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Abstract

To understand the neural mechanisms underlying brain function, neuroscientists aim to
quantify causal interactions between neurons, for instance by perturbing the activity of
neuron A and measuring the effect on neuron B. Recently, manipulating neuron activity us-
ing light-sensitive opsins, optogenetics, has increased the specificity of neural perturbation.
However, using widefield optogenetic interventions, multiple neurons are usually perturbed,
producing a confound – any of the stimulated neurons can have affected the postsynaptic
neuron making it challenging to discern which neurons produced the causal effect. Here, we
show how such confounds produce large biases in interpretations. We explain how confound-
ing can be reduced by combining instrumental variables (IV) and difference in differences
(DiD) techniques from econometrics. Combined, these methods can estimate (causal) ef-
fective connectivity by exploiting the weak, approximately random signal resulting from
the interaction between stimulation and the absolute refractory period of the neuron. In
simulated neural networks, we find that estimates using ideas from IV and DiD outperform
näıve techniques suggesting that methods from causal inference can be useful to disentangle
neural interactions in the brain.

1 Introduction

A central goal of neuroscience is understanding the neural mechanisms or causal chains giving
rise to brain activity underlying perception, cognition, and action. Although simultaneously
occurring processes at many spatial and temporal scales contribute to brain activity, one of the
defining features of neural networks is their connectivity. Connectivity directs neuronal commu-
nication. This communication is causal; connection strength controls the causal effect when one
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neuron signals to another neuron. The human brain contains about 86 billion neurons5 with
countless connections. A complex system of this scale is incredibly hard to understand because
of the numerous ways the contributing elements may interact internally29. While observing
correlations within such systems is relatively easy, transitioning from observed correlations to a
causal or mechanistic understanding is hard. For example, suppose we observe a given correla-
tion between neurons A and B. In that case, this may be because of a causal interaction between
A and B, because of common input (confounder bias), or as a side effect of correcting for other
effects (collider bias). After all, the same activities may emerge from different and distinct causal
chains15,44.

In today’s typical studies in systems neuroscience, we only record from a small subset of
all the neurons54. The data obtained from such recordings, e.g., from electrophysiology or
in vivo imaging, is observational, as opposed to interventional involving perturbations. From
observational data we generally cannot know how much of the observed activity was caused
by observed or unobserved confounding. Unobserved neural activity confounds estimates of
causal interactions and makes it challenging to reveal underlying mechanisms36. Relationships
estimated from observational data in the presence of confounders may contain significant errors
and lead to incorrect conclusions3.

Confounding is the big threat to causal validity43 irrespective of using simple regressions or
advanced functional connectivity techniques55,27,2,45. Inference techniques, such as maximum
entropy-based inverse Ising inference50, and generalized linear models (GLMs)46 may give so-
lutions to confounding from observed variables as they support “explaining away” background
activity55. However, this is only a meaningful strategy if most neurons are included in the
recordings. Even a fully observed system is only identifiable under certain assumptions about
nonlinearity or noise12,52. For example, systematic errors can occur due to confounding emer-
gent network states13. Moreover, fully observable scenarios are rare in experimental settings,
especially in the mammalian brain with its many millions of neurons. Brain data will, therefore,
rarely satisfy the criteria necessary for causal identifiability. The general conclusion from causal
inference is that näıve regressions in partially observed systems will not reveal causality. We
aim to circumvent this by developing new methods to identify effective connectivity between
arbitrary neuron pairs.

In this paper, we restrict our focus to causal effects related to measuring effective connectivity.
This is not just the direct influence of one neuron on a downstream neuron. Instead, it is defined
as the change in postsynaptic spike probability caused by an extra presynaptic spike. Therefore,
effective connectivity includes direct effects, bi-synaptic and other effects from the network.
During perturbations, this effect is directly measurable. On the other hand, estimating the
direct causal effect will generally require some level of modeling. Estimating the direct causal
effect from the effective connectivity is an interesting and, to our knowledge, unresolved problem
in computational neuroscience. However, in many cases, effective connectivity is meaningful,
e.g., when reconstructing a circuit with equivalent information flow. After all, a neuron will
exert its effect through many paths. This paper thus focuses on effective connectivity, which we
term causal influence.

To estimate the causal influence of one neuron on another neuron, stimulating the presynap-
tic neuron is the gold standard. Indeed, a standard definition of causality is the effect of an
intervention changing one variable in the system, independently of all the other variables43. If
we can experimentally stimulate and fully control single neurons, the ability to estimate causal
relationships by regression is possible. However, gold-standard perturbations are experimen-
tally challenging (it is challenging to stimulate just one neuron and get complete control) and
may yield low cell counts because it requires intra- or juxtacellular47,10, or two-photon stimula-
tion33,38,16,6,51,11,23. Therefore, it would be highly desirable to obtain causality from widefield
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one-photon optogenetic7,62 stimulation combined with neural recordings of large neuron popu-
lations. We focus on widefield one-photon optogenetic stimulation and refer to this simply as
optogenetic stimulation.

