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ABSTRACT

The traditional view on coding in the cortex is that populations of neurons primarily convey stimulus information through the
spike count. However, given the speed of sensory processing, it has been hypothesized that sensory encoding may rely
on the spike-timing relationships among neurons. Here, we use a recently developed method based on Optimal Transport
Theory called SpikeShip to study the encoding of natural movies by high-dimensional ensembles of neurons in visual cortex.
SpikeShip is a generic measure of dissimilarity between spike train patterns based on the relative spike-timing relations among
all neurons and with computational complexity similar to the spike count. We compared spike-count and spike-timing codes in
up to N > 8000 neurons from six visual areas during natural video presentations. Using SpikeShip, we show that temporal
spiking sequences convey substantially more information about natural movies than population spike-count vectors when
the neural population size is larger than ≈ 200 neurons. Remarkably, encoding through temporal sequences did not show
representational drift both within and between blocks. By contrast, population firing rates showed better coding performance
when there were few active neurons. Furthermore, the population firing rate showed memory across frames and formed a
continuous trajectory across time. In contrast to temporal spiking sequences, population firing rates exhibited substantial drift
across repetitions and between blocks. These findings suggest that spike counts and temporal sequences constitute two
different coding schemes with distinct information about natural movies.

Introduction

Information in the nervous system is encoded by patterns of
spikes fired by large populations of neurons. These spiking
patterns can contain information both in the timing of spikes
and in the spike count1–6. Thus, a major question is what the
distinct contributions to population coding are of the spike
count (or firing rate code) and the timing of spikes.

While it is well established that neural populations en-
code information with the spike count, there is some evi-
dence that the timing of spikes can carry additional informa-
tion7–11. As the brain does not have access to absolute time,
the time of a spike must necessarily be defined in relation to
some other event. One possible coding scenario is that the
timing of spikes relative to a stimulus onset encodes infor-
mation2, 12–17. For natural sensory inputs, however, there are
often no clear stimulus onsets that can be used as a temporal
reference. Other studies have examined the timing of spikes
relative to ongoing population oscillations7–11. Although
oscillations may in some cases be regular enough to allow
for phase coding, neural activity during active vision may
often consist of broadband activity rather than frequency
band-limited activity, making it hard to robustly define the
phase of each spike18. In general, phase coding expresses
the relative timing of spike to a (filtered) population average

of all other spikes (i.e. one-to-all). However, the relative
timing of spikes from different neurons carry a signal that
can be detected by synapses19, 20, neurons21, and neural net-
works22. It should be therefore possible to define a temporal
code based on the pattern of relative spike-timing relations
among all neurons (i.e. all-to-all combinations), without
frequency decomposition or averaging.

Here, we utilize a recently developed method called
SpikeShip23 that extracts information from neural popula-
tions purely based on the relative timing of spikes alone,
with invariance to the overall spike count, and with the same
computational complexity as the spike count. The method
is based on solving a general optimal transport problem of
determining the minimum cost of shifting ‘spike mass’ such
that all relative timing relations become identical. We use
this technique to study the encoding of natural movies in a
large population (>8000) of neurons in the visual cortex of
awake mice, and contrast the information in relative timing
of spikes to the firing rate (i.e. spike count). Based on the
precise temporal information of spike trains, we show that
multi-neuron temporal patterns convey substantially more,
and different, information about natural movies than popula-
tion firing rates. Furthermore, these multi-neuron temporal
patterns show high stability, i.e. no representational drift,
across presentations. By contrast, firing rate codes show
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substantial representational drift but also exhibit memory
across frames within a video. Finally, we show that the
performance advantage of temporal information increases
as a function of population size and the number of active
neurons.

