H$ +h+lt+2 (k r) (46)

— ( 1/]/ )̂ exp{i[A: r — \ n (2 n + l1 + l.2+  f ) ] }

so that the complete channel wave function if>p is 
(asymptotically) normalized to unit pair flux,

I h 3 h
^ 2 7 ^ 3 7 ^ - ^ 2 7 «

h k
m  v

1 .

At the location of the cluster the center-of-mass 
spherical wave 0 lm of the two-particle cluster chan­
nel wave function, splits off the radial part, using 
R = r/] /2 ,  which must be similarly normalized to 
unit pair flux.

The normalized surface channel wave function is

r J . « / = ( 2'/‘/R) Y ¥ ( R )  (47)
and the channel surface volume element

d S =  (1/J/2) R2 d R o 2dodQ (48)

so that J  | ip,j, j2 dS =  1

holds.
99d(£>) denotes the deuteron ground-state wave 

function. For more general clusters one has to 
couple the angular momentum of the cluster and 
of the center of mass to a total angular momentum. 
The radial outgoing component 0,i of the cluster 
channel wave function asymptotically behaves as

Od=  (iÄ /V 'iö  Ag* (kR ) ~  (l/j/tTc)
e x p { i ( £ f i — £ ? r ( L  +  l ) ) }  ( 4 9 )

where vc is the center-of-mass cluster velocity so 
that the complete cluster channel wave function is 
(asymptotically) normalized to unit two-particle 
flux

h k
m c vc

1. 2 hnc 3fi V j- “  -  VJ-LU 2Tme 3 R

The deuteron wave function cpd restricts the range of integration in the orthogonality overlap integral to 
the deuteron volume so that because of

f i = r 2 = Ä , [ Y ^ C r J  x 7 '« ( ? 2) ] ^ = (

We are thus led to estimate the overlap integral

O n k  ULM — J V n hU V<1,LM dS

(2 Z, + 1) (2 l, + l)\h 
4 71 ( - )

(h U L
0 0 0 y f  («)•

sin2 2 a i i ~ i ~ /I l\  ̂ //i +  Zo +  2+2da d r , d r2 —  <pd (| r x -  r2 |) Yl (R) -----j
sin 2 a

(50)

(51)

x  (2 «) x y[/il (f *) ] S ]
which by inserting (48) and (50) transforms into

O n lJ i  LM y 2 R3'*
(ll+ l ,+2  + 2n) (2 Zt + 1) (2 Z2 +  l )  

4  .-T ( - ) '
h L\\0 0 0)

Jd R  y i M (Ä) y f  (Ä) • I - j t j —  4 ä + S } ] . w (2 « ) -Vi le ) i 3e ■

Since sin 2 a =  1 +  0 ( l / R )  and consequently
»ifZ1+Zj+l)+7i /n  \ _  jh(lt+h+l)+n

all over the deuteron volume, we obtain
/ (Zt +  Z2 +  2 71+2) (2 Zt +  1) (2 Z2 +  l )  U  l l t Z2 L\ i ( i i+ ii + l ) + n (~ r /0 \ .  fn )  d n 3 

OnlJtLM V̂ä-j/2 \ 4 71 / \0 0 0/ h) ( / ' d̂  .

The normalization of the deuteron wave function fPd(Q) implies that

I J> d (e ) d3e I ^(J|<J?d(o)|2d3 >̂)̂  ( J  d 3o ) i ^ ( V d) i
so that the final estimate for the channel orthogonality overlap reads

U n h h L M  | ^  y  R3 y 2
(Zt +  Z2 +  2 n +  2) (2 Zj +  1) (2 Z2 +  l )

4  71
If1» L\
\\0 0 0/

(52)

(53)

(54)

(55)

(56)
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From Eq. (56) it is clear that, for channel ortho­
gonality to hold, the two-particle matching radius 
R = c /Y2 must be chosen large enough so that the 
ratio of cluster volume V a versus interior inter­
action region, i. e. the channel overlap probability 
becomes as small as required by the numerical ac­
curacy.

Of course, the estimate for in Eq. (56) is
meaningful only for small quantum numbers , U , 
L, n compared to the ratio R3/V<j.

Since no special properties of the cluster wave 
function were used we notice that the estimate in 
Eq. (56) with minor changes due to coupling co­
efficients applies also to the more general case of 
two simultaneously outgoing and energy-correlated 
clusters and the bound compound system consisting 
of these two clusters in any excited state.

IV. Schematic Solution of the Hamiltonian

1. The S-Matrix

In the eigenchannel representation the 5-matrix is 
defined to be diagonal, i. e.