Interpreting results from optogenetic stimulation in terms of causal interactions is often diffi-
cult. In most experimental settings, optogenetic stimulation will affect multiple neurons simulta-
neously. Hence, the stimulus will produce a distributed pattern of activity which then percolates
through the network of neurons. Postsynaptic activity induced by stimulation could thus, in
principle, come from any of the stimulated neurons, introducing problematic confounding.

For inspiration for resolving the confounding problem induced by optogenetic stimulation,
we look to other disciplines addressing the confounding problem or, more precisely, confounded
regressors. The inference of causality from observational data has been addressed in the fields
of statistics43, machine learning44, and econometrics3. These fields have extensively worked on
methods to estimate causality in the face of unobserved confounding and may provide clues for
resolving these challenges in neuroscience.

A commonly used approach towards causal inference in economics is instrumental variables
(IV), which has a genuinely long and exciting intellectual history61,35,34. The IV can be consid-
ered to emulate the treatment assignment in a randomized controlled trial. It is a measurable
variable that directly affects one of the variables of interest and only indirectly affects the rest.

Let us consider a common problem in neuroscience, the estimation of the influence of a neuron
with spike activity X onto another neuron with activity Y . We want to estimate the causal
effect β from one neuron onto another. One approach would be to estimate the conditional mean
function E [Y |X] with regression. For simplicity, we can assume the linear model Y = βX + U .
Here U represents other factors in the brain other than X and Y , that are measured. Because
of the many neurons in the brain, high degree of connectivity in the brain, the regressor X is
confounded; it can be correlated to U through some unknown functions p, f (p(X) = f(U)).
This relationship implies that the regression estimate of β will not estimate the magnitude of
causation from presynaptic to postsynaptic, but its association. Regression can thus generally
not provide causal insights.

IVs are a way of getting around this problem. Let us say we have a stimulation signal Z, which
we will call an instrument and that this instrument affects X. However, the setting is generally
not that no stimulation means X = 0 and stimulation X = 1. Instead, realistic stimulation
protocols would rather increase the probability of spiking E(X|Z = 1) > E(X|Z = 0). If
stimulation only adds say 1/10th of the probability of a spike (e.g. p = .3 instead of p = .2)
then our estimates of causal effect sizes would be off by a factor of 10. The intuition behind
the IV approach is that it estimates how much the stimulation affects X and then only uses this
stimulation-related aspect of X to identify the influence on Y. So, if the stimuli are random in
time and uncorrelated with U , we may use Z as an IV and obtain the true causal effect using
the so-called Wald estimator58 given by

β̂IV =
E [Y |Z = 1]− E [Y |Z = 0]

E [X|Z = 1]− E [X|Z = 0]
. (1)

This formula is standard for IV identification found in textbooks3,25; see Section 4.1 for proof
of identification, both parametrically and non-parametrically. In other words, IVs are a trick to
use upstream randomness to identify a causal system.

For an instrument to be g̈ood̈, it must be unaffected by other variables, which is the case for
single-neuron stimulation. However, the stimulation cannot be used as an IV for multi-neuron
stimulation because it will drive parts of the rest of the brain dynamics, it will affect U , violating
the key assumption of IV. In the brain, almost everything is affected by the network state.
However, certain variables can be more or less affected. For example, the overall activity of the
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network is due to slow and strongly non-random dynamics. In contrast, the temporal pattern of
when a neuron is in a refractory state may be in good approximation random. For example, if
neurons are spiking according to conditional Poisson distributions, their exact timing conditioned
on the network state will be random. While refractoriness may not be perfectly random, the exact
spike-times are notoriously difficult to predict55, suggesting that refractoriness is quite random.
The absolute refractory period may serve as an IV because a neuron is randomly unaffected by
stimuli during refractoriness.

When dealing with temporal data, we can also use an additional method commonly used for
causal inference: difference in differences (DiD). The idea is that we have two time-series that
are identical (or more specifically, parallel) apart from a perturbation affecting only one of them.
For example, we may have two neural trajectories, one with perturbation and one without. By
subtracting out the unperturbed one we can get rid of biases introduced by the ongoing dynamics.
DiD in this sense is a way of producing a synthetic estimation problem that is less affected by
biases (or unaffected if its assumptions are given).