Results
Comparing temporal encoding of natural movies
to rate coding
Our main question is how natural movies are encoded by
the patterns of spiking in populations of neurons in visual
cortex. Specifically, we wished to compare two coding
schemes: 1) The encoding of natural movies via temporal
spiking sequences; and 2) the encoding of natural movies
with population vectors of firing rates, i.e. spike counts / sec-
ond. To this end, we analyzed Neuropixel recordings24 from
32 mice across six visual areas25 (for details, see Methods).
In total, the dataset yielded population spiking patterns that
consisted of N = 8,301 neurons, which were pooled across
multiple sessions in which the same stimuli were presented.
Note that this restricts the analysis to temporal spiking pat-
terns that are time-locked to the natural movie, however we
obtained similar results when analyzing single sessions (see
below).

For all 32 mice, we analyzed neural recordings from
two natural movies: (1) Natural Movie One (NM1), a 30-s
natural movie with 10 consecutive repetitions, and (2) Nat-
ural Movie Three (NM3), a 120-s natural movie presented
in two blocks with 5 repetitions each (see Fig. 1A). For our
first set of experiments, we split the NM1 video into sub-
videos of one-second length, similar to previous work26, 27

(See Fig. 1B). Thus, each epoch consisted of a dynamical
stimulus of 30 frames with 10 repetitions per epoch (total
M = 30× 10 = 300 epochs) (Fig. 1C). We then analyzed
how distinct the neural responses were across the different
sub-videos, and how reliable the encoding of the movies
was across stimulus repetitions.

For each pair of epochs, we computed two dissimilarity
measures that were based on spike counts: (1) the (raw)
Euclidean distance between firing rates (FR); and (2) the
Euclidean distance between z-scored firing rates. The Z-
scoring was performed across epochs, for each neuron sepa-
rately. The Euclidean distance between raw firing rates tends
to emphasize neurons with higher firing rates, whereas the
distance between z-scored firing rates weighs each neuron
similarly. In addition to these two dissimilarity measures,
we also computed a recently proposed dissimilarity mea-
sure based on the temporal structure of spike trains, namely
SpikeShip23.

SpikeShip measures the dissimilarity between spike
trains of different epochs using the mathematical frame-
work of optimal transport. It considers each spike train as
a collection of “masses” (i.e. the spikes). All spikes from
each active neuron, together, contribute a unit mass, which
ensures the rate invariance of the method. SpikeShip solves

the optimal transport problem of finding the minimum cost
of shifting the (unit) mass of each neuron’s spike train in
epoch k, such that the cross-correlations (i.e., sequential
firing) between all of the neurons become identical to those
in another epoch m (See Methods). Thus, SpikeShip pro-
vides a generic dissimilarity measure of how similar all the
relative spike-timing relations are between two epochs. Im-
portantly, SpikeShip can be computed with computational
cost on the order of number of neurons (times the avg. num-
ber of spikes), and can therefore be efficiently computed for
high-dimensional neural patterns.

For the three measures (firing rates, z-scored firing rates,
SpikeShip), we obtained a dissimilarity / distance matrix
for all 300× 300 pairs of epochs (Fig. 2A). In addition,
we visualized the dissimilarity matrix in a low-dimensional
embedding by using the two-dimensional t-SNE algorithm
(Fig. 2B). Finally, we computed the differences in clustering
performance by applying various clustering algorithms to
the dissimilarity matrices and comparing clustering perfor-
mance using the Adjusted Rand Index (ARI) (Fig. 2C). In
addition, we calculated the discriminability index for differ-
ent sub-videos, which compares the distances within clusters
to those between clusters (Fig. 2D).

Compared to firing rates, we found that SpikeShip
yielded much lower dissimilarities between repetitions of the
same sub-frame as compared to pairs of different sub-frames
(Fig. 2B), which conducive to tighter clustering of differ-
ent sub-frames. Correspondingly, the t-SNE embeddings
contained a separate cluster for each sub-video in case of
SpikeShip, whereas there was substantial overlap between
different sub-videos for the firing rates (Fig. 2C). Conse-
quently, SpikeShip showed almost perfect classification of
sub-videos, with much higher performance than in case of
firing rates. Likewise, discriminability scores were substan-
tially higher for SpikeShip than for firing rates. Thus, tem-
poral spiking sequences, as quantified with SpikeShip, con-
tained substantially more information about natural-movie
content than firing rates.

