NOTIZEN

In Abhängigkeit von der Zusammensetzung der Legierungen sind untereinander aufgetragen:

- a) ein Ausschnitt des Zustandsdiagramms¹,
- b) der Löslichkeitskoeffizient L der Wasserstofflöslichkeit²,
- c) die magnetische Suszeptibilität χ^3 (bei Zimmertemperatur gemessen und nach Abzug des diamagnetischen Anteils der abgeschlossenen Elektronenschalen der Atome),
- d) die aus der spezifischen Wärme berechnete Dichte der Elektronenzustände an der FERMI-Grenze N(E). Aus dem Verlauf der Wasserstofflöslichkeit und der

Aus dem Verlauf der Wasserstofiloslichkeit und der magnetischen Suszeptibilität ließ sich folgern, daß die durch die Flächen [311] und [222] gebildete BRL-LOUIN-Zone maßgebend für die Gestalt des FERMI-Körpers ist. Die Maxima der Suszeptibilität wurden als Berührungspunkte des FERMI-Körpers an den Flächen [311] bei 20% und [222] bei 40% MgZn₂ gedeutet ⁴. Der stark diamagnetische Effekt oberhalb 53% und das Absinken der Wasserstofflöslichkeit im gleichen Bereich wurden mit der weitgehenden Auffüllung der BRILLOUIN-Zone in Zusammenhang gebracht. Wenn auch eine zu-

Mikrowellenspektroskopische Untersuchungen am Methylquecksilberjodid

C. FEIGE und H. HARTMANN

Institut für Physikalische Chemie der Universität Frankfurt/Main

(Z. Naturforschg. 22 a, 1286-1287 [1967]; eingegangen am 16. Juni 1967)

This microwave spectrum of CH₃HgJ with five different isotops of mercury has been investigated in the region of 8-42 Gc/s. The quadrupole coupling of J¹²⁷ was determined. The rotational constants of CH₃HgJ with the isotops Hg¹⁹⁸, Hg²⁰⁰, Hg²⁰², Hg²⁰⁴ were derived from the resolution of the hyperfine structure. The bond lengths were calculated. The dipole moment of the molecule was determined from the investigation of the STARK effect.

GORDY und SHERIDAN¹ haben aus der homologen Reihe der Methylquecksilberhalogenide bereits mikrowellenspektroskopisch für höhere Rotationsübergänge die Substanzen CH₃HgCl und CH₃HgBr untersucht und eine Rotationskonstante für CH₃HgJ angegeben. Bei diesen Untersuchungen wurde die HFS quantitativ aufgelöst, ohne die Quadrupolkopplungskonstante für Cl und Br zu berechnen.

Daher lag es nahe, Hyperfeinstrukturuntersuchungen am Methylquecksilberjodid vorzunehmen. Von besonderem Interesse bei diesen Untersuchungen ist die Größe der Quadrupolkopplungskonstanten des J^{127} im CH₃HgJ. Ebenfalls interessant ist die Bestimmung des permanenten molekularen Dipolmomentes. Die Berechnung der Struktur des Moleküls gestattet darüber hinaus einen Vergleich mit den anderen Substanzen der gleichen homologen Reihe.

- ¹ W. GORDY U. J. SHERIDAN, Phys. Rev. 79, 224 A [1950].
- ² C. FEIGE, Dissertation, Universität Frankfurt/Main 1966. ³ Diplomarbeiten von M. MITZLAFF u. R. HOLM, Inst. für Phy-
- sikal. Chemie, Frankfurt/Main 1965.

sammenfassende Deutung dieser Effekte noch aussteht. so sei an dieser Stelle bereits darauf hingewiesen, daß die Eigenwertdichte, die aus Messungen der spezifischen Wärme erhalten wurde, diese Auffassung im wesentlichen bestätigt. Bei kleinen Zusätzen an MgZn2 nimmt die Oberfläche des FERMI-Körpers zu. Auffallend ist die Übereinstimmung der Maxima von χ und N(E)bei 20% MgZn₂. Auch die Deutung des Absinkens der Wasserstofflöslichkeit und des starken diamagnetischen Effektes an der Phasengrenze stimmt mit dem aus der spezifischen Wärme ermittelten Verlauf von N(E) gut überein. Lediglich der aus dem Verlauf der Wasserstofflöslichkeit gezogene Schluß, die freie Oberfläche des FERMI-Körpers habe bei 40% MgZn2 ihr Maximum, entspricht nicht dem Bild, das die spezifische Wärme ergibt.

