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The temporal development of macroobservables is described within a correlation-function-
formalism. The results are exact for a certain class of initial ensembles. The same problem is 
discussed with the help of the linear-response-formalism. The results agree under certain con-
ditions which should be fulfilled for macroobservables. 

Introduction 

Van Kampen [1J has raised objections against 
the linear-response-theory in its applications to 
external disturbances. There is nothing to say 
against his arguments if we expect the linear-
response-theory to be true for all initial ensembles 
and for all observables. In fact, the ordinary linear-
response-theory always starts from the canonical 
equilibrium ensemble, though all observables are 
allowed. This question seems to be interesting with 
regard to the discussion whether quantum me-
chanics at all can be a suitable and complete basis 
for the description of macroscopic systems or not 
[2]. First one can argue that some additional 
principles must be introduced in order to describe 
macroscopic systems. Secondly it is possible that 
there is a new theory which contains quantum 
mechanics as a limiting case for very small systems, 
macrophysics on the other hand for very large 
systems. In this paper we describe another group of 
phenomena, the irreversible processes without 
external forces. It has been shown [3] that linear-
response considerations equally well apply to these 
phenomena. On the other hand we can treat these 
phenomena in a completely other way without any 
use of linearization of the equations of motion. 
Moreover, this treatment can be done without any 
approximations, except for the choice of certain 
classes of initial ensembles: The initial ensembles 
must be purely macroscopic [4], [5]. Therefore it is 
possible to compare the results and thereby to give 
some criticism to the linear-response results. It 
turns out that the linear-response-formalism (l.r.f.) 
should be valid for macroobservables only. This 
result cannot be seen from a direct analysis of the 
l.r.f. It would be interesting to extend these con-
siderations to the case of external disturbances [6]. 
This is not the aim of this paper. 
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In Sect. I we consider the case that the systems 
are completely isolated. In Sect. II we discuss the 
same phenomena for systems in contact with a 
heatbath. We remark that all interactions with the 
heat bath during the development of the macro-
observables are disregarded, as well as in the l.r.f. 
with external forces. Why then do we start with 
the canonical ensemble ? There is no physical reason 
for it. 

Furthermore we give some remarks concerning 
the term 

^W^iAiAj^ + Aj^Ai)}. 

The time-correlation is precisely defined as the 
mean value of results of experiments on single 
systems. It turns out that this meaning cannot be 
given generally to the expression given above. But 
this is possible for a similar expression 

where IFe(i = C e~0H, H the macroscopic energy (to 
be defined below), A i , A j macroobservables. Thus 
again a fully physical interpretation of the l.r.f. 
seems to be possible only for macroobservables, 
provided that both expressions agree very well. 
In order to check this assumption we must make 
some stability considerations, but this again is not 
the purpose of this paper. 

In Sect. I l l we solve the problem with the help of 
l.r.f. techniques. In Sect. IV the results are com-
pared and discussed. All mathematical details are 
discussed in the appendices. 

1. Irreversible Processes in Closed Systems 
We consider an ensemble © of systems S with 

the number of particles N and volume F, described 
by a statistical operator W of the following form 

W = P X E l W I \ E l . (1.1) 

PXEl is the projection-operator on to r £ l , tEl is the 
subspace in which is spanned by the eigen-
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vectors (pv of the Hamiltonian H with eigenvalues 
ev e [Ex — AE, Ex[ = JEl. Let 2ft be the set of the 
macroobservables A{ . Without regarding the 
difficulties involved in the definition of the macro-
observables we only demand the following prop-
erties [7], [8] 

a) [Ai, Aj] = 0 for all i, j, 
b) = for all i. (1.2) 

k 

The property b) means: all macroobservables 
commute with the macroscopic energy 3, R being 
defined by 

k 

This is one possibility of defining ß. Let tEl be of 
finite dimension: d imr £ l = rfi. In the following 
section we shall write xEl = r, d\ — d, for brevity. 
Now all linear operators on § form a Hilbert-
space Q, with the inner product (A; B) = Sp (A+ B); 
[9], 

The equation of motion for the statistical opera-
tor W now reads 

W = iLW; LB = BE — HB . (1.3) 

Now let üß be the set of the statistical operators 
in Q. We define a mapping G as follows [4]. 

G: 

GW = DexV{-2kM> ( 1 4 ) 

with 
a) SV((GW)Aj) = SV(WA}), 
b) Sp(GIF) = S p J F = l . (1.5) 

Conditions (1.5) determine XI and D (appendix A). 
The physical meaning of the mapping G is the 
following: G IF is obtained from W by a variational 
principle: 

<5 Sp (IF log IF) = 0 with 
Sp(IFJf) = <A{> = const. 

Looking to Sp (W log IF) as to some kind of entropy, 
this variational principle corresponds in a certain 
sense to the second law. Now we are free to shift 
the scales in such a manner that 

< ^ > e q = = l s p ( P t ^ ) = 0 . 