We wondered whether the performance benefit of tempo-
ral sequences depended on the number of neurons that were
included in the analysis. To analyze this, we took smaller
subsets of neurons and repeated the clustering analysis for
different subset sizes. Interestingly, we found that firing
rates outperformed SpikeShip for smaller subsets of neu-
rons (< 100), and that the performance benefit of temporal
encoding only emerged for subsets of neurons greater than
about 100 neurons.

We also performed these analyses for single sessions
(Supplementary Fig. S1A-B), which showed comparable
results. Specifically, we found that SpikeShip outperformed
the firing-rate code, and that this benefit emerged for popu-
lation sizes of 160 neurons and beyond (See Supplementary
Fig. S1C). Given that ARI scores were comparable between
single sessions and pooled data across mice, we conclude
that the information in temporal spiking sequences emerge
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due to recurrent interactions between neurons driven by
time-varying natural input.

We also compared coding performances between differ-
ent visual areas. We found that the result of more precise
encoding via temporal sequences held true across visual
areas, with the best clustering performance in the primary
visual cortex (Supplementary Fig. S2 and S4 for NM1 and
NM3. respectively).

Altogether, natural-movie content is substantially more
precisely encoded by temporal sequences as compared to
firing rates. These sequences can be efficiently detected
by SpikeShip with a computational complexity equal to the
spike count. The benefits of temporal coding appear for
larger population sizes, presumably because this yields a suf-
ficient number of co-active pairs of neurons emitting spikes
in the same epoch.

Firing rates reflect ordering of sub-videos
In Figure 2, we had computed the dissimilarity matrix be-
tween all pairs of epochs. We wondered whether epochs that
were closer in time within the movie would have similar,
i.e. correlated representations. Indeed, the t-SNE represen-
tations for firing rates suggest that epochs that are close in
time lie closer to each in the low-dimensional embedding
space. By contrast, it appears that a similar effect was not
observed for SpikeShip, with an apparent random ordering
of clusters w.r.t. time.

To quantify this, we computed the Euclidean distances
(in t-SNE space) between consecutive epochs and compared
these with distances to other epochs. For firing rates, the dis-
tance between two consecutive epochs is about 3-fold lower
than the distances between all epochs (i.e. pairwise compari-
son) (Fig. 3A-B). For SpikeShip we did not find a difference
between consecutive epoch pairs and random epoch pairs.
This finding suggests that firing rate representations tend to
be similar for consecutive epochs, indicating correlations
on longer time-scales. Thus, even though firing rates are
less precise, they carry additional information about elapsed
time within the movie.

Together, these findings suggest distinct information in
spike counts and in temporal sequence information. To
further investigate the extent to which they carry distinct
information, we computed Spearman correlations between
the epoch-to-epoch dissimilarity matrices of firing rates and
SpikeShip (as shown in Figure 2). These correlations can be
understood as “representational similarity” (Fig. 3C). We
ignored (diagonal) entries of the matrix containing dissimi-
larity between repetitions of the same sub-video. For these
correlations, we found indeed that SpikeShip and firing rates
showed only weak Spearman correlations of around 0.2,
indeed demonstrating largely distinct information in spike
counts and temporal sequences.

The latter result held true across different visual areas
(Supplementary Fig. S3), with Spearman correlations be-
tween 0.02 and 0.292. We also performed representational

similarity analyses by comparing the dissimilarity matrices
between different visual areas. Interestingly, we found that
representational similarity between areas was substantially
stronger for firing rates than for SpikeShip (Supplementary
Fig. S5). In other words, different visual areas provided
more independent information through temporal sequences
than through the spike count. A possible explanation for this
finding is that firing rates, for all visual areas, show a clear
mapping onto the time elapsed within the movie (Fig. S2).

