Mikrowellenspektrum und Struktur von Fluortribromsilan und Methyltribromsilan

M. MITZLAFF, R. HOLM und H. HARTMANN

Institut für Physikalische Chemie der Universität Frankfurt a. Main

(Z. Naturforsch. 23 a, 1819-1821 [1968]; eingegangen am 14. August 1968)

The microwave spectra of SiFBr₃ and CH₃SiBr₃ have been investigated in the region from 30 to 40 GHz. Assuming reasonable values for $d_{\text{Si-F}}$, $d_{\text{Si-C}}$ and the methyl group a least squares analysis of the rotational constants yields

	d_{Si-Br}	≮Br−Si−Br
SiFBr ₃	$(2,171 \pm 0,001)$ Å	$(111,36\pm0,15)^{\circ},$
CH ₃ SiBr ₃	$(2,175 \pm 0,001)$ Å	$(111,09\pm0,15)^{\circ}.$

A barrier to internal rotation of about 1 kcal/mole is estimated by the intensity method.

In Fortsetzung unserer mikrowellenspektroskopischen Untersuchungen¹⁻³ an Halogen- und Methyltrihalogenderivaten des Monosilans haben wir das Rotationsspektrum von Fluortribromsilan und Methyltribromsilan vermessen. Dabei stand einmal die Verkürzung des Si-Halogen-Abstandes mit zunehmender Halogenierung des SiH₄ im Vordergrund. Zum anderen wurde bei Methylchloroform⁴ und Methyltrichlorsilan² für das leichte und schwere Chlorisotop eine unterschiedliche Aufspaltung des Torsionssatelliten beobachtet. Methyltribromsilan bietet die Möglichkeit festzustellen, ob dieser Effekt auch bei den beiden Bromisotopen auftritt⁵.

Experimentelles

Fluortribromsilan wurde nach dem Verfahren von SCHMEISSER und JENKNER⁶ dargestellt: In mehreren Ansätzen wurden in einem 1 l-Kolben 300 g getrocknetes Na₂SiF₆ und 300 g wasserfreies, feingepulvertes AlBr₃ gut durchmischt, im Ölbad sehr vorsichtig bis auf 280 °C erwärmt und die entstehenden flüchtigen Bestandteile in einer auf -60 °C gekühlten Falle aufgefangen. Aus dem kondensierten Gemisch von SiBr₄, SiFBr₃ und SiF₂Br₂ konnte durch zweimalige fraktionierte Destillation das SiFBr₃ (Siedepunkt 85 °C) so rein erhalten werden, daß keine Linien des SiF₂Br₂ im Spektrum gefunden wurden.

Für die Synthese von Methyltribromsilan ist das Verfahren von Rochow⁷ im Labormaßstab weniger ge-

- ¹ R. HOLM, M. MITZLAFF U. H. HARTMANN, Z. Naturforsch. 22 a, 1287 [1967].
- ² M. MITZLAFF, R. HOLM U. H. HARTMANN, Z. Naturforsch. 22 a, 1415 [1967].
- ³ M. MITZLAFF, R. HOLM U. H. HARTMANN, Z. Naturforsch. 23 a, 65 [1968].
- ⁴ R. HOLM, M. MITZLAFF U. H. HARTMANN, Z. Naturforsch. 23 a, 307 [1968].

eignet als die Vorschrift nach McCusker und Reilly⁸: Methylmagnesiumbromid wird in ätherischer Lösung mit SiBr₄ umgesetzt. Von den beiden entstehenden Schichten wird die untere verworfen und die obere nach Aufarbeiten mit CCl₄ mehrmals destilliert. Dies geschah mit besonderer Sorgfalt, da die Siedepunkte der Methylbromsilane ziemlich dicht beieinander liegen⁸. Die Probe mit dem Siedebereich von 134 bis 135 °C bei 762 Torr wurde untersucht.

Beide Substanzen sind farblose Flüssigkeiten, die weniger sauerstoff- und wasserempfindlich sind als Tribromsilan. Die Messungen wurden mit einem Stark-Mikrowellenspektrographen mit 20 kHz-Rechteckmodulation bei Feldstärken von 200 bis 400 V/cm im Bereich von 30 bis 40 GHz durchgeführt. Als Strahlungsquelle diente ein Rückwärtswellenoszillator RWO 40 der Firma Siemens AG. Die Frequenzmessung erfolgte mit der Frequenzdekade FD3 der Firma Schomandl KG, deren Steuerquarz mit der Trägerfrequenz des Senders Droitwich verglichen wird⁹.