For our stimulation problem we can formalize the effect of treatment X in a longitudinal study
with two time points Y ∗, Y . We can calculate the differences (E [Y |X = 1] − E [Y ∗|X = 1]) −
(E [Y |X = 0]−E [Y ∗|X = 0]) where the two differences in parenthesis denote a treatment group
X = 1 and a control groupX = 0, respectively. For example, we may measure baseline firing rates
Y ∗ in the primary visual cortex during standardized visual stimulation in control and treatment
groups of animals over several trials to estimate E [Y ∗|X = 0] and E [Y ∗|X = 1]. Then, after
giving the treatment animal group X = 1 a drug, you measure both groups to obtain E [Y |X = 0]
and E [Y |X = 1]. The estimates obtained from the control group correct for any changes over
time due to other factors than the treatment itself, e.g. animals have different hormone levels
during pre and post-treatment; see Fig. 1g for an intuitive sketch. It is also possible to separate
trials from a single individual into control and treatment blocks and adapt the DiD framework.
When estimating connectivity, we can compare pre- and post-spikes in otherwise matched brain
states using DiD improving causality estimates.

Here we show that combining the IV and DiD techniques allows for estimating the effective
connectivity between neuron pairs under optogenetic stimulation. We first show how conventional
optogenetic stimulation of neurons introduces confounding. This confounding effect is then
simulated in a simple network of three neurons using a Binomial GLM approach. With this
simple model, we show that by using the refractory period as an IV, we can distinguish between
connected and unconnected neuron pairs. Combining the IV estimate with DiD, we correct for
biased neuronal activity due to state differences before and after stimuli. We compare these
estimates with a näıve, although widely used, cross-correlation histogram (CCH) method that
fails to distinguish respective pairs. Furthermore, we infer effective connectivity in a simulated
network of randomly connected excitatory and inhibitory neurons with distributed synaptic
weights. With this data, we compute errors of the IV and DiD methods and show that they are
robust to different simulated network states. Furthermore, we analyze false positive and false
negative errors and goodness of fit on synaptic weights with pairwise assessments using ordinary
least squares fitting (OLS) and our IV/DiD combination.

The observed differences between the IV/DiD and the CCH estimates underline the impor-
tance of considering potential confounding when estimating connections based on neural activity
measurements.
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2 Results

2.1 Confounding

When we simultaneously stimulate many neurons and observe the activity of a postsynaptic
neuron after stimulation, it is hard to know which subset of the stimulated neurons caused the
activity in the putative postsynaptic neuron - after all they are simultaneously stimulated. As
there is to our knowledge no clean dataset containing both recordings and ground truth we
will, in the following, design a simulation that we can use to test our methods and build our
institutions.

We employ a linear-nonlinear cascade model, similar to spike response models with soft
threshold20,46,9,40 in the form of a binomial GLM given by

pi,t+1 = P (Mi,t+1 = 1|Mi,t,Mj,t,Mi,t−1,Mj,t−1, ...,Mi,t−H ,Mj,t−H)

pi,t+1 = σ

 t∑
τ=t−H

Mi,τr(τ) +
∑

j∈N (i)

WijMj,τ c(τ)

− b+ Ui(t)


Mi,t+1 ∼ Bernoulli(pi,t+1).

(2)

These equations describe a probabilistic model for a higher-order discrete-time Markov process,
where the state of node i at time t + 1, denoted by Mi,t+1, depends on the previous states of
the node itself and its neighbors j ∈ N (i) up to a history length H, with timesteps of 1ms. The
probability pi,t+1 is calculated using a logistic (sigmoid) function σ and Bernoulli-distributed
random variables. The function r represents refractoriness which is set to a large negative value
after a spike representing absolute refractoriness followed by an exponential term representing
relative refractoriness. The constant b reflects baseline activity, and the coupling function c
represents response dynamics modeled by an exponential term; see Section 4.3 for further details.
We thus have a simulation that we can use to test our methods.

To illustrate confounding effects, we first simulated a network comprised of three neurons (i ∈
{A,B,C}) Fig. 1a. The neurons have a baseline activity and are additionally driven by Poisson-
distributed excitatory and inhibitory inputs of a timescale of 10ms. Together, this simulates
slow network effects in the background noise U . The interactions between neurons create a
simple system to explore causality: A and B receive stimulation, but only B drives C (WCA =
0,WCB > 0). We can then ask how to statistically resolve that only B drives C, a task called
causal discovery, and how strongly B drives C, a task called causal inference3,44.

To estimate the actual causal influence of a stimulated neuron on postsynaptic neurons, we
need to distinguish the influence of one stimulated neuron from the influence of other stimulated
neurons. This procedure is challenging since the two neurons receive the same inputs.