Then we get 

Note that the shift does not change the value of X{. 
Therefore we are led to the linearization of the 
operator G, if we consider only statistical operators 
close to equilibrium with respect to the macro-
observables Ai . This is a crucial point. We get 
from Eq. (1.4) 

GW^W^ + 2 D i - £ e q 2 A i • 

Thus we can define a new mapping by 

GLW = W^ + ^ D I X I P X - D ^ X I A I ( 1 .6 ) 

where Di, Xi again are to be determined by the 
conditions 

Sp(GL(IF) Ai) = Sp(PF^) = <Ai> , 
Sp(GLIF) = 1 . (1.7) 

From Eq. (1.7) we get with 

AI = PXAI, J F e i = DE<I PT 

and = 0 

Sp(]> A ^ r ) = 0 => A = 0 . 

Thus we get 

G l I F = W^-D^^XIAI. 

Furthermore we have 

GL IFei = IFe(l — Dei 2 A i => 
<^>eq = <^->eq _ £ XF* (Ai A ^ 

Now <AiAj)e (i is a regular matrix (appendix B), 
thus ^ e , i = 0 and GLWE(I = IFe(i. Furthermore we 
have from Eq. (1.7) 

Defining yy by 

Z y i j S v ( W e * A } A k ) = d i k , 

we get 
XJ= —*2S$(WAt)ytJ, or 

GLW=W**+W**2t8p{WAi)yiJAJ. (1.8) 

Until now GL is only defined on the set ^ of the 
statistical operators. But we can define a new 
operator G on the Hilbert-space Q by 

G^l = JFe(i 2 Sp (AAI) YA A} . (1.9) 

Thus we get 

GLW = IFei + G IF, G IFe(i = 0 . (1.10) 
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Now it can be shown that G is the projection-
operator on to the subspace 9JJ of the macro-
observables spanned by the At (Appendix C). Then, 
under the crucial assumption [5], that 

G(JF(0) - PFe(i) = TF(O) - W** (1.11) 

we get 
= Sp(^€ ( lT(0 — W**)) 
= {At; eiLt{W(0) - Jfeq)) (1.12) 
= (G e~iLtGAf, TT(0) - IFe<i), 

where we have used that GAi = At. Equation (1.11) 
can be written in the following form 

<A,>(t) = 2 <Ai(t) Aj>eq Yjk (Aky (0), (1.13) 
k,j 

with Ai(t) = e~lLtAf. This is a well-known result 
which e.g. can be found in [4]. Note, that this 
result is only valid under the assumption (1.11)! 
What does this condition mean ? 

G(PF(0) - IFe<i) = GW{0) = W(0) - We(i, 
GW{0) = GLW{Q) - W^I => 

GlW(0) = TF(0). (1.14) 

This condition means that only a very restricted 
class of initial ensembles is allowed. It follows from 
general reasons that some restricting conditions 
must be fulfilled. If there are no such conditions, 
the macroscopic equations never could be irre-
versible. A more detailed discussion can be found 
in [5]. Now it is possible to show [10], that 

(Ai{t)A}y* 

is exactly the time-correlation-function for Ai , A j 
which is given experimentally by the following 
procedure. Take S e ©eci, measure Aj, wait a time t, 
measure Ai (again on S.), and take the mean value 
of the product of the values over all 8 6 

Note that this result is true for all observables, 
if @e(i is the microcanonical equilibrium-ensemble. 

With regard to the aim of this paper Ave have to 
clarify the connection between this correlation-
function and the corresponding canonical one. 

2. Irreversible Processes in Systems 
within a Heatbath 

Let us repeat the considerations of Sect. I for 
systems which are composed of two systems, the 
first being a heatbath the second one the system S 
under consideration. § has to be replaced by 

£><i)X£(2), H by X 1 + 1 X # 2 + # i2 , Ai by 
1 xAi. Hi2 cannot be zero, otherwise there is no 
reason for development of an equilibrium-ensemble 
described by 

1 
Weq = p r . 

a 

r again is spanned by the eigenvectors of H with 
eigenvalues 

yve[E- AE,E[ = J . 

Now let us assume that 

#12 = P,H12 Pt + (1 - Pr) #12(1 - Pt). (2.1) 

Equation (2.1) is a necessary and sufficient condition 
to be fulfilled, if we demand that r can be spanned 
by the eigenvectors {ipgqpß) of 

H0 = Ex X 1 + 1 X H2 , 

which are in r. Without this condition the usual 
derivation of the canonical ensemble already 
becomes complicated. Let us consider the statistical 
operator GW defined in Eqs. (1.4) and (1.5). Now 
we take the "Verkürzung" of GW [11] on to §(2> 
defined by 

(GWfJ = 2 <X» coe I GW I CO,) , (2.2) 

where (%ß), (a>e) are c.o.s. in §( i ) , §(2) respectively. 
Now let us choose {%ß) = {xpß), (coe) — (q7g). Then 
we get 

(GWfJ = D(<p0\exp { - ^ h At} | <pv> Dev, (2.3) 