S V W = e x p { 2 i d W } V W  (57)

so that an arbitrary element See' ° f  the scattering 
matrix is given by

Soc' -  I  V f  exp{2  i <5<«} V y . (58) 
ß

The channel labels C, C' stand for the single-particle 
and two-particle continuum channel quantum num­
bers (Nv, jv , . . . )  and [n, lx , l2 , / , . . . ) ,  respectively. 
Consequently the eigenchannel index ß  in Eq. (58) 
runs over a denumerable set. But at a given primary 
energy only a finite number of channels are open in 
practice so that actually only a finite number of 
eigenchannels ß  contribute to each 5-matrix element 
See' connecting two experimental channels C, C\ 
This is correct as long as one restricts the correlated 
two-particle channels to the lowest quantum numbers 
n = 0, 1, 2, . . .  of Eq. (2 4 ). Thus, in practice, we 
have at this point an important approximation which 
replaces the correlated two- (and more) particle 
channels of high channel index by cluster channels. 
As is discussed in Section I the most important 
energy-correlated channels involved in a particular 
reaction can be read off the experimental cross sec­
tion for particle pairs as a function of the energy 
partition angle a yielding a lower bound for the

cut-off channel index quantum number nmax which 
otherwise is arbitrary and depends on the numerical 
accuracy desired. The two-particle matching radius 
is chosen subsequently depending on the bounds im­
posed by the required numerical accuracy on the 
channel orthogonality overlap integrals. According 
to the conventional definition of the S-matrix in 
terms of the incoming and outgoing channel ampli­
tudes Aq , Bq , one has

B c =  — 2 S e 'c ^ e '-  (59)
C'

Because of the unitarity of the S-matrix all eigen- 
phases are real. It is obvious from the definition 
of the eigenchannels in Eq. (57) that in general 
eigenchannels are different from experimental chan­
nels.

The eigenchannel wave functions represent super­
positions of standing waves in each eigenchannel ß  
because asymptotically, assuming for simplicity neu­
tral particles, one has

yj(ß) =  ^  ( V ^ Ic  -  exp{2 i dW}  (60)
~  2  Vc )exp{t [exp{ — i (kc  re +

( £ c r c ->- oo) C

-  Jc n/2 ) }  -  exp{ i{kc r.G +  d ^ - l c  si/2 ) } ] y c •

As is usual in reaction theory, /c and Oq denote the 
radial parts of the incoming and outgoing particles 
in the physical (experimental) channel C, i. e.

(k R/2 Vvc) [eid h f  (k R) + e~iS h f  (k R) ] 

for a cluster channel and

Vk rjv [ei& H\]llt+2n+2 (k r) + e ~ id H\f+i|+2re+2 (k r) ]
(61)

for an energy-correlated channel, whereas ipe de­
notes the channel wave function.

The same notation applies to the eigenchannels ß. 
The channel amplitudes V q ’* in Eq. (57) can be ob­
tained from the nuclear wave function by projection 
using the asymptotically orthogonal channel wave 
functions y»e • Once the complete nuclear eigenchan­
nel wave function is known in the inner inter­
action region and the eigenphase shifts 6 ^  are cal­
culated using the iteration procedure typical for the 
eigenchannel method 3, the total S-matrix is known 
for the particular energy. In the asymptotic region 
each experimental, i. e. physically realistic wave 
function is a linear superposition of eigenchannel 
wave functions. In other words, the eigenchannel 
amplitudes represent the column vectors of an
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orthogonal matrix transforming the asymptotic ex­
perimental channel wave functions into the eigen- 
channel wave functions which diagonalize the scat­
tering matrix and represent coupled channel wave 
functions. Since each eigenchannel depends on only 
one eigenphase which can be determined by varia­
tion the eigenchannel method easily generalizes to 
nuclear reactions above the two-particle emission 
threshold.

2. Solution of  the Hamiltonian

The first step toward the solution of the nuclear 
Hamiltonian inside the internal interaction region 
consists in constructing a complete basis of anti­
symmetrized states. Since above the two-particle 
threshold in general a large number of one- and 
two-particle channels is open we intend to restrict 
considerably the space of configurations involved. 
The dimension of this minimal effective Hilbert 
space in which the shell model Hamiltonian is dia- 
gonalized becomes a function of the energy of the 
particular reaction.

The main objective of the eigenchannel method 
is to deal rigorously and as simply as one possibly 
can with the particle continua in nuclear reactions. 
The method also stays close to the usual bound 
state shell model calculation. Its main feature is to 
operate with a unitary transformation matrix on the 
asymptotic channel wave functions so that firstly 
the 5-matrix becomes diagonal and secondly the 
transformed new channel wave functions (coupled 
physical channel wave function) depend on only 
one phase shift 6 each. One has to solve the equa­
tion

E ( d ) = E  (62)

for the phase shift «3. The energy eigenvalues E(d)  
are the solutions of the Hamiltonian inside the in­
ternal interaction region. Each eigenphase is 
determined by variation so that even in the case of 
several coupled channels only one is cal­
culated at a time. This procedure simplifies con­
siderably the numerical determination of the phase 
shifts for which one has, however, to pay in
that all energy matrix elements Hik(d^)  explicitly 
depend on the phase shift d {̂  involved.