One intuition is to use unsuccessful stimulations, i.e. instances where one neuron is not
responding due to membrane potential fluctuations, maybe a first suggestion which is fine if
neurons are independent outside stimulation periods. However, membrane potentials can be cor-
related on long timescales such as with brain oscillations8 or up-down states60. During these long
timescale states, the network state confounds the effect of stimulations. Moreover, a correlation-
based measure fails to discover the correct network structure. The CCH and OLS estimates
described below show the effect on the stimulated neurons (Fig. 1c). Since the stimulation af-
fects both A and B simultaneously, it induces a strong correlation between A and B. This further
confounds the system by rendering the correlation between B and C nonzero. When comparing
the peak cross-correlations with baseline as described in Section 4.4, specifically Eq. (18), β̂CCH
estimates the connectivity of A and C to be nonzero (Fig. 1d). A näıve reading of this result
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may suggest causal influences of both A and B on C36. This raises the question of whether there
is any way to avoid this problem.

2.2 Refractoriness as an IV

One way to avoid this kind of confounding may be a timescale separation - using something that
is random on a short timescale. Arguably, a neuron’s refractoriness is such a variable. Suppose
a neuron is in its refractory period (typically about 1-4ms,31). In that case, it will be less likely
to fire, and during the absolute refractory period, no amount of stimulation could make it spike.
Refractoriness gives us an interesting way of inferring causality by comparing stimulation of when
a neuron can spike and when the neuron is muted. We would effectively not use the spikes but
the missing ones for causal inference.

To think through confounding effects let us introduce some meaningful notation. LetX,Y, Z ∈
[0, 1]NS denote random variables that indicate whether a neuron spiked relative to the stimulus
during trials i = 0, 1, 2, ..., NS . We evaluate pairwise relations: Z and X reference the spiking
of one specific stimulated neuron at two time points, and Y reference one specific downstream
neuron. In other words, X and Z are extracted from one row (Mi) and Y from another (Mj)
given in Eq. (2) using windows relative to stimulus onset. The window sizes were 2 ms with
stimulus relative time given by -2,0,2 for Z,X, Y respectively as shown in Fig. 1b. As further
depicted in Fig. 1b, Z0 = 0 indicates that the putative upstream neuron did not fire within a
set time window before the first optogenetic stimulus, where subscripts indicate trial numbers.
Furthermore, X0 = 1 and Y0 = 1 indicate the upstream and downstream neurons fired in this
first trial. We seek to estimate whether a response Y0 = 1 was caused by X0 = 1. The puta-
tive upstream neuron is refractory if Z0 = 1; in our simulations, the neuron fired 1-2ms before
stimulus onset. With this notation we can now meaningfully address the problem.

We can be statistically precise about the causal reasoning. Consider the directed acyclic
graph (DAG)43 representing variables and their relations (Fig. 1e). Here, X represents a puta-
tive upstream neuron e.g., A or B, and Y represents the putative downstream neuron e.g. C.
The set U contains unobserved network activity and the stimulus. During IV estimation, we
use refractoriness which is (at least in first-order approximation) assumed to be random and
influences stimuli response to infer the causal interaction between neurons. This approach is
known to satisfy Pearl’s criteria for causal inference42, and IVs can reveal real causality.

In the following, we aim to estimate the effective connectivity defined as the difference in
conditional probability βij := P (Mi = 1|do(Mj = 1)) − P (Mi = 1|do(Mj = 0)). This means
that the causal effect is defined as the difference in the post-synaptic neurons firing probability
between a case where we set the pre-synaptic activity to one and the case where we set it to
zero. Let us consider the case where there is no confounding (for example, with )Eq. (2)), the
neurons are conditionally independent and we can simplify:

P (Mi = 1|do(Mj = 1))− P (Mi = 1|do(Mj = 0)) = P (Mi = 1|Mj = 1)− P (Mi = 1|Mj = 0)

Let us go through a concrete example. Let there be a network of two neurons i and j. Let us
assume i is not refractory (r = 0) and a constant coupling c = 1. With only one spike from
neuron j after one time step and no noise (U = 0), we can derive βij = σ(Wij − b)− σ(−b). In
this sense βij is the causal effect induced by the underlying weight Wij and we can directly see
that these two will be monotonously related. With refractoriness, however, we fit a linear model
to represent the ground truth βij and compute errors as the mean absolute error to estimate

E
[
|β̂ − β|

]
; see Section 4.5 for further details. The case with refractoriness will be more complex,

and sets up the problem we will be working on in the rest of this paper.
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Let us start with the näıve estimate of β: the OLS estimate. For binary variables (allowing
only X = 0 and X = 1), it can be written as the difference of conditional expectations3

β̂OLS = E [Y |X = 1]− E [Y |X = 0] . (3)

Note that here we implicitly condition on the stimulus due to stimuli onset selection when building
the variables X,Y, Z. When X is confounded (endogenous), i.e. E [X|U ] 6= 0, the estimate β̂OLS
will be biased. What kind of biasing activities do we expect? Brains have slow dynamics, such
as up-down states. Through those activities, pre- and post-synaptic neurons will be strongly
correlated regardless of the actual synaptic connectivity. This consideration already presages
the use of DiD below, which aims to minimize such biases. Importantly, OLS is an important
baseline, used in many neuroscience settings.