Bei -70 °C hatte SiFBr₃ einen Dampfdruck von etwa 10^{-1} Torr und CH₃SiBr₃ einen von etwa $2 \cdot 10^{-2}$ Torr. Die Intensität der Linien nahm jeweils mit kleiner werdendem *J* stark ab. Innerhalb eines Überganges waren die Linien der asymmetrischen Spezies entsprechend der Häufigkeitsverteilung der Bromisotope ungefähr dreimal so intensiv wie die der symmetrischen Spezies.

Spektren

Die gemessenen Frequenzen sind in Tab. 1 zusammengestellt. Die Genauigkeit der Absorptions-

- ⁶ M. SCHMEISSER u. H. JENKNER, D.B.P. 901 412 und 912 330 [1953].
- ⁷ E. G. Rochow, J. Am. Chem. Soc. 67, 965 [1945].
- ⁸ P. A. McCusker u. E. L. Reilly, J. Am. Chem. Soc. 75, 1583 [1952].
- ⁹ E. F. Kops, Diplomarbeit, Frankfurt (Main) 1967.

⁵ Die zunächst näherliegende Untersuchung von Methylbromoform ließ sich nicht durchführen, da eine Synthese nach J. TAYLOR, J. Chem. Soc. London **1935**, 1519, sowie anderen Methoden nicht gelang.

frequenzen der symmetrischen Spezies beträgt $\pm 0,05$ MHz, die der asymmetrischen Spezies auf Grund der größeren Linienbreite $\pm 0,3$ MHz. Die asymmetrischen Fälle verhalten sich näherungsweise wie symmetrische Kreisel ($\varkappa_{\text{SiFBr3}} = 0,93$, $\varkappa_{\text{CH3SiBr3}} = 0,94$) mit der Rotationskonstanten

$$B'=\frac{1}{2}\left(A+B\right);$$

denn die intensivsten Linien eines Überganges liegen so dicht beieinander, daß sie nicht aufgelöst werden können.

	J ightarrow J'	f _{gem}	B'
SiFBr ⁸¹	$18 \rightarrow 19$	31352.000	825.053
	$19 \rightarrow 20$	33001.340	825.034
	$20 \rightarrow 21$	34651.150	825.027
	$21 \rightarrow 22$	36300.485	825.011
	$22 \rightarrow 23$	37950.384	825,008
	23 ightarrow 24	39600,400	825,008
$\mathrm{SiFBr^{79}Br^{s_1}_2}$	18 ightarrow 19	31575,040	830,92
	19 ightarrow 20	33234,920	830,87
	$20 \rightarrow 21$	34897,025	830,88
	$21 \rightarrow 22$	36558,005	830,86
	23 ightarrow 24	39882,200	830,88
$\mathrm{SiFBr_{2}^{79}Br^{81}}$	18 ightarrow 19	31802,500	836,91
	$19 \rightarrow 20$	33474,280	836,86
	$20 \rightarrow 21$	35147,760	836,85
	21 ightarrow 22	$36821,\!630$	836,86
	22 ightarrow 23	38494,005	836,83
	$23 \rightarrow 24$	40170,800	836,89
SiFBr ⁷⁹	$18 \rightarrow 19$	32034,380	843,010
0	$19 \rightarrow 20$	33719,420	842,986
	$20 \rightarrow 21$	35404,620	842,967
	$21 \rightarrow 22$	37090,435	842,964
	$22 \rightarrow 23$	38775.000	842,935
	23 ightarrow 24	40458,320	842,882
$CH_3SiBr_3^{s_1}$	18 ightarrow 19	$30605,\!462$	805,407
	$19 \rightarrow 20$	32216,008	805,400
	$20 \rightarrow 21$	33826,550	805,394
	$21 \rightarrow 22$	35437,236	805,392
	22 ightarrow 23	37047,512	805,381
	23 ightarrow 24	38657,922	805,373
$\mathrm{CH}_3\mathrm{SiBr}^{79}\mathrm{Br}_2^{81}$	$18 \rightarrow 19$	30816,874	810,97
	$19 \rightarrow 20$	$32437,\!450$	810,94
	$20 \rightarrow 21$	34057,620	810,90
$\mathrm{CH}_3\mathrm{SiBr}_2^{79}\mathrm{Br}^{81}$	18 ightarrow 19	31032,400	816,64
	$19 \rightarrow 20$	32665,012	816,63
	$20 \rightarrow 21$	34205,620	816,56
CH ₃ SiBr ⁷⁹	$18 \rightarrow 19$	31252,040	822,422
	19 ightarrow 20	32896,450	822,411
	$20 \rightarrow 21$	34541,005	822,405
	21 ightarrow 22	36185,604	822,400
	$22 \rightarrow 23$	37830,198	822,396
	$23 \rightarrow 24$	39474,480	822,385
	$24 \rightarrow 25$	41119,122	822,382