Representational drift of firing rate and temporal
code
Next we investigated to what extent the coding of natural
movies via spike counts or temporal sequences was stable
across time. Several studies have reported that neural rep-
resentations of stimuli, tasks or contexts can change across
time26, 28–32.

To examine this, we computed the correlation of neural
activity across different repetitions of the same sub-video.
The low-dimensional embedding colored by the repetition
order already shows ample variability across repetitions for
FR and FRz, and little variability for SpikeShip (Fig. 4A).
In particular, firing rates appear to map out a trajectory in the
low-dimensional embedding space during each repetition,
and this trajectory gradually drifts away across repetitions.
To further quantify this, we computed for each repetition a
vector of Eucldean distances across the sub-videos, and then
correlated these vectors between repetitions (Fig. 2A). This
yields a matrix of correlations ordered by repetition number
(See Fig. 4B). Firing rate vectors showed a weaker correla-
tion across frames as compared to the SpikeShip measure,
indicating that the temporal code has higher stability (i.e.
less drift). We furthermore analyzed the representational
drift by examining how the Pearson correlation changes as
a function of time between two repetitions. The population
vector of firing rates decorrelated across time, as shown in
Fig. 4C. Yet, for SpikeShip, the Pearson correlation stayed
close to 1 for all time-delays.

Together, these analyses indicate that the temporal struc-
ture in the spike trains (quantified with SpikeShip) uniquely
and reliably encodes the different dynamic stimuli, with es-
sentially no drift in the population code. The spike count on
the other hand show systematic drift over longer time-scales
within a session.

Analysis of longer natural movies
To generalize these results, we analyzed another dataset
(NM3) in which longer movies were presented (5 repeti-
tions), repeated in two separate blocks with 30 minutes
between blocks. Similar to the analyses presented above, we
found a clear clustering of the different sub-videos for Spike-
Ship, with no apparent relation of the clusters to time (Figure
5A-C). By contrast, for firing rates we did find not a clear
clustering of the sub-videos (Figure 5A-C). Rather, firing
rates dissimilarities showed a clear ordering with time, with
nearby sub-videos showing more similar representations.
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Furthermore, we found a substantial drift in the population
firing rates between blocks 1 and 2, which was entirely ab-
sent for SpikeShip. This result held true across visual areas
(Fig. S4). To quantify drift, we again computed Pearson
correlations between the vectors of Euclidean distances. Fir-
ing rate representations showed drift both within the blocks
(across repetitions) and between blocks (Fig. 5D). Spike-
Ship, however, showed Pearson correlations close to 1 indi-
cating stable encoding of natural movies based on temporal
sequences (Fig. 5D).

Dependence of encoding on number of active neu-
rons
Finally, we investigated to what extent the performance of
SpikeShip depended on the overall firing activity in the pop-
ulation.

To this end, we quantified for each sub-video of 3 frames
the number of active neurons. There was a strong correla-
tion between the number of active neurons and the curvature
across frames33, 34 which measures the variability of movie’s
pixel across frames (Global Curvature (GC)) (Fig. 6A-B).
We wondered how the clustering performance of firing rates
and SpikeShip depended on the number of active neurons for
these shorter sub-videos. We selected epochs that contained
either the highest or the lowest number of active neurons for
a given pair of epochs k and m (Ak,m). When the number
of active neurons is high, SpikeShip yields strong cluster-
ing even for short sub-videos with an ARI score of 1 (Fig.
6C). By contrast, when the number of active neurons is low,
SpikeShip does not yield clear clustering, whereas firing
rates yield ARI scores of 1 (Fig. 6D). Hence, temporal cod-
ing, as quantified with SpikeShip, is the most reliable coding
scheme when the number of active neurons is high, whereas
the spike count is more reliable when the number of active
neurons is low.

To further quantify this, we correlated the mean dissimi-
larity between different presentations of the same sub-video
as a function of the global curvature, which is a proxy of the
number of active neurons. We found a negative correlation
for SpikeShip, i.e. representations tended to be more similar
when then global curvature is high. By contrast, for firing
rates we found a positive correlation, i.e. representations
tended to be more dissimilar when the global curvature is
high.