The idea behind IV is to use a source of randomness that is local as a means of obtaining
randomness. Here we want to use refractoriness Z as an instrument. The IV-estimator for our
binary case (see Wald estimator58) is given by

β̂IV =
E [Y |Z = 0]− E [Y |Z = 1]

E [X|Z = 0]− E [X|Z = 1]
(4)

Notice the flipped Z compared to Eq. (1) as it now represents refractoriness, not stimuli that
further lead to E [X|Z = 1] = 0 by construction. If refractoriness would be entirely random we
would eliminate bias and we may hope that, even for slight violations of this assumption, it will
lower biases.

We can now investigate if the use of an IV (Eq. (4)) gives a better estimate of connectivity
strength than (Eq. (3)) or simply analyzing the lagged correlations employing CCH calculated
with Eq. (18). Note that this CCH estimator can be considered an OLS estimate not conditioned
on the stimulus. We use the IV estimator on the three-neuron system simulated with Eq. (2)
illustrated in Fig. 1a. Interpreting the estimates of β, the IV converges to the ground truth for
βCB but displays a slight negative bias in estimating βCA (Fig. 1d) red dashed lines). Contrary,
the OLS and CCH methods both falsely conclude that βCA > 0 (Fig. 1d) blue dashed lines
represent Eq. (3), and yellow lines Eq. (18)). The technique based on refractoriness reduces bias
but, in practice, does not abolish it.

When inspecting the stimulation response as shown in Fig. 1f, we can see after splitting up
Eq. (4) (with E [X|Z = 1] = 0) and Eq. (3) that the baseline values before stimulus-response
are non-zero. The network dynamics in U affect both neural refractoriness and downstream
activities. To correct for these effects, we combine the approaches with a DiD correction1. We
introduce superscript ∗ to indicate that the response window (Fig. 1b) is shifted one window size
backward in time. The OLS/DiD estimate is then given by Eq. (3) with Y → Y − Y ∗ i.e.

β̂OLS,DiD = E [Y |X = 1]− E [Y ∗|X = 1]− E [Y |X = 0] + E [Y ∗|X = 0] (5)

and similarly, for the IV/DiD estimate given by

β̂IV,DiD =
E [Y |Z = 1]− E [Y ∗|Z = 1]− E [Y |Z = 0] + E [Y ∗|Z = 0]

E [X|Z = 1]− E [X∗|Z = 1]− E [X|Z = 0] + E [X∗|Z = 0]
(6)

The DiD corrects for both the ongoing change and the network state and we should expect it to
further lower bias relative to the IV.

The IV/DiD method converges to the correct causal conclusions that βCB > 0 and βCA ∼ 0
Fig. 1d solid red lines, with improved accuracy compared to the IV method. The IV/DiD method
produces good estimates of the causal interactions between neurons for the simple three-neuron
system.
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Figure 1: Instrumental variables corrects spurious correlations induced by optoge-
netic stimulation. a) Simple network containing three neurons shows stimulation configuration
with blue laser light and the connections illustrated by axon touching dendrites. b) For each
stimulation pulse, three spike detection windows are placed relative to stimulus onset time, pre,
during, and post, which is stored as Z, X, and Y, respectively, where Z and X represent either A
or B while Y represents C. c) Cross-correlation histogram (CCH) with the vertical axis showing
the conditional expected value E [Mi = 1|shift(Mj , τ) = 1] , i, j ∈ {A,B,C}, τ = 0, 1, ..., 9 with
shifts in timesteps τ . d) Transmission probability estimates as a function of ground truth be-
tween AC, and BC. e) Directed acyclic graph (DAG) showing the relations between variables.
The OLS method only uses X to estimate Y , which fails because of the confounding factor U ;
the refractoriness denoted Z affects X without being affected by U and can therefore be used as
an IV. f) Conditional expectancies where the true weight = 7 rightmost values in d. The upper
panel is mirrored around zero to aid visualization. The estimates in the lower panel represent
differences between solid and dashed lines in the upper panel. The shaded gray area depicts the
estimation window, and cyan shading indicates the stimulation window, which in this example
also depicts DiD reference (Y ∗). g) A sketch of the intuition behind DiD.
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2.3 The strength of neural dynamics characterized by the condition
number affects errors

