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Transient receptor potential (TRP) ion channels are among the most well-studied classes of
temperature-sensing molecules. Yet, the molecular mechanism and thermodynamic basis for the
temperature sensitivity of TRP channels remains to this day poorly understood. One hypothesis is that
the temperature-sensing mechanism can simply be described by a difference in heat capacity between
the closed and open channel states. While such a two-state model may be simplistic it nonetheless
has descriptive value, in the sense that it can be used to to compare overall temperature sensitivity
between different channels and mutants. Here, we introduce a mathematical framework based on
the two-state model to reliably extract temperature-dependent thermodynamic potentials and heat
capacities from measurements of equilibrium constants at different temperatures. Our framework is
implemented in an open-source data analysis package that provides a straightforward way to fit both
linear and nonlinear van ’t Hoff plots, thus avoiding some of the previous, potentially erroneous,
assumptions when extracting thermodynamic variables from TRP channel electrophysiology data.

I. INTRODUCTION

An organism’s ability to sense its environment is crucial
to its survival. One of the most well-studied families of
biological temperature sensors in humans and other eu-
karyotes is the transient receptor potential (TRP) family
of ion channels [1]. Members of this family have tem-
perature sensitivity across the biologically relevant range
of temperatures, but the most well-known are the heat
and capsaicin-sensitive TRPV1 [2] in the TRPV subfam-
ily, and the cold and menthol sensitive TRPM8 [3, 4]
in the TRPM subfamily. Hypotheses about the princi-
ples guiding the temperature-sensitivity of TRP channels
were already being postulated within a few years of their
discovery, with proposed mechanisms relating to phenom-
ena from voltage-sensing to elongations of open channel
burst times [5, 6]. However, while these molecules have
been identified as intrinsically sensitive to temperature [7]
and playing a critical role as temperature sensors in our
nervous system [8–10], we still do not understand the
molecular and thermodynamic mechanism(s) that dic-
tates their temperature-dependent activation.

One characteristic of TRP ion channels that seems
clear are the large positive enthalpy differences between
states for heat-sensitive TRPs like TRPV1 [5, 11] and
large negative enthalpy differences for cold-sensitive TRPs
like TRPM8 [11, 12]. Entropy and enthalpy differences
between the open and closed states of a channel can be ex-
tracted from linear fits to the logarithm of the equilibrium
constant Keq as a function of the reciprocal temperature
1/T if said thermodynamic potentials are independent of
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temperature. However, as is well known in the literature
of physical biochemistry, large conformational changes
in proteins are usually accompanied by changes in their
heat capacities, which leads to temperature-dependent en-
thalpies and entropies [13]. This is the premise of a model-
free framework proposed by Clapham and Miller [11],
which can explain both cold and heat-sensitive changes
in the equilibrium constant. While it remains debated
whether temperature-dependent gating in channels is also
accompanied by observable changes in heat capacity [14],
this is the main mechanism to induce temperature depen-
dence in the relevant thermodynamic potentials.

Here, we embrace the approach of Clapham and
Miller [11], and introduce a procedure to reliably extract
temperature-dependent thermodynamic potentials and
heat capacities from equilibrium constant measurements
performed at different temperatures. We thereby assume
that a TRP channel can, to a first approximation, be
described as a two-state system, which may not provide
the same mechanistic insight as more involved models [15],
but has the benefit of being universally applicable and
allows for a direct comparison of thermodynamic variables
obtained for different ion channels or the same channel
at differing experimental conditions. Our theory is im-
plemented in an open-source data analysis package [16]
written in Julia [17], and should provide practitioners a
straightforward way to fit linear and nonlinear van ’t Hoff
plots, thus avoiding previous potentially false assumptions
about the nature of temperature sensors.

The paper is structured as follows. In Sec. II A, we list
the thermodynamic relations relevant to our discussion,
and briefly review their common use in the literature
of temperature sensors. Section II B introduces cubic
splines as continuously differentiable functions used to fit
discrete measurements of ln(Keq). Under the assumption
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of a two-state model, the differentiability of splines allows
us to calculate robust estimates for the thermodynamic
potentials ∆H(T ) and ∆S(T ), and the associated heat
capacity difference ∆Cp(T ). To avoid overfitting, we rely
on a Bayesian information criterion (BIC) [18] to penalize
splines with many degrees of freedom, as described in
Sec. II C. For illustrative purposes, we apply our data
analysis package to two distinct data sets in Sec. III, and
conclude in Sec. IV with a summary of our results.

