Die optischen Konstanten n und \varkappa von LiF im Bereich der ultraroten Reststrahlbande

Von G. HEILMANN

Physikalisches Institut der Universität Frankfurt (Main) (Z. Naturforschg. 13 a, 238 [1958]; eingegangen am 12. Februar 1958)

Die optischen Konstanten n und \varkappa von LiF wurden im Gebiete der anomalen Dispersion $(15-26 \mu)$ erstmalig ausgemessen. Dazu wurde das Reflexionsvermögen eines LiF-Einkristalles unter Einfallswinkeln von 20° und 70° mit parallel und senkrecht zur Einfallsebene polarisierter Strahlung bestimmt. n und \varkappa ließen sich dann nach einem von Šimon¹ angegebenen und für diesen speziellen Fall erweiterten graphischen Verfahren ermitteln. Die Probe befand sich in einem Ofen, der geeignet angebrachte Fenster hatte. Die Messungen erstreckten sich auf den Temperaturbereich von 20-600 °C (Schmelzpunkt von LiF: 842 °C). Die optische Anordnung entspricht wesentlich der von NEUROTH² benutzten. Im Bereich von $15-23 \mu$ wurde ein KBr-Prisma von $23-26 \mu$ ein solches aus KRS 5 verwandt.

Die Reststrahlbande hat bekanntlich neben dem Hauptmaximum ein kurzwelliges Nebenmaximum³. In Abb. 1 zeigt \varkappa entsprechende Maxima. Aus *n* kann geschlossen werden, daß neben dem Gebiet anomaler Dispersion mit der bekannten Eigenschwingung bei 32,6 μ ein zweites Anomalie-Gebiet bei etwa 20 μ vorliegt. Mit steigender Temperatur nimmt das Nebenmaximum von \varkappa weniger ab als das Hauptmaximum. Dieses Verhal-

¹ J. ŠIMON, J. Opt. Soc. Amer. 41, 336 [1951].

² N. NEUROTH, Z. Phys. 144, 85 [1956], Glastechn. Ber. 28, 411 [1955].

Hyperfeinstruktur und Struktur des Nukleons

Von E. WERNER

Institut für theoretische Physik der Universität des Saarlandes (Z. Naturforschg. 13 a. 238–239 [1958]; eingegangen am 24. Februar 1958)

BOHR¹ hat darauf hingewiesen, daß die Nukleonenwellenfunktion des Deuterons und die elektromagnetische Struktur der Nukleonen einen noch meßbaren Einfluß auf die Hfs-Aufspaltung des Grundzustandes des Deuteriums haben. Der Effekt wurde von Low² unter Annahme punktförmiger Nukleonen mit verschiedenen Ansätzen für die Kernwellenfunktion genauer berechnet. Seine Werte liegen aber außerhalb der Fehlergrenzen des Experiments.

Die Lowsche Rechnung wurde auf ausgedehnte Nukleonen erweitert. Hierzu wurde angenommen, daß Ladung bzw. magnetisches Moment des Protons und magnetisches Moment des Neutrons durch die nämliche Strukturfunktion beschrieben werden können³. Eine

¹ A. Bohr, Phys. Rev. 73, 1109 [1948].

- ² F. Low, Phys. Rev. 77, 361 [1950].
- ³ Y. A. McIntyre u. S. Dhar, Phys. Rev. 106, 1074 [1957].

ten der Dispersionsgebiete deutet darauf hin, daß ihnen verschiedene Ursachen zugrunde liegen⁴.

Abb. 1. Die optischen Konstanten n und \varkappa von LiF bei 20 °C (----) und 600 °C (---). $\varkappa \varkappa, \bigcirc n$.

Was die Zuverlässigkeit der mitgeteilten Messungen anbelangt, so dürfte der wesentliche Verlauf der Kurven gesichert sein. Doch ist z. B. zu erwarten, daß wegen der begrenzten Monochromasie der Strahlung nbei 20 °C zwischen 30 und 33 μ noch steiler und auf größere Werte ansteigt.

Eine ausführliche Fassung wird noch veröffentlicht.

³ H. W. Hohls, Ann. Phys., Lpz. 29, 433 [1937]

⁴ Vgl. z. B. M. Lax u. E. BURSTEIN, Phys. Rev. 97, 1 [1955].

mögliche Ladungsverteilung im Inneren des Neutrons wurde nicht berücksichtigt³.

Im einzelnen wurden p-n-Wechselwirkungspotential und Strukturfunktion des Nukleons bis auf die Halbwertsbreite vorgegeben. Dann wurde der mittlere quadratische Radius des Nukleons so bestimmt, daß Übereinstimmung mit dem experimentellen Wert des Verhältnisses * $\Delta v_{\rm D}/\Delta v_{\rm H}$ der Hfs-Aufspaltung von Deuterium und leichtem Wasserstoff besteht.

Um die Ergebnisse mit aus Streuexperimenten berechneten Daten vergleichen zu können, wurden zur Bescheibung des Deuterons neben einem Potentialtopf mit hard-core zwei von McINTYRE und DHAR³ bei der Interpretation von Elektron-Deuteron Streuversuchen benutzte Kernpotentiale verwendet. Für die Nukleonenstrukturfunktion wurden die "hollow-exponential"-Funktion $\varrho = \varrho_0 r e^{-r/a}$ und die Gauss-Funktion $\varrho = \varrho_0 e^{-r^2/a^2}$ benutzt. In der Tab. 1 sind die Ergebnisse zusammen mit den aus Elektron-Deuteron- und Elektron-Proton Streuexperimenten folgenden eingetragen.

* In $\Delta v_D / \Delta v_H$ fallen die Strahlungskorrektionen heraus (siehe z. B. BETHE, Salpeter; Handbuch d. Physik, herausgeg. v. S. FLügge, Sect. 22).