Discussion
The classic view on neural computation is that the firing
rate, i.e. the number of spikes per second, is the unit of
information and computation in the nervous system. Firing
rates are typically estimated through spike counts, which are
known to show a high degree of (co-)variability across trials,
a potential limiting factor to their coding capacity6, 35–37.
Another theoretical perspective is that neural populations
encode information via temporal sequences, defined by the
timing of spikes relative to other spikes3, 4, 38. Ideally, the

quantification of temporal sequences relies on the pattern of
relative spike-timing relations among all neurons (i.e. all-to-
all comparisons). However, it has remained challenging to
quantify such temporal sequences in high-dimensional neu-
ral ensembles. Here, we use a recently developed method
based on Optimal Transport Theory called SpikeShip to
study the encoding of natural movies by high-dimensional
ensembles of neurons in visual cortex. SpikeShip is a generic
measure of dissimilarity between spike train patterns based
on the relative spike-timing relations among all neurons.
Remarkably, its computational complexity is similar to the
spike count, allowing for its application to large ensembles
of neurons.

We compared spike-count and spike-timing codes in up
to N > 8000 neurons from six visual areas during natural
video presentations. We analyzed temporal sequences either
by pooling data across sessions, or by analyzing individual
sessions, which yielded similar results. Using SpikeShip,
we show that temporal spiking sequences convey substan-
tially more information about natural movies than popula-
tion spike-count vectors when the neural population size is
larger than ≈ 200 neurons. Remarkably, encoding through
temporal sequences did not show representational drift both
within and between blocks. By contrast, population firing
rates showed better coding performance when there were
few active neurons. Furthermore, the population firing rate
showed memory across frames and formed a continuous
trajectory across time. In contrast to temporal spiking se-
quences, population firing rates exhibited substantial drift
across repetitions and between blocks. These results suggest
that spike counts and temporal sequences constitute two
different coding schemes with distinct information about
natural movies.

Our findings on the spike count fit well with several
recent studies showing so-called representational drift as
a function of time26, 28–31, 39–42. Yet, our findings suggest
that these previous conclusions may be restricted to the
spike count, as we found the representation via temporal
sequences to be entirely stable. This may suggest that the
spike count encodes additional information, causing cor-
relations across time. It is possible that the decorrelation
of spike counts across time reflects the encoding of other
variables, e.g. related to behavioral state43, or stimulus-
specific adaptation or facilitation. However, it appears that
the information between temporal sequences provides sta-
ble encoding, which perhaps solves the conundrum of how
sensory information is maintained in the presence of rep-
resentational drift within a session. We found that spike
counts showed correlations also on a short time-scale, in
the sense that spike-count representations of nearby movies
tended to be similar, whereas this was again not the case
for temporal sequences. This suggests that spike counts
show autocorrelations on longer time scales, which may be
driven e.g. by within-neuron firing adaptation. As a conse-
quence, firing rates contained information about the passage

4/20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.27.546669doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.27.546669
http://creativecommons.org/licenses/by-nc-nd/4.0/


of time through the movie, while this was not the case for
temporal sequences. In sum, it appears that the encoding
of natural movie in a recurrent network of neurons is per-
formed through temporal sequences. Spike counts, on the
other hand, show less robust encoding but convey additional
information on longer time-scales, either forming a contin-
uous trajectory as a function of time during experience or
showing representational drift on longer time scales.

We furthermore observed that the advantage of temporal
sequences, as quantified with SpikeShip, only become appar-
ent for sufficiently large population sizes of > 200 neurons.
Yet, even when analyzing a large number of neurons (i.e.
> 8000), we found that during periods when many neurons
were inactive, the spike count was more robust than tempo-
ral sequences. A likely explanation of this finding is that a
sufficient number of active neurons are necessary to form
temporal sequences. That is, a neuron can only convey tem-
poral sequence information if it is active. Likewise, we can
only compare the temporal structure in two epochs based on
neurons that are active in both epochs. When firing rates are
low, information may be conveyed by a few active neurons,
however between two different epochs there may be only
little overlap in which neurons are active.