II. THEORY

One of the simplest ways to model a TRP channel is
to treat it as a two-state system. Every channel in an
ensemble of channels can then either be in the open or
closed state, such that the composition of the ensemble is
encoded in the equilibrium constant Keq:

open state
Keq


 closed state .

In electrophysiological experiments the charge current
through a single channel or a collection of channels is
measured at different temperatures, which can be used
to calculate the so-called “open probability” P , i.e., the
probability of finding a channel in the open state. The
equilibrium constant Keq and the open probability P are
related via

Keq =
P

1− P (1)

for a two-state system. Note that macroscopic ionic cur-
rents are subject to a multitude of additional sources
of variability that can predominate at the temperature
extremes, where channel activity is either very low or
near-maximal. Because the quality of the associated P
and Keq estimates is directly affected, we recommend
users to carefully select the temperature range of the data
to be fitted to avoid contributions from sources of signal
variability unrelated to channel gating.

A. Thermodynamic description

Thermodynamics tells us, on the one hand, that the
differentials of enthalpy H and entropy S are related via

dH = TdS

for systems at constant pressure, where T denotes the
absolute temperature. On the other hand, it can be shown
that the heat capacity Cp at constant pressure satisfies

Cp =

(
∂H

∂T

)
p

, (2)

where ∂/∂T denotes a partial derivative with respect to
T and the index of the bracket reveals which quantity

is being held constant (in this case it is the pressure
p). We therefore conclude that the enthalpy and entropy
differences between two metastable states must be integral
functions of the heat capacity difference ∆Cp = Cstate 2

p −
Cstate 1

p between the states, i.e.,

∆H(T ) = ∆H(T0) +

∫ T

T0

dT ′∆Cp(T ′) ,

∆S(T ) = ∆S(T0) +

∫ T

T0

dT ′
∆Cp(T ′)

T ′
,

(3)

for some arbitrary reference temperature T0. Note
that ∆H(T ) and ∆S(T ) are independent of T whenever
∆Cp(T ) = 0, e.g., for bistable systems whose states have
the same heat capacity. However, in the case of protein
folding, we know that large heat capacity differences exist
between their folded and unfolded state [13].

Another thermodynamic potential of interest is the
Gibbs free energy, which is given by

∆G(T ) = ∆H(T )− T∆S(T ) . (4)

It can be related to the equilibrium constant Keq of the
two-state system via the fundamental relation of chemical
thermodynamics, namely

∆G(T ) = −RT ln(Keq) , (5)

where R = 8.314 462 618 153 24 J mol−1 K−1 denotes the
molar gas constant. The logarithm of the equilibrium
constant and its derivative with respect to T therefore
have the form

ln(Keq) = −∆H(T )

RT
+

∆S(T )

R
, (6)

d ln(Keq)

dT
=

∆H(T )

RT 2
, (7)

where the latter is the well-known van ’t Hoff equation,
which is sometimes also written as follows:

d ln(Keq)

d(1/T )
= −∆H(T )

R
. (8)

Equations (6) and (8) reveal that a so-called van ’t Hoff
plot, where ln(Keq) is plotted against the reciprocal of
the absolute temperature T , will be linear whenever ∆H
and ∆S are constant with respect to temperature. The
thermodynamic potentials can then be read off the slope
and intercept of ln(Keq), respectively. This convenient
fact often seems to guide the decision of practitioners to
fit their data to straight lines, even when the van ’t Hoff
plot is highly nonlinear (see, e.g., Refs. 12 and 19), which
can be an indication for temperature-dependent behavior.
Overall, it is important to note that Eqs. (7) and (8) are
valid for all functions ∆H(T ) and ∆S(T ) of the form
given in Eq. (3), and not just constant thermodynamic
potentials.
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A popular empirical measure of temperature sensitivity
is Q10, which is used to characterize temperature sensi-
tivity in electrophysiological experiments on TRP chan-
nels [20, 21]. It is defined as the ratio of Keq measured
at two temperatures that are 10 K apart, i.e.,

Q10 =
Keq(T + 10 K)

Keq(T )
.