Dev is the dimension of the subspace t ?»c|)( i ) 
which is spanned by the eigenvectors of H\ with 
eigenvalues 

r\ g [E - AE - Kev - eg, E - Kev - e6[ f| 
[E - AE - KQV - ev, E - K0V - ev[, 

where Kev = <ipv cpe | HI2 | tpv cpg). 
Now the heatbath B is much larger than the 

subsystem S, therefore we choose AE to be much 
larger than the corresponding scale-length As for S. 
Now let us remember that [H2, = 0. Therefore 
(cpg | exp {— 2 XiAi] | cpvy vanishes, if cpe, cpv belong 
to different subspaces xEi, tEj. Let us therefore 
consider pairs of vectors inside one fixed r£ ( . Now 
it seems to be reasonable to assume that Dgv does 
not change very much, if cpe, q:v run in iEi. Thus 
we formulate the following assumption: 
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In the following calculations it is allowed 
to replace Dgv by DEiEi, Dgg, Dvv respec- (2.4) 
tively. 

Furthermore the results do not change if we 
neglect Kgv (note that Kgv has the same order of 
magnitude as the interaction). 

Now we use the familiar derivation of the 
canonical statistical operator (see e.g. [12], [13]). 
We get under certain assumptions which are not 
to be discussed in this paper 

Dvv = e~ße" C{N, Ni, E, ß), (2.5) 

where N is the total number of particles, N\ the 
number of particles in S and ß= 1 /kT. 

Thus we get two different expressions for GJF<2> 
from Equation (2.2). We choose the energy eigen-
vectors (ipß) as c.o.s. in §(i>, the eigenvectors (0g) 
of the macroobservables as c.o.s. in §(2). Then we 
get with the help of assumption (2.4) 

(GIF)<fe D (0g | exp { - ]> U M \ 0v> DEiEi 

for 0g,0ve xEt, i running, or 
GTT<2) ^Dexp{- ßH . (2.6) 

On the other hand again choosing (ipß) as c.o.s. in 
§ ( i ) but now the eigenvectors {(pg) of H2 as c.o.s. in 
§ (2) we get 

(GW)$^~(Dgg + Dvv) 

• <<PeI e x P {— 2 ^ A * } I ' 
or 

G W ( 2 ) ^ R {e-ßH> e x p [ - ^ h At]}. (2 .7 ) 

The anticommutator is used in Eq. (2.7) to make 
GWW selfadjoint. Note that it is not permissible 
to write 

GW(2) ^ D exp { - ß H2 - 2 h At} , 

because [H2 , At] =j=0. Let us discuss both possibil-
ities. The procedure is quite similar to that given 
in section I, therefore the discussion can be made 
brief. In order to avoid too many subscripts, we 
always shall use the same symbols, if no confusion 
is possible. We list the different steps. We begin 
with possibility (2.6). 

1. Define G in £>(2) by 

G W = D exp { - ß H2 - 2 h A t} , 

where D, Xt are to be determined from the con-
ditions (1.5). 

2. Shift the scales of the macroobservables so, that 
with IFeq = X>eq e-ßH* w e g e t g p ( Jfeq^.) _ 0. 
It follows that lie<i = 0. 

3. Linearize: 
GTT ^ (De q + 2 ^ A ) 

. e - / » H , _ 2 ) e q e - W ' ^ h A t , 

4. Define 

GLW= - I)^E-^2XIAT 

+ T)ea e~ßH + 2 Ai A e-W , (2.8) 

with the conditions (1.5). With 2. it follows that 
DT — 0. Furthermore it follows that 

GLW= WW^SVIWATIYTJAJ, 

where 2 7a Sp (JFeq As Ak) = dik. 
5. G, GL are only defined on the convex set of the 

statistical operators, therefore we define 

GA = W^^SpiAA^ytjAj 
i,j 

as a linear operator in the Hilbert-space Q. Then 
we get 

GLW = JFe(i + GW. 

6. It is easily seen that G — G2, this follows from 
the fact that Sp ( (GA)At ) = S p ( ^ < ) . But G is 
not selfadjoint. We have 

G<+> B = 2yik S p ( A k W**B) At 

(Appendix C). Therefore G is not a projection-
operator in contradiction to our former results. 

7. Demand: 

G(W(0) - We«) = JF(0) - JFe<i, (2.8) 
or GLTF(0) = TF(0). 

8. (A k y{t ) = S V { A k e i L * t W m 
= (Ak-eiL*tWm 

= [Ak-eiUt{W{0) - Ifeq)) 
= {Ak-eIUTG{W{0) - l f e ( i ) ) 

= (G<+> e~iUtAk- W(0) - lF e q ) , 

or after inserting 

<4*>W = 2 w < ^(W^Aje-^A^iAtm 
= 2 Y)i S p ( W ^ A j Ak(t)) < A t > ( 0 ) . 

(2.9) 
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Note that Ak(t) = e~iLitAk. That means, the 
system S is not disturbed by the heatbath, H12 has 
been neglected. But why then do we make use of 
the canonical ensemble ? A similar question occurs 
in the l.r.f. 