Together, our findings offer a new view on neural cod-
ing that is based on the temporal structure of spike trains
and which can be captured by a method based on optimal
transport theory that has the same computational complexity
as the spike count. The ensuing coding strategy is purely
spike-based and does not presuppose a notion of firing rate.
Together, our findings suggest that information about nat-
ural visual input is encoded robustly and stably by high-
dimensional temporal spiking sequences.

Methods

Natural movie’s processing from Allen Brain Insti-
tute datasets
We used the public available datasets of Allen Brain Institute
through AllenSDK (For more details, see http://help.brain-
map.org/display/observatory/Documentation). Neuropixels
silicon probes24 were used to record neurons with precise
spatial and temporal resolution25. We selected the cells of
32 mice during natural scenes presentations. The cells were
selected considering a signal-noise ratio (SNR) such that
SNR > 0. The neural activity from a total of N = 8,301 cells
was selected from the Primary visual area (VISp), Lateral
visual area (VISl), Anterolateral visual area (VISal), Pos-
teromedial visual area (VISpm), Rostrolateral visual area
(VISrl), and Anteromedial visual area (VISam).

Finally, for the analyses per brain area we present in
Fig. S2, we down-sampled the set of neurons randomly in
order to compare the performance of both decoding schemes.
Particularly, we used Nds = 879 for every brain area.

Computation of dissimilarity matrices of firing rate
vectors
For a population of N neurons, we computed the firing
rate vectors (

−→
FR) for each epoch of our analyses as the

count of spikes per neuron divided by a window length
T . We denote FRz to the normalized firing rate vectors
(FRz) across epochs (z-score). Finally, we computed the
Euclidean distance between both normalized vectors is
dEuc =

√
∑

N
i (
−−−→
FRm,i −

−−→
FRk,i)2.

Computation of dissimilarity matrices via Spike-
Ship
SpikeShip is a dissimilarity measure based on optimal trans-
port theory to extract temporal multi-neuron spike-train pat-
terns. SpikeShip solves the following transport problem:

Suppose a population of neurons in two epochs k and
m. For each neuron j in epoch k for which the number of
spikes nk, j > 0, we define the point process with unit energy

ρk, j(t) =
1

nk, j

nk, j

∑
u=1

δ (t − tk, j,u) . (1)

This defines for each pair of neurons (i, j) in epoch k the
cross-correlation function

si, j,k(τ) =
T

∑
t=0

ρk,i(t)ρk, j(t + τ) , (2)

Consider two epochs (k,m). We wish to find for each
neuron (in epoch k) a transport of mass from t to t ′, [M] j,t,t ′ ,
such that si, j,k(τ) = si, j,m(τ) for all (i, j,τ). The mass here
consists of the spikes, which have a sum of 1. The objective
is then to find a matrix of flows M that minimizes the total
mover cost, i.e.

argmin
M

∑
j,t,t ′

Mk,t,t ′d(t, t
′) (3)

where d(t, t ′) = |t − t ′| (For more details, see23).

Measure of representational drift
From 2D t-SNE embeddings
For each dissimilarity matrix of NM1 and NM3 presenta-
tions, we computed the Euclidean distances across consecu-
tive epochs (i.e., trajectory). Then, we measure the represen-
tational drift as the Pearson rank correlation between pairs
of trajectories, as done in26. Such correlations are visualized
across the time difference between repetitions of the same
movie.

From dissimilarity matrices
We extracted the upper triangle based on the pairwise dis-
tances of each scaled dissimilarity matrix (See Fig. S6A).
For a dissimilarity matrix raw_dissm based on metric m with
m ∈ {FR,FRz,SS}, we compute:
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dissm =
raw_dissm

max{raw_dissm}
. (4)

Finally, we computed the Euclidean distance between
dissimilarity matrices from each pair of repetitions, as shown
in (See Fig. S6).