Herrn Professor Dr. H. WITTE danke ich für die Anregung zu dieser Arbeit, Herrn Dr. W. EICHENAUER für zahlreiche Ratschläge und Herrn Mechanikermeister W. HOFFMANN für die technische Unterstützung bei der Durchführung der Messungen. Der Deutschen Forschungsgemeinschaft sei an dieser Stelle für die Förderung der Arbeit gedankt.

1. Experimentelles

CH₃HgJ ist ein weißer kristallinischer Stoff, der in perlmutter-glänzenden Plättchen kristallisiert. Die Substanz schmilzt bei 143 °C, wobei sie sich zu äußerst dünnen und glänzenden Plättchen verdichtet. Bei 22 °C hat der Stoff einen Dampfdruck von 2,4 · 10⁻² Torr².

Das zur Strukturbestimmung notwendige Rotationsspektrum des CH₃HgJ wurde mit zwei konventionellen STARK-Mikrowellenspektrographen im X-Band und R-Band aufgenommen³. Die Spektren wurden nach der üblichen Methode mit Frequenzstabilisierung und einem Averager-System⁴ aufgezeichnet. Da sich die angeregten K-Niveaus bei der Messung der Rotationsspektren sehr störend bemerkbar machten, wurde bei möglichst niederen Temperaturen und bei steten Veränderungen gemessen. So gelang es einigermaßen, die K-Linien von denen der J-Linien zu trennen.

2. Meßergebnisse

Tab. 1 gibt die für den $J=5 \rightarrow 6$ -Übergang im X-Band gefundenen Linien an. Es sind nur die für K=0gefundenen Frequenzen vermerkt. F ist die Hyperfeinstrukturquantenzahl. Die vollständigen Meßergebnisse sind in ² verzeichnet.

Nach Berechnung der ungestörten Rotationslinien aus der Aufspaltung der Hyperfeinstrukturlinien nach dem Konstantenprogramm erhält man die in Tab. 2 angegebenen Rotationskonstanten.

Nach dem Konstantenprogramm für den symmetrischen Kreisel wurde nach Eingabe der Rotationskonsanten und der Linien der Hyperfeinktrukturaufspal-

⁴ H. HARTMANN, C. FEIGE U. R. HOLM, Z. Angew. Phys. 22, 134 [1967].

Isotop (Hg)	v (MHz)	F	Isotop (Hg)	ν (MHz)	F
Hg ¹⁹⁸ Hg ¹⁹⁸ Hg ¹⁹⁹ Hg ¹⁹⁹ Hg ¹⁹⁹ Hg ²⁰⁰ Hg ²⁰⁰	9483,6 9473,4 9479,9 9473,0 9462,7 9469,2 9462,3 9452,2	$3/2 \rightarrow 5/2$ $5/2 \rightarrow 7/2$ $7/2 \rightarrow 9/2$ $3/2 \rightarrow 5/2$ $5/2 \rightarrow 7/2$ $7/2 \rightarrow 9/2$ $3/2 \rightarrow 5/2$ $5/2 \rightarrow 7/2$	Hg ²⁰⁰ Hg ²⁰² Hg ²⁰² Hg ²⁰² Hg ²⁰⁴ Hg ²⁰⁴ Hg ²⁰⁴	9458,6 9441,2 9437,7 9460,0 9420,9 9410,6 9417,1	$7/2 \rightarrow 9/2$ $3/2 \rightarrow 5/2$ $5/2 \rightarrow 7/2$ $7/2 \rightarrow 9/2$ $3/2 \rightarrow 5/2$ $5/2 \rightarrow 7/2$ $7/2 \rightarrow 9/2$

-	1		
т	a l	h	
	u.	••	•

Molekül	Rotationskonstante (MHz) (berechnet)	Rotationskonstante (MHz) (gemessen)
C ¹² H ₂ Hg ¹⁹⁸ J ¹²⁷	790,846	791,37±0,010
C12H,Hg199J127	789,957	$790,48 \pm 0,025$
C12H.Hg200J127	789,075	$789,60 \pm 0,015$
C12H3Hg202J127	787,333	$788,86 \pm 0,020$
C ¹² H ₃ Hg ²⁰⁴ J ¹²⁷	785,618	787,14±0,015
	Tab. 2.	

tung eines Rotationsüberganges die Kernquadrupolkopplungskonstante e q Q durch ein Näherungsverfahren bestimmt. Man erhält somit für e q Q des J^{127} im CH₃HgJ:

$$e q Q = -(1674, 0 \pm 0, 5)$$
 MHz.