Another remark: The definition of G in step 1 
remains unchanged, if Ave replace the operators Ai 
by Bi — Ai -f- yi 1. Hence Aieti = 0 for every shift. 
On the other hand it should be noted that 

GWe(i 4= W^1 = C e~ßH\ 

Now let us linearize with respect to GW e i . 
Almost all considerations remain unchanged. 
Replace only W e i by GTFe(i in the definition of 
Gj^, ytj, G, G<+). Shift the scales to get 

Sp (fFeci A k) = 0 . 

Demand: 

G(PT(0) - Tfe(i) = W (0) - or 

Tf (0) = JFe<i + GJF(0). 

Then the result is 

<Ak~) (it) = 2 yu S p ( G l ( W ^ ) A t A k ( t ) ) <.At> ( 0 ) . 

Now these initial conditions look very strange. The 
corresponding condition (2.8, 7) is much clearer 
and therefore we choose this possibility. 

Now we turn to possibility (2.7). 

1. Define G in §(2) by 

with the conditions (1.5). Thus GJFe(1= TFet1. 

2. Shift so that Sp(lF e ( i^i) = 0. 

3. Linearize 

G W a * ( D + 2 h D * ) e ~ ß H 

4. Define GLW corresponding to 3. 

GlW = (D + 2^ 

With the conditions (1.5) it follows that 
Di = 0 , h = -2yu<Ai>> ( 2 - 1 0 ) 

where 
ZyijSviW^AjAfc) = d i k , 

where we have used the cyclic invariance of the 
trace. 

5 . Define 

GA = \ 2 yik S p ( A A k ) {W^, At} . 

Then we get 

C<+> B = 1 J Vit Sp ({ W**, Ak}B)Ai. 

6. Demand G ( T T ( 0 ) - W ^ ) = JF(0) - W ^ => 
GlW(0)=W(0). 

7. As above we get 
<Ak>(t) (2.11) 

= 1 2 yv s P ( i A J ' I F e q ) < • ( ° ) • 
Now, if the equations of motion for (Ak)> are 

stable with respect to small disturbances of the 
initial ensemble, we can expect that the solutions 
(2.9) and (2.11) agree approximately. Note that 
this stability could conversely serve for defining 
macroobservables [14]. 

Let us discuss the meaning of the term 
S p f f f e q ^ ^ ) ) . 

Let us determine the mean value AiAk(t) defined 
by the procedure of Section I. Let @ be an ensemble 
of systems S described by the statistical operator W. 
To each system S a real number y [$] is assigned in 
the following way: Measure on S the observable Ak 

with result a[$]. Wait a time t and then measure 
again on S the observable Ak with result ß[S]. 
Then put y[S] = a[S] ß[S]. Take the mean value 
over all S. The result is y[$] = AiAk(t). Let us 
calculate this number. Let be 

®a, = {S\Se®A0L[S] = xv}. 

is described by the statistical operator 
1 

W = P ,r <Xp 7 1 a, • 

Now the probability for finding a value ßß after a 
time t within @av is equal to 

P[ß»\*v] = Sv(ut*I^utpß)j, 

where Ut = elH2t. Therefore the probability for 
finding a pair (ccv, ßß) within @ is 

P [ay, ßß] = P [a?] P [ßß I a„]. 

But now we have P[oc„] = Sp ( IFPJ . 
Therefore we get 

Ä T Ä W ) (2.12) 

= 2 *fß* s p ( w p j s P ( v f j ^ v t pß)j. 
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Let us choose W = JFe(i. Then we get 

AiAk(t) 

= 2 I < * x \ w \ 0 H > s J u t * ^ u t A t v 0xetp \ 

= 2 2 C t x p { - ß K } s J u t * ^ - U t A i f \ ®0C, 

=It~ I Z«p {-/»*:} 
• utAkut* \0xy. 

If there is no degeneracy of the macroobservables, 
we may conclude 

AlAk{t) = C2 e-V' <0V| Ut Ak Ut* | 0V> a, 

V 

V 

V = 2SP(^eq UtAkUt*) 
V 

= S p ( l T e a ^ i i l t ( 0 ) . (2.13) 

If on the other hand all 0X e vv belong to the same 
eigenvalue of the macroscopic energy, then we can 
write 

AiAt(t) = e~ßEr a" SP(Pa, ^ Ut*) 

= (2.14) 

The same result of course is obtained by choosing 
W = GLWe*. Note that we have used that W 
commutes with the macroobservables. Furthermore 
we must remember that the exact Hamiltonian 
does not commute with the macroobservables. Only 
in the case that [IF, A] = [W, B] = 0, we can give 
to the expression Sp( the physical mean-
ing of a time-correlation. From all these considera-
tions we get a preference for Equation (2.9). Let us 
summarize. Provided, we are considering only 
initial ensembles JF(0) with 

W (0) = JFeci + TFe(i 2 Sp (W (0) At) y i ] A j , 

we get the following solution: 

(Ak)(t) = 2YijSv{We*AjAk(t))<Ai')(0). 

The term Sp(JFe(i^4;^4*;(£)) can be interpreted as a 
time-correlation. The initial condition can be 
interpreted in the following way: Only purely 
macroscopic initial ensembles are allowed. 