The reason for its wide-spread use is the fact that on a
logarithmic scale it approximately reproduces the van ’t
Hoff equation, i.e.,

ln(Q10)

10 K
=

ln
(
Keq(T + 10 K)

)
− ln

(
Keq(T )

)
(T + 10 K)− T

≈ d ln(Keq)

dT
=

∆H(T )

RT 2
,

(9)

and can therefore be used to estimate ∆H(T ). Again, it
is common practice to assume that ∆H is temperature-
independent and ln(Q10) is therefore only evaluated at
a single temperature T , which can lead to arbitrary and
skewed results whenever ∆H(T ) = const. is not satisfied.

Here, we call for a different approach to extract thermo-
dynamic information from measured Keq-values, without
any ad-hoc assumptions. Instead of performing a linear
fit of ln(Keq) plotted against T−1, we instead propose
to extract ∆H(T ), ∆S(T ) and ∆G(T ) from Eqs. (4), (5)
and (7) [or, equivalently, Eq. (8)], as discussed in Sec. II B.
In cases, where ∆H(T ) and ∆S(T ) vary strongly with
the temperature, this novel approach allows also us to
estimate the change in heat capacity ∆Cp.

B. Spline fitting of discrete data points

Extracting derivatives from discrete points, e.g., via
finite differences, can be somewhat tricky, because direct
numerical differentiation amplifies the noise in the data.
Therefore, advanced methods like spline-fitting [22] should
be considered to construct continuous curves for ln(Keq)
and its derivatives.

Consider a piecewise continuous function

S(x) =



S1(x) s0 ≤ x ≤ s1
S2(x) s1 ≤ x ≤ s2
...

Si(x) si−1 ≤ x ≤ si
...

SN (x) sN−1 ≤ x ≤ sN

(10)

made up of third-order polynomials of the form

Si(si−1 ≤ x ≤ si) =
3∑

n=0

a(i)n (x− si−1)n ,

s0 sN
x

S(
x
)

Figure 1. Visualizing the principle of spline fitting. When
fitting a cubic spline S(x) to some data points {xm, ym}Mm=0,
we exploit the fact that for every set of knot coordinates(
s0,S(s0)

)
,
(
s1,S(s1)

)
, . . . ,

(
sN ,S(sN )

)
(blue circles) there ex-

ists a unique cubic spline (blue solid lines) satisfying the
boundary conditions in Eq. (12). Thus, by varying the knot
coordinates (black arrows), we can change the shape of the
spline to minimize χ2 in Eq. (13). Note that the edge knots at
x = s0 and x = sN can only be varied in y-direction, whereas
the “inner” knots are allowed to take arbitrary x-values within
the interval [s0, sN ].

which are joined together in the spline knots si. The
function S(x) is known as a cubic spline and satisfies the
continuity conditions

Si(si) = Si+1(si) ,

S ′i(si) = S ′i+1(si) ,

S ′′i (si) = S ′′i+1(si) ,

(11)

where the notation S ′(x) = dS(x)/dx and S ′′(x) =
d2S(x)/dx2 was introduced to abbreviate the expressions.
We also require some appropriate boundary conditions,
e.g., so-called natural boundary conditions given by

S ′′1 (s0) = S ′′N (sN ) = 0 . (12)

Equations (11) and (12) constrain the values of the spline
coefficients a

(i)
n , such that only N + 1 of them can be

varied independently.
In our fitting procedure, the edge knots s0 and sN

are held fixed, while the “inner” knots {s1, . . . , sN−1}
are allowed to vary within the interval [s0, sN ]. We also
vary the values {S(si)}Ni=0 of the splines at the knots (see
Fig. 1). The best fit of S(x) to the data {xm, ym}Mm=0

minimizes the sum of squared residuals between the data
points and the spline, i.e.,

χ2 =
M∑

m=0

(
ym − S(xm)

σm

)2

, (13)

where σm denotes the standard error of ym. Here, we
consider ym = ln

(
Keq(xm)

)
for either a linear (xm = Tm)
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Figure 2. Distinguishing between linear and reciprocal func-
tions on physiologically relevant temperature scales is impos-
sible. (a) A linear function f(T ) = a + bT (blue circles),
perturbed by small noise, is plotted next to a reciprocal noisy
function g(T ) = c− d/T (red squares) on a temperature scale
ranging from 0 °C to 100 °C. Both functions appear linear,
because the absolute temperature is not varied by orders of
magnitude to reveal the nonlinearity of g(T ). (b) Same data
as in (a) plotted on a reciprocal temperature scale. Again,
both functions seem linear in 1/T , although only g(T ) truly
is. Insets: Same data as in (a) and (b) plotted on a wider
temperature scale to visualize the linear and reciprocal trends
of f(T ) and g(T ), respectively.

or reciprocal temperature scale (xm = 1/Tm), and set the
values of s0 and sN equal to the lowest and highest values
of xm found in the data set, respectively. The reason why
we consider both scales is because one cannot distinguish
between a linear and reciprocal temperature dependence
for the temperature ranges realized in electrophysiological
experiments (see also Fig. 2).