A second characteristic of virtually all shell model 
calculations is the restriction of the complete Hilbert 
space to a minimal space of configurations in which 
the Hamiltonian is diagonalized. Far below the 2-

particle emission threshold one needs consider ap­
proximately, only lp  —lh  configurations of the 
compound v4-particle system. Above the 2-particle 
threshold the (lp  —lh )-  and (2p — 2h) -Hilbert 
space has, in practice, also to be restricted. Con­
sequently the completeness is explicitly violated. 
One can, however, approximately account for the 
neglect of some not essential degrees of freedom by 
using an effective interaction whose parameters have 
to be adjusted to the experiment. They can, for 
example, be fitted on one particular reaction. All 
other matrtix elements of the S-matrix are then para­
meter-free predictable. The dimensions of such a 
minimal extension of the shell model Hilbert space 
obviously becomes an energy-dependent parameter. 
This drawback is a general feature of any attempt 
so far to include the effects of the particle continua. 
On the other hand, the dependence of the scattering 
cross sections on this parameter serves as a crite­
rion to determine the size of the effective Hilbert 
space involved at a given reaction energy. One can 
test the sensitivity of the results on the cut-off of the 
Hilbert space explicitly and choose, if necessary, a 
larger Hilbert space. Of course, the actual size of 
the minimal Hilbert space can be determined only 
numerically.

There are indications that the effective Hilbert 
space is of reasonably small dimension: The coupled 
channel and eigenchannel methods which attempt to 
treat rigorously the one-particle continuum do not 
seem to exhibit qualitatively new features as com­
pared to the ordinary shell model calculations. The 
reason may be that only a relatively small number 
(S? 20) of states of the one-particle continua essen­
tially contribute to each reaction channel.

3. Detailed Construction of  a Minimal Basis

One needs a complete set of states in the interior 
region in order to diagonalize the nuclear Hamil­
tonian. There are three kinds of states: 1) one- 
particle states where only one particle is in the con­
tinuum and may escape which are denoted by uv(r x) 
and defined in the interval 0 5  ̂ r„ ^  b (see Fig. 3 ) .
2) The correlated two-particle states where two par­
ticles are in the continuum and both particles may 
escape. They are denoted by <Z>n(r, a) and defined 
in the space 0 ^  r 5  ̂ c (see Fig. 3 ) .  3) The cluster 
wave functions Xm(R>P) which are defined in the 
space 0 5  ̂ R. 5  ̂c /Y2 . The factor Y 2 is convenient
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here because it follows from (39 b) that asymptoti­
cally R = r/Y2 (see Fig. 3 ) .

Fig. 3. The one-particle channels are matched to the asym­
ptotic region by a boundary condition at r1 , r2 =  b, the two- 
particle energy-correlated channels at r = c  and the cluster 
(deuteron) channels at R =  c / ] / 2 .  The internal interaction 
region is defined by r c. Channel orthogonality is violated 
in the cross-hatched region because for /-j <C c or r2 <C c the 

wave function is not of the asymptotic form.

The single particle wave functions 

uv{rx) =  RL (rx) Yim(K)

are solutions of a Saxon-Woods shell model Hamil­
tonian satisfying the natural boundary condition.
3 In R l (r*) I _  3

3 In rx rK = b 3 In (r*) (63)

• In [cos b j L (k  rx) — sin Örii ( k r y)  ]
rx = b

They are, consequently, normalized over the volume 
r y b .

The two-particle correlated wave function is 

<2>iiÄ(r,cO ( h r )  2

<2 « ) ' [ y [ 'J  ( f i) X I ' 1’’1 ( * .)  ] S
(64)

whose radial wave function Jii+it+2n+2(kxr) satis­
fies the boundary condition
3 In J h  + lz + 2n + 2 ( h  r)

3 In r J r=c 
3

=  g ln r In (cos b Jit+it+2n+2 (fa r) (65)

— sin ö Nii+il+2n+2 (fa r))  |r=c

from which the discrete set of energies ki results. 
These wave functions (64) are normalized within
r ^  c .

The free cluster wave functions

P) = N 'FL(kaR) <p(p) y f  (R) (66)

are normalized in the inside region within R ^  c/Y2. 
F l and Gi  denote the regular and irregular Coulomb 
wave functions, respectively. The radial functions 
are subject to the boundary condition
3 In F l  {ka R)

3 In R R=CJV2 (67)
c ln (cos 6 F i  (ka R) + sin  (5 G i (k a R ) )

3 In R R=d 1/2 *

It should be noticed that the basis functions of 
both, the correlated two-particle functions (64) and 
the cluster functions (63) are solutions of the free 
equations of motion (without 1-body potential) in 
the inside region. Thus the full Hamiltonian has to 
be diagonalized later.

We have thus obtained three sets of functions uv, 
&X, N and ZaM which are defined in the three dif­
ferent spaces shown in Fig. 3. As has been discussed 
in ref. 2, the functions &xn and XaM are now ex­
panded in terms of the two-particle functions 
«>. (l^) Ufl( r 2) which are defined in the space 
rx , r2 ^ b  (see Fig. 3 ) . Furthermore, the solutions 
$xA’ and XaM are extended beyond their original 
space of definition into the full space rx , r2 £  b 
and orthonormalized there. This leads to the new 
set of oneq)article, two-particle and cluster func­
tions uv, N 5 Xa, M defined in rx , r2 2  ̂ b . The 
redundant states are eliminated as discussed in re­
ference 2, and the full Hamiltonian is diagonalized 
in this basis.