3. The Solution of the Problem with the Help of the 
Linear —Response —Formalism 

In the following considerations we follow Martin 
[3]. We consider an external disturbance 

H ^ = - 2 A j a j ( t ) . (3.1) 

The usual l.r.f. then yields [15], [16] 

<A{)(t) = 2 fzv(t ~ n e~el%(0 dt', (3.2) 
where 

Xij(t) = ii[Ai(t),Aj]yc^e(t). 

Here [A, B] is the commutator and 

<A)ce<i = Sp(C e-W A). 

We now choose the disturbance 

\äj | t < 0 , 
a}(t) -

Thus we get 

0 \ t >0. 

or 

<At> 0 = 0) = 2 f z < / ( T ) e - " ä , d T , 
o 

<A->ceq - 0 

<.At> (t = 0) = ^äjxn(8 = e), 

(3.3) 

%ij being the Laplace transformed yjj. With the 
assumption that this linear system can be solved 
uniquely, we get 

<Ai}(t) = 2Sxij(t-n (3.4) 
' e x P e I t'\}(x)jiX (Ai) (0) dt'. 

Now let us take the Laplace transformation of 
Equation (3.4). After a short calculation we get 

<.It> (s= - i Q + V) 

= 2 h i s = - i ü + rj) e + . Q _ r i 

•2Cx) i i 1 { s = e ) ( A l ) ( 0 ) . (3.5) 

In the next section we shall compare the result 
(3.5) with our earlier results. 

4. Comparison of the Results 

The l.r.f. calculations within these considerations 
can be found e.g. in [15]. We define 
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(4.1) 
Fij(t) = \$v(W^{Ai(t),Aj}), 

tij(t) =i(Sij(t)-Sji(-t)), 
Xij(t) =0(t)Cv(t). 

With [JFec1, H2] = 0 and the cyclic invariance of the 
trace we have 

Seeberg • The Linear Response Theory of Irreversible Processes 

Note, that 

Thus 

Thus 
Fij(t) = ±(Sij(t) + Sji(-t)). (4.2) 

Sa is analytic in 33 = {z | — ß Im 2 0} provided, 
the occuring traces converge absolutely. Thus 
Sij(t — iß) = Sji(—t). Let us consider the analytic 
function 

G(Z) = (1I]/2TC) Sij(z) E ^ . 

Then we get 

jG(z) d z = J G{z) dz. 

Thus 

8tJ(co) = (2ftJ(a)) - Sij(co)) eß°>, 

2*(1 - e - / » ® ) 
(4.3) 

tijico) 1 + 

which is the fluctuation-dissipation-theorem. For 
brevity 

1 _ e-ßm _ ßM 

1 + e-Pm 
B(co) = £ ' ( « » ) ; 

1 
Pi] (CO) = y u y J e'®« Fij (t) d * + J e<»* Ft} (t) dt 

= *g>(co) + Hf(a>). 

fiff is analytic in the upper halfplane, P f f corre-
spondingly in the lower halfplane. 

With 

1 [ J 
2n J i co -]/2n J i co + s 

we get after some calculation 

f(co) dco (4.4) 

Ca(s) = xu(s) 
4 71 i 
1/2 71 

87ii I ij 
\/2n ß Z^ —is 

Zß = i(2FI+I)7llß. 

- I 

(4.5) 

m**) 
H=-l *p Zu — IS 

(4.6) 

Sni j I F»(zß) 2 ]/2nß Zn — isj ^-x zß — is 

From Eq. (4.4), it follows that 

R(co) 
lim Xtj(s)= \ — dco 

ß r t v t / 2 , 
^ / * • < » ) — a . 

Furthermore 

and 

= ( A 7 1 • 
Thus 

-1/1 [/ 71 J CO 
dco 

(Oß /ij 

- 1 
(4.7) 

Now let us consider the Laplace-transformation of 
Eq. (2.11) 

<Äky (s) = 2 yu Fjk (s) <^i ) (0 ) . (4.8) 

Now we use the following assumptions: 
1 ~ 

Ftj{*) = - -ß-Xij{s), 

(v x ^ Y 1 
y t j = I l i m — — i j . (4.9) 

Inserting these expressions into Eq. (4.8), we get 

<Äk) (s) = 2 f H m X (*)) " Xjic (s) (Ai) (0), 
0 lij l s 

or 
(4.10) <AK)(S= - i Q + RJ) 

= 2 ( lim * ( « ) ) X M - + vK A i> (0 ) 
\s-*0 fa 1 M — V 

which agrees completely with Equation (3.5). 
We had used two assumptions on the way to this 

result. 
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1. Equation (2.11) is valid. Whether this is true 
or not must be investigated with the help of 
stability considerations. Equation (2.11) must be 
tested with respect to Equation (2.9). These 
stability considerations shall be done in a later work. 