Tab. 1. Absorptionsfrequenzen von Fluortribromsilan und Methyltribromsilan (alle Angaben in MHz). Ohne Berücksichtigung einer Verschiebung des Linienmaximums durch Quadrupoleffekte erhält man das Spektrum der symmetrischen Spezies aus der Formel

$$f = 2 B_0 (J+1) - 4 D_J (J+1)^3 - 2 D_{JK} (J+1) K^2$$

mit der Rotationskonstanten des Schwingungsgrundzustandes B_0 und mit den Zentrifugalaufweitungskonstanten D_J und D_{JK} . Vernachlässigt man den Term mit D_{JK} , so ergibt sich aus den Frequenzen in Tab. 1:

	B_0 [MHz]	$D_{ m J}$ [kHz]
SiFBr ₃ ⁷⁹	843,165	0,110
SiFBr ₃ ⁸¹	825,093	0,075
$\mathrm{CH_3SiBr_3}^{79}$	$822,\!473$	0,078
CH ₃ SiBr ₃ ⁸¹	805,463	0,078

Bei den Rotationslinien der symmetrischen Fälle konnte bis J=25 wie bei Tribromsilan³ keine K-Aufspaltung aufgelöst werden. Jedoch zeigten diese Linien mit wachsendem J eine immer stärker ausgeprägte Unsymmetrie durch einen steileren Anstieg auf der Seite tieferer Frequenzen. Der flachere Abfall auf der Seite höherer Frequenzen läßt auf eine negative Konstante $D_{\rm JK}$ schließen, deren Betrag sich folgendermaßen aus der Linienbreite abschätzen läßt: Für symmetrische Kreisel mit nahezu gleich großem Trägheitsmoment bezüglich der drei Hauptträgheitsachsen ist die Besetzungsdichte der einzelnen K-Niveaus bei gegebener Temperatur fast gleich. Die Linienintensität nimmt proportional $[1-K^2]$ $/(J+1)^2$] ab. Daraus folgt, daß für den Übergang $J=24 \rightarrow 25$ bei CH₃SiBr₃⁷⁹ die Linie für K=18etwa halb so intensiv ist wie die für K = 0. Aus einer gemessenen halben Halbwertsbreite von 1 MHz ergibt sich somit

$$D_{\rm JTK} \approx -0.06$$
 kHz.

Bei Fluortribromsilan trat die Unsymmetrie weniger stark in Erscheinung, so daß sich bei einer halben Halbwertsbreite von 0,6 MHz des Überganges $J=22 \rightarrow 23$ für K=16 errechnet:

$$D_{\rm JK} \approx -0.04$$
 kHz.

Die Übergänge der symmetrischen Spezies zeigen, wie schon auf Grund der leicht anregbaren Si-Br-Valenz- und Deformationsschwingungen zu erwarten ist, eine komplizierte Schwingungsfeinstruktur. Der bei Methyltribromsilan auf der Seite tieferer Frequenzen im Vergleich zu Tribromsilan³ und Fluortribromsilan zusätzlich auftretende intensive Satellit läßt sich der Torsion der CH₃- gegen die SiBr₃-Gruppe zuschreiben. Er hat eine Rotationskonstante von 804,8 MHz für CH₃SiBr₃⁸¹ bzw. 821,8 MHz für CH₃SiBr₃⁷⁹ und ist wie bei Methylchloroform ⁴ und Methyltrichlorsilan² in zwei Linien aufgespalten, die bei $J=19 \rightarrow 20$ einen Abstand von 6,5 MHz haben. Die Größe der Aufspaltung ist im Unterschied zu den Chlorverbindungen für beide Bromisotope gleich. Aus dem Intensitätsverhältnis der Rotationslinien im Torsionsgrundzustand zu den beiden Linien im ersten angeregten Torsionszustand läßt sich das Hinderungspotential zu

$$V_3 \approx 1 \text{ kcal/mol}$$

abschätzen.

Struktur

Absorptionslinien für Si^{29, 30}-Spezies konnten nicht einwandfrei identifiziert werden. Da Fluor nicht durch ein Isotop ersetzbar ist und kein deuteriertes und C¹³-angereichertes Methyltribromsilan zur Verfügung stand, ist eine Strukturbestimmung nach der Methode von Kraitchman unmöglich. Auch für eine vollständige Bestimmung der ro-Struktur reicht die Anzahl der gemessenen Rotationskonstanten nicht aus. Daher wurden die Werte d_{Si-F} mit 1,56 Å, $d_{\text{Si}-\text{C}}$ mit 1,90 Å und für die Methylgruppe die Parameter von Methan $(d_{\rm C-H} = 1,093 \text{ Å},$ $\langle H - C - H = 109,35^{\circ} \rangle$ angesetzt. Die beste Anpassung an die gemessenen Rotationskonstanten ergab sich dann mit den in Tab. 2, Spalten 1 und 3, angegebenen Daten. Die mit den angeführten Strukturparametern berechneten Rotationskonstanten sind den gemessenen in Tab. 3 gegenübergestellt. Bei den asymmetrischen Fällen ist eine bessere Übereinstimmung nicht zu erwarten, da die angegebenen Rotationskonstanten nur eine grobe Näherung zur Beschreibung des Spektrums darstellen.