Global curvature definition
In order to compute the changes in the pixel domain of the
movie, we based on previous studies about curvature com-
putation of pixels in movies33, 34. We denoted xt to one pixel
of the movie from the frame t. First, we computed the dif-
ference of such pixel at time t with the previous one (t −1)
as

vt = xt − xt−1, (5)

as shown in Fig. 6A).
We normalized such vector based on its norm as:

v̂ =
vt

||vt ||
. (6)

Then, the local curvature is defined as

ci = arccos(v̂t · v̂t+1). (7)

This measure is always a positive number. It reaches its
lowest value of zero only when the frames are in a straight
line without any bending in the high-dimensional space.
Thus, the global curvature correspond to the average of all
local curvatures over time, computed as

GC =
1
T

T

∑
i

ci , (8)

in degrees. See Henaff et al. studies33, 34 for further
details.
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Figure 1. Neural population activity during natural video presentations. A) Schema of natural movies presentations from
experiments from Allen Brain Institute. B) Example of frames in natural movie one. Each epoch/trial corresponds to a
one-second length sub-video (30 FPS) with 10 repetitions (first epoch). C) Raster plots of first (top) and second (bottom)
epochs and their first (left) and second (right) repetition with N = 8,301 neurons, which were pooled across 32 sessions. Each
epoch/sub-video consider a window length of one second without overlap between epochs.
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Figure 2. Coding of natural videos via spike count and temporal sequences. A) Dissimilarity matrices for Firing rates (FR),
Firing rates z-scored across epochs (FRz), and SpikeShip. SpikeShip quantifies the similarity of epochs in terms of the relative
spike-timing relationships among all neurons, based on optimal transport. Epochs are sorted by sub-video’s ID. The diagonals
of dissimilarity matrices were filled with their maximum values for visualization purposes. B) 2D t-SNE embedding of
pairwise distances. Color represents one epoch (unsorted). C) Clustering performance measured via Adjusted Rand Index
(ARI) using K-Means, Gaussian mixture clustering model (GM), and HDBSCAN. In the case of K-Means and GM, the number
of clusters to determine in the low-dimensional embedding equals the number of distinct sub-videos (i.e., K = 30). D)
Discriminability index for each measure across sub-videos. E) ARI Score (K-Means) by randomly subsampling N neurons for
Natural movie one.
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Figure 3. Relation of neural activity to elapsed time in natural movie. Color represents the time of epoch presentation (i.e.,
second of the movie). Arrows represent the direction of the trajectory between consecutive sub-videos (centroids). Population
firing rates form a continuous trajectory, whereas temporal sequence representations are discontinuous. B) Mean scaled
(Euclidean) distances across consecutive epochs versus full pairwise distances between epochs. The black line represents the
standard deviation. C) Correlation between SpikeShip and firing rate based on the upper triangle of the epoch-to-epoch
dissimilarity matrices (excluding comparisons between the same sub-video).
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Figure 4. Changes in neural representations across repetitions. A) 2D t-SNE embedding of pairwise distances. Color
represents the repetition ID of each Natural Movie presentation. Arrows represent the direction of the trajectory between
consecutive sub-videos. Each trajectory corresponds to one repetition. B) For each repetition, the Euclidean distance was
computed between sub-videos. Pearson correlations were then computed between these vectors of Euclidean distances. C)
Pearson correlation as a function of time.
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Figure 5. Rate-coding vs temporal coding for long natural movie presentations (NM3). A) Dissimilarity matrix for Firing
rates (FR), z-scored Firing rates (FRz), and SpikeShip. Epochs are sorted by sub-video’s ID and block. B) 2D t-SNE
embedding of pairwise distances. Colors represent sub-video’s start time. C) Mean distance to cluster centroids across
repetitions. D) Correlation analysis within and between blocks of NM3 presentations, similar to Fig. 4C.
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Figure 6. Relationship of population coding to number of active neurons. A) Summary of computation of mean curvature
across sub-videos of 3-frames (≈ 100ms). Pixel distance of natural movies frame is computed as in33, 34, mentioned as Global
Curvature (GC). B) Raster plot of the proportion of active neurons between all the pairs of epochs k and m (Ak,m) and the
standard deviation of the global curvature across frames (σGC). Pixel variability σGC across sub-videos is correlated with the
rate of active neurons Ak,m (i.e., Pearson correlation = 0.66). C) 10 epochs with the highest variability of the global curvature
(σGC). Top: Dissimilarity matrices for firing rates (FR), z-scored firing rates (FRz, normalization across epochs), and
SpikeShip. Bottom: 2D t-SNE embeddings with precomputed distance matrix. To measure clustering performance we used
ARIGM and SIL which represent Adjusted Rand Index using Gaussian Mixtures and Silhouette, respectively. D) 10 epochs with
the lowest variability of the global curvature (σGC). Top: Dissimilarity matrices for firing rates, z-scored firing rates
(normalization across epochs), and SpikeShip. Bottom: 2D t-SNE embeddings with precomputed distance matrix. E)
Multi-neuron distance depends on σGC. Pearson correlation coefficients of FRσGC , FRzσGC , and SσGC (i.e. SpikeShip) are 0.52
(p-val < 10−220), 0.34 (p-val < 1090), and −0.66 (p-val < 10−381), respectively.
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Supplementary information
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Figure S1. Population coding of natural videos for single sessions. A) Dissimilarity matrices sorted by sub-video presentation
time. M = 300 epochs (30 sub-videos with 10 repetitions each) and N = 365 neurons. The diagonals of each dissimilarity
matrix contain the maximum values for visualization purposes. B) 2D t-SNE embeddings from pre-computed values shown in
A). Color represent the sub-videos (unsorted). C) Clustering performance for an increasing number of neurons across sessions.
We selected sessions with minimally 200 neurons. ARI(KMeans) and ARI(GM) correspond to the Adjusted Rand Index using
KMeans and Gaussian Mixtures (GM) as clustering techniques, respectively. Error bars correspond to the standard deviation
across sessions divided by the square root of the number of sessions (i.e. σARI, metric/