2. Assumptions (4.9) are valid. Let us start from 
Equation (4.5). Taking the inverse Laplace-trans-
formations, we get: 

Cij(t) = 
8 71 I zß) exp 

(2/U + 1 )7lt 

]/2 71 ß 

-r . , „ 2 / ^ M e x p 

+ 

j/2 TT ß „i 

ß 
(2jU+ 1 )7lt 

se) j^(i(s-s0))dse^. 
y (4.11) 

where fiW is the analytic continuation of fiW into 
the left half-plane, se its poles. Now the sQ govern 
the behaviour of Fij(t), which should be smooth for 
macroobservables, thus, if \se\<^7tjß, we can 
neglect the first terms in (4.11) in choosing an 
appropriate time-scale. Note, that n\ß becomes 
big for small ß, i.e. high temperatures. The same 
argument applies to our second condition. Starting 
from Eq. (4.7), we can neglect the second term, if 
fiij (co) decreases sufficiently rapidly (Fy (t) smooth!) 
with respect to the fact, that 

l i m R'(CD) / OD 
cu->0 

0 . 

Of course we cannot expect that these assump-
tions are true for all observables. If we confine 
ourselves to macroobservables which should change 
slowly in time, these assumptions seem to be reason-
able. Thus we are led to the conclusion that the 
l.r.f. can be justified for irreversible processes in 
closed systems and in systems in contact with a 
heatbath under the condition that the initial 
ensembles are purely macroscopic. Note that these 
conditions followed from a linearization with 
respect to equilibrium. 

The discussion of the response of systems to 
external disturbances shall be discussed in a forth-
coming paper. 

Appendix A 

We look for the solution of the variational 
problem (5 (Sp W log IF) = 0, defined on £>, under 
the conditions ( A i ) = const, S p I F = l . First we 
consider the case that the variation is done with 
a fixed c.o.s. (<pv). We start from W =^wvP(fv. 
Now Sp (IF log IF) = 2 wv l°g wv • The usual calcu-
lation yields 

(A.l) 

where Ao, fa are to be determined by the conditions 
(1.5). We must prove the uniqueness of the solu-
tions Ao, fa. This can be done with the help of the 
considerations of Chintchin [16]. Let us define 

exp ( 2 <Aj> A;} 2 exp { - 2 fa * / } = ®a (A), 
(A.2) 

where A0 = 1, A0 = 1 + A0', a / = (v | A}1 v). Further-
more we put log 0 a = ŷ A • We look for the extrema 
of WA. We get 

2 e x p ( - 2 W K 
<A}k - v .—— , k ^ 1 . 

2 e xP 2 ^ / 
(A.3) 

Thus we have: If A\ is an extremum of WA, then 
Ai is a solution of our problem. Now let be A\, A2 

two different extrema. We consider the straight 
line through A\, A2 

fa = Au + y(A2} - Ay), yeM. 

Now we define the function Xf/A(y) by inserting 
these values of A into Equation (A.2). Now xPA(y) 
is a convex function. This is true if 

0A" 0A - (0A)2 ^ 0 . 

Now we have 

J(y) = 0A" 0A - (<Z>/)2 = 2 R* ^ 2 [(«*' - - (A{y)(A21c - Alk)(A2l - Au) 

- (a*" - <.4*>) (a," - <4j>) (A2k - Alk) (A2i - Au)], 
where 

Thus we get 

Rv = exp { - 2 (Au + y(A2j - A1})) ( a / - > 0 . 
j 

J(y)= 2 Rv R» ( 2 (A2k - Aik)(^ - ag))2 ^ 0 . 
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Furthermore we have 
J(y) = 0 o J t { A Z k ~ 4 i * ) ( a * ' - a * * = 0 

k 
for all v, /A . 

Now we have 

TVß = 2 (Ä2k - Alk) (a*' - a 

= (yv | 2 - Aik) Ak \<pv) (A 4) 
-<9*12 {Azic - Alk) Ak I . 

We have to discriminate two different cases: 

1. For the fixed c.o.s. (cpv) there is a linear com-
bination 2 {Aw — Aik)Ak = B of the macro-
observables with TVß = 0 for all v, fx. 

2. This is not the case. 
In the case 2 we have: 

TVß = 0 for all v, fx => 

which implies, by means of the linear independence 
of the macroobservables, A2k — A\k = 0. In this 
case the solution is uniquely determined, if it 
exists. 

For the first case we do not answer the question 
concerning existence and uniqueness, because we 
do not need this answer as follows from later 
considerations. 

Returning to the second case we prove the 
existence of the solution under the additional 
condition that all w;y=j=0, or Tw;r=f=0- The proof 
of the convexity of ^ ( y ) shows that &A {A ) is 
convex for every straight line. Especially we con-
sider the function 

®a (y) = 2 exp { - 2 y a i W - (A]))} 

= 2 e ~ 7 S ' (A-5) 
= 2 e~ys" + 2 e _ 7 S v + 2 e _ y S v • 

S „ > 0 S v < 0 S r = 0 

After presupposition not all sv can be zero. The 
non-vanishing cannot be all positive or all negative. 
We have 

Sr = 2t*j(<*jv-<Ai>) 
i 

= (cpv\ 2ajAj | <pv} (A.6) 

<9V I 2 a i A ) I 
Let all non-vanishing sv be > 0. Then we get 

0 < 2 v:vsv = 2 W v (<PV I 2 a i A i I V*) 

- 2 <?» 1 2 aJ A i I 
= 0 . 