Für die Berechnung der Bindungslängen zwischen den Atomen C-Hg-J geht man von den gemessenen Rotationskonstanten aus. Die Werte für die Abstände d_{CHg} und d_{HgJ} wurden dann durch ein Näherungsverfahren bestimmt.

Mikrowellenspektrum, Struktur und Dipolmoment von Fluortrichlorsilan

R. HOLM, M. MITZLAFF und H. HARTMANN

Institut für Physikalische Chemie der Universität Frankfurt a. M.

(Z. Naturforschg. 22 a, 1287-1289 [1967]; eingegangen am 26. Juni 1967)

The microwave spectrum of SiFCl₃ has been investigated in the region from 8 to 40 Gc and from the rotational constants the following structural parameters were obtained using an approximation method: $d_{\rm SiF}=1.520$ Å, $d_{\rm SiCl}=2.019$ Å, \Leftrightarrow FSiCl = 109.55°. From the STARK effect pattern of the transition $J=5 \rightarrow 6$ the dipole moment $\mu=0.49$ D has been determined.

An einer Reihe von Si-Halogenverbindungen konnten Gesetzmäßigkeiten der Länge der Si-Halogenbindung aufgezeigt werden¹, aber über SiFCl₃ liegen, so-

² M. MITZLAFF, R. HOLM u. H. HARTMANN, Z. Naturforschg. 22 a, Heft 9 [1967], im Druck.

Eine Kontrolle der Abstände C-H mit den berechneten Werten für d_{CHg} und d_{HgJ} ergab, daß sich an diesen Werten gegenüber den von GORDY und SHERIDAN bestimmten nichts ändert. Auf eine Wiedergabe dieser Werte kann deshalb hier verzichtet werden. Tab. 3 gibt die hier neu errechneten Werte an.

$d_{ m CHg}$ (Å)	$d_{ m HgJ}$ (Å)	∢нсн	≮ CHgJ
2,087±0,01	$2,528 \pm 0,005$	110° 42′	180°
	Tab. 3.		

Mit Hilfe von STARK-Effekt-Untersuchungen an einer Linie des Rotationsüberganges für $J=17 \rightarrow 18$ für K=0 und $F=29/2 \rightarrow 31/2$ wurde das Dipolmoment von CH₃HgJ berechnet. Es ergab sich ein Wert von

$$\mu = (1,30 \pm 0,05)$$
 Debye.

3. Diskussion

Die für die Rotationskonstanten und Bindungsabstände von GORDY und SHERIDAN gefundenen Werte für CH_3HgCl und CH_3HgBr stimmen mit den hier gezeigten Werten für CH_3HgJ in entsprechender Analogie befriedigend überein. Damit wird festgestellt, daß die geometrische Struktur der Bindungen der homologen Reihe der Methylquecksilberhalogenide gleich bleibt. Nach der Theorie von Townes und DALLEY wird in einer späteren Arbeit eine Angabe über den Ionencharakter der Hg-J-Bindung gemacht werden. Dazu werden die hier ermittelten Werte benutzt werden.

Den Mitarbeitern unserer Mikrowellengruppe danken wir für ihre Hilfsbereitschaft. Der Deutschen Forschungsgemeinschaft sind wir zu besonderem Dank für die großzügige Bereitstellung von Sach- und Personalmitteln verpflichtet.

weit uns bekannt ist, noch keine Daten vor. Im Rahmen unserer Strukturuntersuchungen an Si-Halogenverbindungen haben wir deshalb das Mikrowellenspektrum von SiFCl₃ vermessen.

Experimentelles

Die Messungen wurden mit einem STARK-Mikrowellenspektrographen mit 20 kHz Rechteckmodulation bei -75 °C im Bereich von 8 bis 40 GHz durchgeführt. Die Absorptionslinien waren weniger intensiv als bei SiHCl₃², doch konnte bei Übergängen mit J > 8 bei Drucken unter $5 \cdot 10^{-2}$ Torr gearbeitet werden. Wie bei SiHCl₃ wurden intensive Schwingungssatelliten beobachtet, die hauptsächlich auf die leicht anregbaren Si-Cl-Deformationsschwingungen zurückzuführen sind.

Die Substanz SiFCl₃ wurde nach dem Verfahren von Schmeisser und Jenkner^{3, 4} dargestellt: In mehreren

- ³ M. Schmeisser u. H. Jenkner, D.B.P. 901 412 und 912 330 [1953].
- ⁴ K. HENSEN, Dissertation Technische Hochschule Aachen 1962.

¹ J. SHERIDAN U. W. GORDY, J. Chem. Phys. 19, 965 [1951].