√
23).
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Figure S2. Reliability of time-coding scheme is preserved across brains areas. A) Dissimilarity matrices per brain area
(columns) and measures (rows). B) 2D t-SNE embeddings per brain area (columns) and measures (rows). C) Discriminability
index for each measure across sub-videos and brain areas. D) ARI and Silhouette score for each measure across sub-videos and
brain areas.
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Figure S3. Representational similarity analysis between firing rate and SpikeShip, similar to Fig. 3, but now for separate
areas. Left: Pearson correlation coefficient, Right: Spearman correlation coefficient. Both coefficients show that the relation
(SpikeShip, FR) and (SpikeShip, FRz) are close to zero across visual brain areas.
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Figure S4. Reliability of time-coding scheme is preserved across brains areas and blocks of natural movie presentations. A)
Dissimilarity matrices per brain area (columns) and measures (rows). B) 2D t-SNE embeddings per brain area (columns) and
measures (rows).
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Figure S5. Representational dissimilarity analysis. Top: Summary of vectorization (representational vectors) process for
dissimilarity matrices and computation of pairwise correlations. Bottom: Pairwise correlation of representational vectors using
Pearson correlation coefficient per visual area across 32 mice (N = 8301).
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Figure S6. Representational drift as the distance between dissimilarity matrices. A) Example of dissimilarity matrices for two
repetitions. Each matrix contains the dissimilarity of multi-neuron spike sequences across the entire movie (M=30 epochs with
sub-videos of 1 second). Epochs are sorted by time, as in26. B) Euclidean distance between dissimilarity matrices in function of
the time difference between two repetitions. Lines and filled regions represent the mean and standard deviation of the
correlation for each metric.
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