Thus there must be positive and negative sv. But 
then we get 

(y) ^ exp {— y Max s,,} + exp {— y Min , 
S v > 0 s , < 0 

or 
|y| ^ R => &A(y) 

^ Min (exp {R Max sv}, exp {R | Min sv |}) . 

Thus there exists a sphere S of radius R with the 
following property 

3AeS\0a(A)<0a(A') 

for all A' with \A'\ = R. 
Now &a (A) is bounded and continuous, therefore 

it takes its minimal value inside S. Furthermore it 
is differentiate. This is the proof. 

It can be shown by a very simple example that 
the condition ~Jv)ß =}= 0 is necessary for the proof. 
Choose A — a PVl + ß P^1 a > ß as operator in 
spanned by <pi, <p2 • Choose W = P^. Then there 
exists no A, D such that 

Sp (De~ X A ) = 1; 
S p ( Z ) e - ^ 4 ) = S p ( l F 4 ) . (A.7) 

In order to escape the restriction to a fixed c.o.s. 
we consider now the following situation. In any 
given ensemble & we perform a measurement of 
the macroobservables Ai. The measured systems 
then form an ensemble described by 

W = 2 > , P*v, 

0V being the macroobservables, 

= Sp (WP*v) = S p ( 2 P,e P*,). 
Q 

But now we have 

2 uv log uv ^ 2 wv log Wf. (A.8) 
v 

This follows from the inequality 

( 2 qi xt) log ( 2 qt xi) ^ 2 # X i X i 

with 
2 * = i 

(see [17]). The equality only holds if all xi are 
equal. Thus we have 

2 U v log U v < 2 WV log w v 

unless all the wv are equal, but then 
1 

W = Pt~= TFe* , 
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which is a trivial case. With 

uv = 2 we Vqv, yQv=\(fpQ\0v}\2 
Q 

we put qi = yev, v fixed, Xi^=v)Q. Thus we get 

uv log uv ig 2 Ye* wQ we > 
Q 

which after summation is the proof. Furthermore 
we have Sp(IFlog fF )^Sp (JF log IF). This follows 
from the fact that 

d 2 

ds2 ( 2 (Wv + £ vv) log ( W v + £ vv)) (e = 0) > 0 

under the conditions 2 V v = 0> ^(v\A\v)>vv — 0. 
Before we start our final considerations we prove 
the following lemma: 

If the c.o.s. (cpv) is the c.o.s. of the macroobserv-
ables we get the following result. There is no linear 
combination B of the macroobservables with the 
property: All <cpv \ B \ (pv)> — (@v | B | @vy are equal. 
That means we have the case 2. 

Proof: <&v | 2 cij Aj | > = <&v \ B \ &v> = bv. 

All bv are equal => B = b 1 = b Pt. 

Px itself is a macroobservable and thus we had 
a linear relation between the macroobservables, 
which is not the case. Thus the variational problem 
is uniquely solvable if it is solvable at all. This is 
the case if Ti/;v=±=0. Now let © be the ensemble 
which originates from © by measurement of the 
macroobservables, © the ensemble which originates 
from © by variation. Furthermore we define 

= Sp(IFlog IF). (A.9) 

Let us consider the following diagram 
© *© 

© 

Let us consider only ensembles © with Twv 4= 0. 
If the variational problem for © is not solvable, 
we pass over to © with J f [©] > J f [©]. Now it is 
easily seen that Twv + 0 too, thus the variational 

problem is uniquely solvable, the solution is ©. 

Thus we have J f [ © ] > ^ [ © ] . If the variational 
problem for © is solvable, there could be several 

solutions. If there is only one solution ©, we have 

If © = ©eq, we have © = & = © and the only 

solution is ©eq. If © #= ©eq, we have J f [ & ] > J f [ & ] . 
Now the expectation values of the macroobserv-
ables coincide for © , © , © , © , © . Thus we get 

and © is the only solution. If 
there are several solutions the same considerations 

apply, again yielding © as the only solution. Thus 
we have the final result: 

If only ensembles © with T w v =f= 0 are regarded, 
the complete variational problem is uniquely 

solvable. The solution is given by ©. 
The same considerations apply if we look for 

solutions of the equations 

Sp (D exp { - ß H + 2 ^ M) = <Ai> • 

The proof is quite analogous. We do not discuss 
here uniqueness and existence of the solutions of 
the equations 

Sp ( y exp [ - 2 * M A^j = ( A j } . 

There is no difficulty in the linearized case, and 
only this is discussed in the paper. 

Appendix B 

We prove the regularity of the matrix 

2 S p ( W E ( ^ A I AJ) XJ = 0 
i 

and Xj— 0 not for all i => 

2 Sp (IFe<i XI AT XJ AJ) = 0 => 

Sp(IFeq(2 XI AI) ( 2 XI AT))= Sp(IFeq £ 2 , (£ 2 ) = 0 . 