Interacting neurons in a biological network exhibit inhibition and excitation, and their interplay
produces nontrivial dynamics. When estimating the influences between neurons, we effectively
solve an inverse problem. Such inverses are typically ill-posed problems, in the Hadamard sense22

meaning a solution 1) does not exist, 2) is not unique, or 3) is unstable. Assuming the two first
conditions to be untrue, i.e., a unique solution exists, the remaining lack of stability is referred
to as an ill-conditioned problem. In statistics, this indicates whether small changes in (input)
data have a comparatively small change in the (output) statistic and is meaningfully measured
by its variance. When a statistical problem is ill-conditioned, the computed estimate may be far
from the true estimate, regardless of our choice of estimator that minimizes the variance. This
problem is typically due to multicollinearity. For example, in the linear model, Y = βX+U , mul-
ticollinearity is defined as near-linear dependence between column vectors in the design matrix
X. In terms of neural measurements, X would be a N-by-time matrix with columns representing
population states at different timepoints, and multicollinearity would represent correlations be-
tween these population states. In the inverse problem X ′Xβ = X ′Y , with ′ denoting transpose,
the condition number κ(X ′X) is a measure of the existence of multicollinearity39. This condition
number is given by the ratio of singular values of the Gram matrix X ′X by κ(X ′X) = σmax

σmin
.

Large condition numbers imply that the inverse problem is ill-conditioned. Effectively, problems
with large condition numbers, amplify a small amount of noise associated with small singular
values, making them unstable. Multicollinearity may occur when a common, unobserved con-
founder drives neurons, as is very common in brains. Representing neurons as variables in the
design matrix M ∈ [0, 1]N×T (Eq. (2)), the condition number was computed from the covariance
of M as the ratio of extreme singular values.

To assess how the proposed estimators performed under such circumstances, we simulated
a fully connected random neural network of 200 neurons with an equal number of excitatory
and inhibitory neurons (Fig. 2a). Network dynamics were simulated with the Binomial GLM
framework Eq. (2). By stimulating five neurons, we examined the connection strength from these
to the rest of the network and produced the results in Fig. 2. The stimulus-trial onset times had
a temporal Poisson distribution with a period 50 ms and were further clipped between 10-200
ms; see Section 4.3. The connectivity was given by a Gaussian distribution normalized by the
square root of its size21.

To compute errors we estimated a ground truth using a two-neuron network and computed
the mean absolute error; see Section 4.5. The error is thus interpretable as the expected absolute
error performed by the estimator. Condition numbers were higher for larger drive strengths but
less sensitive to inhibitory drive (Fig. 2b). With higher condition numbers, errors increased in
both the IV/DiD, and the CCH method for ground truth β ≥ 0 where low condition number
(dark points) means meaningful error for CCH but almost no error for IV (Fig. 2c). The errors for
IV/DiD were lower for moderate condition numbers and increased with increasing condition num-
bers Fig. 2d). The errors for IV/DiD were lower for moderate excitatory confounding (Fig. 2e)
but increased with confounding along with increased standard deviation measured across neurons
illustrated with shading around the solid mean line. The errors for IV/DiD were constantly low
with increasing inhibitory confounding (Fig. 2f), with low standard deviations across neurons.
Counter-intuitively, the error in CCH seems to get smaller with increased excitatory confound-
ing, therefore we plotted the estimated connections against ground truth in Fig. 2i,j. We observe
that while the bias and variance increase for the IV/DiD estimator, for the CCH estimator the
variance got smaller and the slope of increase also got lower, indicating that it is close to zero
for all estimates, which would explain the artificial decrease in error.
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To assert how the estimators performed as binary classifiers, classifying whether there is a
connection or not, we computed the area under the receiver operating characteristic (AUROC)
curve. This procedure measures the quality of classification at various levels of thresholds. It
indicates how well the estimator will function in a classification task where AUROC= 1 indicates
a perfect classifier, and AUROC= 0.5 indicates chance level. Classification accuracy was generally
higher for IV/DiD compared to other estimators (Fig. 2g) with excitatory confounding. Note
also that the AUROC is consistently lower for CCH, which indicates that the low error seen for
high confounding is indeed artificially induced. Classification accuracy was higher for IV/DiD
compared to other estimators (Fig. 2h) with inhibitory confounding. The network state can act
as a confounder, and the condition number is a major way of indexing the confounding level.
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e) f)
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h)
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Excitatory confounding

Inhibitory confounding

+

-

Figure 2: IV is more robust to multicollinearity for moderate condition numbers. a)
Sketch of the neural network configuration. b) Condition number is more affected by excitatory
drive than inhibitory drive. c) Error in IV and CCH for w ≥ 0 and varying condition numbers as
a function of drive strength. d) Error in IV and BR for w ≥ 0 and varying condition numbers as
a function of drive strength. e) Errors as a function of the excitatory drive. Error bars represent
one standard deviation of errors. f) Errors as a function of the inhibitory drive. Error bars
represent one standard deviation of errors. g) AUROC as a function of the excitatory drive
strength. h) AUROC as a function of the inhibitory drive strength.
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2.4 Stimulation, connection strength, and network size affects condi-
tion number and errors

To evaluate the IV/DiD method in a different setting, we simulated 480 networks with alternative
stimulation strengths, number of neurons, and connectivity strength while keeping the excitatory
and inhibitory drive constant. The connectivity was given by a Gaussian distribution normalized
by the square root of its size21 to keep the largest singular value constant to changes in network
size.