Evaluating S
(
x(T )

)
for the parameters that minimize

Eq. (13) therefore gives the best estimate of ln
(
Keq(T )

)
,

which can be used to extract the heat capacity differ-
ence ∆Cp(T ) and the thermodynamic potentials ∆G(T ),

∆H(T ), and ∆S(T ) as follows:

∆G(T ) = −RTS
(
x(T )

)
, (14)

∆H(T ) = RT 2 dx(T )

dT
S ′
(
x(T )

)
, (15)

∆S(T ) =
∆H(T )−∆G(T )

T
, (16)

∆Cp(T ) = R
d

dT

[
T 2 dx(T )

dT

]
S ′
(
x(T )

)
+RT 2

[
dx(T )

dT

]2
S ′′
(
x(T )

)
. (17)

Note that for x = T we have dx/dT = 1, whereas the
reciprocal relation x = 1/T gives dx/dT = −T−2 for
which the first term of Eq. (17) vanishes.

C. Model selection

The choice between a linear and reciprocal fit, as well
as the number of spline knots N + 1, gives rise to a mul-
titude of models that fit the data set to varying degree.
For a fixed N , one can distinguish between the qualities
of a linear and a reciprocal fit by comparing their cor-
responding χ2 values, but if N is allowed to vary then
models with N � 1 will always be preferred. We there-
fore propose the use of an information criterion [18] to
penalize models with too many fit parameters. By inter-
preting Eq. (13) as a negative log-likelihood for Gaussian
distributed residuals, we obtain the following BIC:

BIC(N) = χ2
min + 2N ln(M + 1) . (18)

Equation (18) is evaluated using the optimal values for
the 2N spline parameters {si}N−1i=1 and {S(si)}Ni=0 that
minimize χ2 [Eq. (13)], resulting in the minimum value
χ2
min. The model that best fits the data, while avoiding

overfitting, minimizes BIC(N) with respect to N .
Our data analysis package automatically varies N , finds

the associated optimal parameter values that minimize χ2,
and subsequently calculates the corresponding BIC-value.
It finally returns the model and associated parameter
values that best fit the data at hand.

D. Extension to multi-state models

In principle, our data-fitting approach can be extended
to (and used to generalize) models with multiple states,
such as the ones presented in Ref. 15, by replacing Eq. (1)
with an expression P (T ) for the open probability involv-
ing multiple spline functions S(k)

(
x(T )

)
with k = 1, 2, . . . .

The fitting must then be performed on the level of P , in-
stead of ln(Keq), which implies that Eq. (13) gets replaced
with

χ2 =
M∑

m=0

(
Pm − P (Tm)

σ̃m

)2

,
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where Pm and σ̃m are the mean and associated standard
error of the measured open probability at temperature
Tm. The corresponding BIC takes the form

BIC({N (k)}) = χ2
min + 2

∑
k

N (k) ln(M + 1) ,

where N (k) + 1 is the number of spline knots in S(k)(x).
For a concrete example, consider the four-state model

in Ref. 15, where the open probability is given by

P (T ) =
L(1 + CJ)

1 + J + L(1 + CJ)

and the coefficients L, C, and J are related to the equi-
librium constants between the two open (“O”) and two
closed (“C”) states as follows:

KO0C0
eq = L , KC0C1

eq = J ,

KC1O1
eq = CL , KO0O1

eq = CJ .

This model can be generalized by replacing L, C, and
J with exp

(
S(k)(x)

)
|k=1,2,3, respectively, if all equilib-

rium constants are assumed to be temperature depen-
dent. After fitting the data in analogy to the two-state
case, Eqs. (14) to (17) can then be evaluated by replac-
ing S(x) with S(1)(x), S(3)(x), S(1)(x) + S(2)(x), and
S(2)(x)+S(3)(x) to extract the thermodynamic potentials
and heat capacity differences related to all the different
equilibrium constants.