	Gemessenª	Berechnet ^t
SiFBr ⁷⁹	843,165	843,150
SiFBr ⁷⁹ Br ⁸¹	836,86	837,16
SiFBr ⁷⁹ Br ⁸¹	830,88	831,12
SiFBr ⁸¹	825,093	825,109
CH ₃ SiBr ⁷⁹	822,473	822,540
CH ₃ SiBr ⁷⁹ Br ⁸¹	816,62	816,88
CH ₃ SiBr ⁷⁹ Br ⁸¹	810,94	811,08
CH ₃ SiBr ⁸¹	805,463	805,359

Tab. 3. Ver	gleich de	r gemessene	en und be	erechneten	Rotations-
konstanten	[MHz]	on Fluortri	bromsilar	n und Meth	yltribrom-
		sila	n.		

^a Bei den symmetrischen Spezies sind die B_0 -Werte, bei den asymmetrischen die Mittelwerte aus der B'-Spalte (ohne D_J -Korrektur!) der Tab. 1 aufgenommen worden.

h mit den Denemetern

mit den Farametern:		
SiFBr ₃	CH ₃ SiBr ₃	
$d_{\rm Si-F} = 1,5607$ Å	$d_{\rm C-H} = 1,093 ~{\rm \AA}$	
d _{Si-Br} =2,1706 Å	$d_{\rm Si-C} = 1,90$ Å	
\triangleleft Br-Si-Br=111,36°	d _{Si-Br} =2,17495 Å	
	∢ H−C−H =109,39°	
	4 Br-Si-Br=111,09°	

Die Struktur der SiBr₃-Gruppe ist bei Tribromsilan und Fluortribromsilan im Rahmen der Meßgenauigkeit gleich. Eine weitere Verkürzung des Si-Br-Abstandes beim Ersatz von Wasserstoff durch Fluor hat nicht stattgefunden. Im Falle der entsprechenden Chlorverbindungen war dagegen eine geringe Verkürzung des Si-Cl-Abstandes wahrscheinlich ^{1, 2}. Bei Methyltribromsilan ist $d_{\text{Si-Br}}$ etwas länger als bei Fluortribromsilan, aber auch hier trat eine deutliche Verkürzung gegenüber Trimethylbromsilan ¹¹ [$d_{\text{Si-Br}} = (2,24 \pm 0,02)$ Å] auf.

Wir danken Herrn Professor Dr. V. FREISE für seine Unterstützung und Herrn Privatdozenten Dr. K. HENSEN für seine Beratung bei der Herstellung der Substanzen. Der Deutschen Forschungsgemeinschaft sind wir für die großzügige Bereitstellung von Personal- und Sachmitteln zu besonderem Dank verpflichtet. – Ein Teil der Rechnungen wurde im DRZ, Darmstadt, ausgeführt.

	SiFBr ₃	SiHBr ₃ ³	$\rm CH_3SiBr_3$	$\mathrm{CH_3SiBr_3^{10}}$
$d_{\mathrm{Si-Br}}[\mathrm{\AA}]$ Br-Si-Br	$\begin{array}{c} 2,\!171 \pm 0,\!001 \\ (111,\!36 \ \pm 0,\!15)^\circ \end{array}$	$\begin{array}{c} 2,\!170 \pm 0,\!001 \\ (111,\!36 \ \pm 0,\!25)^\circ \end{array}$	$\begin{array}{c} 2,\!175 \pm 0,\!001 \\ (111,\!09 \ \pm \ 0,\!15)^\circ \end{array}$	$2,17 \pm 0,02^{\mathrm{a}} \\ 109^{\circ}28'^{\mathrm{a}}$

Tab. 2. Die SiBr₃-Pyramide bei verschiedenen Tribromderivaten des Monosilans. a Daten aus Elektronenbeugung an Gasen.

¹¹ J. F. OLLOM, A. A. SINISGALLI, H. W. REXROAD U. R. C. GUN-TON, J. Chem. Phys. 24, 487 [1956].

¹⁰ K. YAMASAKI, A. KOTERA, M. YOKOI U. M. IWASAKI, J. Chem. Phys. 17, 1355 [1949].