By stimulating five neurons and examining the connection strength from these to the rest
of the network, we produced the results in Fig. 3. The condition numbers now correspond
to network size, stimulus strength, and connection strength (Fig. 3d). With higher condition
numbers, the IV/DiD method outperformed the CCH method for ground truth β ≥ 0 (Fig. 3a).
The IV/DiD method was more robust and was generally better than OLS/DiD (Fig. 3b). The
errors for IV/DiD were significantly lower than all other methods (Fig. 3c). Condition numbers
were higher for stronger stimulation and connection strengths and were more sensitive to these
variables in larger networks (Fig. 3d).

To see how the quality of the estimates varied with stimulus and connection strength, we
plotted their relations with error bars showing a 95% confidence interval over the non-visualized
parameters, i.e. for stimulus strength error bars come from connection strength and network size,
in contrast to Fig. 2. The IV/DiD method yields lower error for higher stimulation strengths
(Fig. 3e). Intuitively, we need relatively strong stimuli for the downstream neuron to be affected
by the instrument, this might explain the smaller errors with stronger stimuli seen in Fig. 3e for
IV/DiD. The IV/DiD method gave better classification results as measured with the AUROC,
with stronger stimulus and in general for stronger connection strengths (Fig. 3gh).
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g) h)

Figure 3: Errors and corresponding condition numbers are affected by network size,
stimulation and connection strengths. a) Error in IV/DiD and CCH for w ≥ 0 and varying
condition numbers determined by stimulus strength, connection strength, and the number of
neurons. b) Error in IV/DiD and OLS for w ≥ 0 and varying condition numbers determined by
stimulus strength, connection strength, and the number of neurons. c) Errors are significantly
lower in IV/DiD than all other estimators; each line represents a comparison with the estimator
corresponding to the left edge. d) Condition number as a function of stimulus strength, connec-
tion strength, and the number of neurons, color-coded according to the color bar given in (b).
e) Errors from IV/DiD get lower with stronger stimuli than those in OLS, and CCH. f) Errors
from IV/DiD increase with stronger connections, although less than OLS, OLS/DiD and CCH.
g) AUROC from IV/DiD gets higher with stronger stimuli than those in OLS, and CCH. h)
AUROC from IV/DiD gets higher with stronger connections, whereas those in OLS, and CCH
varies less. Significance values are encoded as ns not significant, * p < 0.05, ** p < 0.01, ****
p < 0.0001 computed with Mann Whitney U test.
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2.5 Connectivity affects statistical power, stimulus percentage affects
error

Causal Inference techniques obtain better causal validity at the cost of statistical power. When
the number of synapses per neuron increases, estimating the weights should become harder even
if we could record from all neurons. To quantify this, we simulated ten networks with 200
neurons without additional confounding factors where we reduced connectivity or equivalently
increased sparsity (0% meaning fully connected 90% meaning 10% connectivity). We found that
the error decreased as a function of sparsity in IV/DiD, and OLS (Fig. 4a). To further quantify
robustness, we also simulated ten networks with 200 neurons, where we increased the percentage
of stimulated neurons. The error increased with an increased percentage of stimuli (Fig. 4b)
as would be expected when considering that the condition number increases with increasing
stimulus percentage (data not shown).

By plotting the estimates as a function of the ground truth and sparsity, it is evident that
the error is due to a more extensive spread which for the IV/DiD method decreases with sparsity
(Fig. 4c) while not so much for CCH (Fig. 4e). When increasing the stimulus percentage, the
spread increases for IV/DiD, and the center of the estimates at β = 0 is shifted upwards. However,
the slope seemingly remains steady (Fig. 4d). For the CCH method, the spread increased with
increased stimulus percentage upon reducing again, the slope went towards zero, and the center
at β = 0 is shifted upwards (Fig. 4f).

To reach asymptotic convergence for IV/DiD, a large number of trials is needed (∼ 106) as
seen in Fig. 4g, for larger sparsity, more trials are needed, but with the result of a smaller error.
When increasing the stimulus percentage, the convergence curve flattens out while being shifted
towards larger errors (Fig. 4h).