Even though the generalization to multiple states is
fairly straight-forward, our data analysis package cur-
rently only supports a two-state description.

III. RESULTS AND DISCUSSION

For illustrative purposes, we applied the data analysis
package to two previously published data sets, one for the
warm-sensitive TRPV3 channel [19], and another for the
heat and capsaicin-sensitive TRPV1 channel [5]. Each
data set was analyzed by performing a van ’t Hoff fit of
measured values of ln(Keq) for different temperatures T
to extract heat capacity differences and thermodynamic
potentials, as described in Secs. II B and II C. Here, we
deliberately avoid a direct comparison with the results of
the associated publications, as it is not our intention to
question their conclusions, but to demonstrate how our
data analysis package works in practice.

In the case of the TRPV3 channel, we considered the
measured open probabilities p that are tabulated in the
source data associated with the extended data Fig. 1 in
Ref. 19. For each temperature Tm, we calculated the
sample mean and variance of Pm, i.e.,

Pm =
1

Nm

Nm∑
n=1

P (n)
m , (19)

σ̃2
m =

1

Nm − 1

Nm∑
n=1

(P (n)
m − Pm)2 , (20)

2
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Figure 3. Thermodynamic potentials predicted from a van ’t
Hoff fit of TRPV3 channel data. The data are best fitted by a
model that is reciprocal in the temperature with 3 spline knots.
(a) Gibbs free energy ∆G as a function of T , calculated from
data (points) and compared to model prediction (solid line).
Shaded areas (gray) mark temperature intervals, where the
trend of the cubic spline is no longer constrained by data points
and can therefore not be trusted. (b) Enthalpy difference ∆H
(blue solid line) and entropy-temperature product T∆S (red
dashed line) as functions of T . (c) Heat capacity difference
∆Cp as function of T . The temperature-dependence of ∆H
and ∆S emerges from a nonzero ∆Cp predicted by the best-
fitting model.

where P
(n)
m denotes the nth measurement (of Nm in total)

of the open probability Pm at temperature Tm. The
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Figure 4. Thermodynamic potentials predicted from a van ’t
Hoff fit of TRPV1 channel data. The data are best fitted by a
reciprocal model with 2 spline knots. (a-c) Same as in Fig. 3,
except that here a model is preferred with vanishing heat
capacity difference ∆Cp, which results in ∆H,∆S = const.

equilibrium constant Keq can be calculated via Eq. (1)
and according to the variance formula of error propagation
one has

var
(

ln(Keq)
)
≈
(

d ln(Keq)

dP

)2

var(P ) .

The data points and standard errors entering Eq. (13) are
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Figure 5. Comparison of enthalpy estimates obtained from
van ’t Hoff fits (blue solid lines) and Q10-based analysis (red
dashed lines). (a) For the TRPV3 channel data analyzed
in Fig. 3, the finite-difference approximation of the deriva-
tive with respect to T in Eq. (9) results in a vastly different
∆H(T ) estimate than obtained from our spline-fitting pro-
cedure. (b) The van ’t Hoff fit of the TRPV1 channel data
predicted a temperature-independent enthalpy, for which Q10

provides a decent estimate of ∆H (in this case only 3% off).

therefore given by

ym = ln

(
Pm

1− Pm

)
, (21)

σm =

√√√√ 1

Nm

(
1

Pm − P
2

m

)2

σ̃2
m . (22)

Our results for the TRPV3 data are shown in Fig. 3.
The model that best fits the data is reciprocal in the
temperature (x = 1/T ) and contains N + 1 = 3 spline
knots. The model predicts a temperature-dependent
heat capacity difference ∆Cp(T ) that decreases mono-
tonically beyond T ≈ 300 K [Fig. 3(c)]. The resulting
enthalpy and entropy-temperature product differences,
∆H(T ) and T∆S(T ), are therefore nonconstant and vary
between −100 and +300 kJ mol−1 [Fig. 3(b)]. However,
they mostly cancel each other out and give rise to a
moderate free-energy difference, as seen in Fig. 3(a).