Now IFeq is ;>o f o r every definition. 
Therefore we can write 

Sp(TFeq£2) = Sp(|/lF^q |/lFeq J/B+ ^B + ) 
= Sp(|/B+ j/lFeq ]/B+) 
- (j/lFeq ]/~B+~; y w ^ 1/B+). 

Therefore we get 

]/ IFeq y B+ = 0 =>\B+ = 0 ^ 5 = 0 

and that is not the case, because the Ai are linear 
independent. 
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Appendix C 

W e investigate some projection-properties. 

A) G, defined by 

OA = w**2sv(AAt)yuAJ> 

Weq = ~PX, 

is a projection-operator! 

1. G(GA)=W^2^{OAAi)yijAj, 

Sp ((GA) Ai) = 2 S P ( W ^ A j A i ) Sp (AA{) 
= Sp (AAi), 

thus G 2 = G, especially GA{ = Ai. 

2. G is selfadjoint! 

(B;GA) = {GA; B)* 

= Sp* (2 Sp* (AAi) ytj Aj We a B) 

= 2 Sp yy Sp* Jfeq . 
( G 5 ; = Sp ( J Sp* (BAi) yij A; W^A). 

Thus we have (B;GA) = (GB;A). 

B) G defined in Eq. (2.8, 5) is not selfadjoint, the 
Hermitean conjugate is given by 

G<+> B = 2 y™ B ) A * • 

Proo f : 

(G<+> 5 ; 4 ) = Sp ( 2 ft* Sp* I f e q A i A ) 

= ( 5 ; 2 y i * S p ( ^ , ) lTea. l t ) 

C) G, defined in Eq. (2.10, 5) is not selfadjoint, 
the Hermitean conjugate is defined by 

G<+> 5 = 1 2 yuc Sp ({TTeq, ,4*} 5 ) . 

Proof : 

(C(+) = (B-,2yik Sp(^i) \{W^,Ak}) 

= (B;GA). 

Appendix D 

W e prove the conjecture in Eq. (2.1) 

H12 = PxH12Px + ( l - P x ) H 1 2 ( l - P r ) => 

[H12, Wea] = 0, (Ww = Px/d) => 

[H0, WW] = 0 => 

r can be spanned by some eigenvectors of Ho . 
Conversion: Let a set cpQ o f eigenvectors of Ho 

be a basis in r. Then we have 

Ho = Px Ho P r + (1 — Px) H 0 ( l — Px) 

H =PxHPx + ( l - P t ) H ( l - P x ) 

H12 = Pr Hl2 Px + (1 - Px) H12 (1 - Px). 

A cknowledge me nts 

I whish to thank Professor Dr. R . Jelitto from 
the University of Frankfurt/Main for helpful! 
discussions in the course of a seminar and Professor 
Dr. W . Maass from the University of Marburg 
(Lahn) for many remarks. 

[1] N. G. van Kampen, Physica Norvegica, vol. 5, Nos 
3 - 4 , 1971. 

[2] G. Ludwig, Makroskopische Systeme und Quanten-
mechanik. Notes in Mathematical Physics, Marburg 
(Lahn), April 1972. 

[3] P. C. Martin, Non Local Transport Coefficients Cor-
relation Functions. In: Statistical Mechanics of Equi-
librium and Non-Equilibrium, Ed. Meixner, North 
Holland, 1965. 

[4] A. Katz, Principles of Statistical Mechanics, W. H. 
Freeman and Company 1967. 

[5] G. Ludwig, Z. Phys. 173, 232 (1963). 
[6] W. M. Visscher, Phys. Rev. A, 10, 6 (1974). 
[7] G. Ludwig, Axiomatic Quantum Statistics of Macro-

scopic Systems (Ergodic Theory), Proc. of Int. School 
of Physics "Enrico Fermi", 1960. 

[8] J. Schröter, Zur statistischen Mechanik, Endbericht 
für das Forschungsvorhaben Lu 29/9 der DFG. 

[9] S. Grossmann, Funktionalanalysis, Akademische Ver-
lagsgesellschaft Frankfurt/M. 1970. 

[10] 0. Seeberg, Ann. d. Phys., 7. Folge, 30, 3/4 (1973). 
[11] G. Ludwig, Die Grundlagen der Quantenmechanik, 

Springer-Verlag, Berlin 1954. 
[12] R. Becker, Theorie der Wärme, Springer-Verlag, Ber-

lin 1966. 
[13] K. Huang, Statistische Mechanik, Bibliographisches 

Institut, Mannheim 1964. 
[14] W. Maass, Private communication. 
[15] R. Kubo, Linear Response Theory of Irreversible Pro-

cesses. In: Statistical Mechanics of Equilibrium and 
Non-Equilibrium, Ed. Meixner, North-Holland, Am-
sterdam 1965. 

[16] A. J. Chintchin, Mathematische Grundlagen der Stati-
stischen Mechanik, Bibliographisches Institut, Mann-
heim 1964. 

[17] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequali-
ties, Cambridge 1964. 