Figure 4 displays our results for the TRPV1 channel,
where the data points {Tm, ym} and standard errors σm
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were read off Fig. 2c of the original publication. The
model that best fits the data is reciprocal in the tempera-
ture (x = 1/T ) and has no inner knots, i.e. N + 1 = 2.
At first this may seem somewhat surprising, considering
the fact that the data are not perfectly linear in T−1,
but is essentially a good example of how our data analy-
sis package avoids overfitting. Apparently, one does not
gain sufficiently large improvements in the χ2

min term of
Eq. (18) to warrant a more complex model than one with
∆Cp = 0 and therefore constant thermodynamic poten-
tials ∆H and ∆S. While we are here only illustrating the
use of our data analysis package and want to refrain from
making scientific assessment of the results at this time,
we would like to make note of the narrow temperature
range in this particular data set, so as the readers do not
conclude that we are definitively claiming that TRPV1
has a vanishing ∆Cp across the physiological temperature
range.

We can now compare our results to the output of alter-
native data analysis methods, such as the thermal coeffi-
cient Q10. In Fig. 5 we plot the enthalpies of Figs. 3(b)
and 4(b) next to predictions that arise when Eq. (9)
is solved for ∆H(T ). The latter was evaluated using
ln(Q10) = S(T +10 K)−S(T ), where S(T ) ≡ S(x = 1/T )
because both data sets were fitted via reciprocal mod-
els. Figure 5(b) demonstrates that Q10 gives a decent
estimate for the enthalpy whenever ∆H is independent
of temperature. If this is not the case [Fig.5(a)], then
the differences can become arbitrarily large, as can be
seen in Fig. 5(a). Note that the discrepancy between the
spline-fitting estimate and the Q10-estimate for ∆H(T )
vanishes when the temperature difference entering the def-
inition of Q10 goes to zero, i.e., when the finite-difference
approximation in Eq. (9) becomes exact.

IV. CONCLUSIONS

We have developed an open-access data analysis pack-
age [16] to reliably extract thermodynamic potentials and
heat capacities from empirical measurements of equilib-
rium constants at different temperatures. Our package
accounts for the fact that on physiologically relevant tem-
perature scales one cannot distinguish between a linear
and reciprocal temperature dependence (see Fig. 2), and
therefore fits multiple models to the data, which vary in
complexity (characterized by the number of parameters)
and in the way they scale with temperature. A Bayesian
information criterion [Eq. (18)] is used to select the model
that best fits the data, while minimizing the number of
model parameters to avoid overfitting. Our software can

therefore be used to fit nonlinear van ’t Hoff plots without
any ad hoc assumptions and outperforms conventional
methods, such as the thermal coefficient Q10 (see Fig. 5).
Yet, we urge users to practice caution and not use our
package to analyze data containing artifacts or unrea-
sonably small error bars, because these can affect the
resulting model selection and lead to faulty conclusions.

To demonstrate the use of the data analysis package, we
applied it to measurements of equilibrium constants for
the temperature-sensitive TRPV1 and TRPV3 channels,
respectively. For both data sets, we found that models
with the functional form ln(Keq) = f(1/T ), i.e., recipro-
cal in the temperature, were best suited to fit the data
at hand, albeit with differing complexity. While the fit
to the TRPV1 data predicted ∆Cp = 0, and therefore a
constant enthalpy and entropy (see Fig. 4), an initially
increasing and then monotonically decreasing ∆Cp(T )
was required to capture the extremely nonlinear trends
seen in the TRPV3 data (Fig. 3). Note that our anal-
ysis relies on the common assumption that the TRPV1
and TRPV3 channels can, to a first approximation, be
described as two-state systems. Even if this assumption
is unlikely to hold for most (if not all) TRP channels, the
thermodynamic variables that can be extracted from our
approach provide a more reliable and accurate description
of the temperature sensitivity of TRP channels than the
results of a Q10-analysis or linear fits to a van ’t Hoff plot.
In principle, a more intricate analysis involving multiple
states can also be conducted (see Sec. II D), but has not
been implemented in our data analysis package for the
simple reason that every mechanistic model would have
to be implemented separately.

It is our belief that our data analysis tool will not only
benefit the community of electrophysiologists studying
temperature-sensitive channels, but also help researchers
in chemistry and biochemistry to rigorously analyze their
van ’t Hoff plots. Temperature-dependent enthalpies and
entropies open up exciting new possibilities in the the-
oretical modeling of the kinetics and dynamics of ther-
moresponsive systems, as the associated transition rates
between the open and closed state intuitively must exhibit
non-Arrhenius behavior. Whether such generalized mod-
els are applicable to TRP channels should be addressed
in future research.
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