The IV/DiD method introduced here for the estimation of causal effects requires considerable
amounts of data. The applicability of the proposed method may be limited to cases where
weights are sufficiently sparse, and the stimulation effect is sparsely distributed among neurons
with strong stimuli responses. Based on these findings, the right domain of application for the
IV/DiD method would not be densely stimulated in vivo mammalian cortex but rather systems
that are smaller, more sparse, or scenarios where only a small number of neurons are stimulated.

14

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2023. ; https://doi.org/10.1101/463760doi: bioRxiv preprint 

https://doi.org/10.1101/463760
http://creativecommons.org/licenses/by-nd/4.0/


g) h)

c) d)

e) f)

a) b)

Figure 4: Error diminishes with sparsity while is increased by increasing stimulus per-
centage. a) Error as a function of sparsity. b) Error as a function of percentage of stimuluated
neurons. c) IV/DiD estimates as a function of true weight and sparsity. d) IV/DiD estimates
as a function of true weight and stimulus percentage. e) CCH estimates as a function of true
weight and sparsity. f) CCH estimates as a function of true weight and stimulus percentage. g)
Error as a function of the number of stimulus trials, sparsity is denoted in the panel titles. h)
Error as a function of the number of stimulus trials, stimulus percentage is denoted in the panel
titles.
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2.6 Estimation under distributed optogenetic stimulation strength

Results presented in (Fig. 4b) show that a uniform distribution of strong stimuli across the
excitatory population is detrimental for the estimation of connectivity, although estimation is
better with IV/DiD compared to OLS,(DiD), and CCH. However, a uniform distribution of
stimuli strength does not reflect the distribution of light intensity obtained with optogenetic
stimulation. Optogenetic stimulation is generally seen as a perturbation that, by and large, affects
neurons in proximity (< 1mm) of the light source, decreasing the effect with distance. However,
this needs to be more accurate in terms of conceptualizing the spatial effect of stimulation, as
it depends on multiple factors. Light intensity and opsin density are essential as more light
and ion channels will cause a more substantial effect on each cell. Moreover, the number of
potentially stimulated neurons is critical as more neurons will have a larger impact on the overall
population activity. Finally, the physiological properties of the cells are important, as light
may have a stronger effect on spiking activity when the cell’s membrane potential is sufficiently
close to the firing threshold. A relation between four parameters should give the induced effect
of optogenetic stimulation as a function of distance: light intensity, the spatial distribution of
neurons, distributions of membrane potential across neurons, and the distribution of induced
photo-currents.

To estimate light intensity, we calculated the spatial extent of laser light delivered by fiber-
optics under plausible experimental conditions according to Aravanis et al. 4 ; see Section 4.3.2.
While their experiment uses blue light, their estimates assume no absorption making the equa-
tions somewhat general. This modeling of light intensity yields an approximately 1/r2 reduction
with distance r from the stimulation site (Fig. 5a), cyan line. This is explained by the surface
of a 3D shell growing with 4πr2 and photons will be roughly isotropic (but see57) beyond the
scattering length as depicted in the inset of Fig. 5a. The same number of photons must cross
each sphere around the stimulation location unless absorbed or scattered inwards. As a result,
the density of photons decreases with distance.

The number of illuminated neurons at a given distance will, however, increase with distance to
the stimulation site, given that neurons are roughly uniformly distributed in brain tissue (Fig. 5a),
black line). It will increase by approximately r2 with distance. This distance dependence derives
from the same surface scaling for the 3D shell as the photon flow. Thus, the number of neurons
that can be activated increases rapidly with distance.

To estimate the stimulation effect, the mechanism by which light affects spiking activity needs
to be considered. The distribution of membrane potentials across neurons can largely character-
ize this. Surprisingly, this distribution has been observed to be symmetrically distributed and
relatively flat41,14,49. The expected response from a pulse of light that induces a charge Q should
be proportional to the number of affected neurons whose membrane potential sits within a Q/C
range of the threshold (C is the capacitance). Given that the distribution of membrane potentials
is relatively flat (the density close to the threshold is generally within an order of magnitude of
the density of its mode) suggests that the spiking response to a perturbation for any neuron is
roughly proportional to the induced photo-current. The peak amplitude of the photo-current
relates approximately logarithmically to the light intensity59; see Section 4.3.2. Assuming that
opsins are evenly distributed across neurons, the induced photo-current will not be proportional
to light intensity - it will fall slower. Based on this, we calculate the overall stimulation effect as
the product of the number of neurons in a spherical slice and the peak amplitude photo-current.
This product increases with distance (up to the distance where absorption becomes important)
(Fig. 5a), blue line. In other words, there is more activation at 500um than at 100um – when
neurons densely express opsins, optogenetics is not a local technique.
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To verify this intuition with experimental data, we extracted data with WebPlotDigitizer1

from24 (Supplementary figure 2,B1) where an optic fiber was retracted while measuring average
spiking activity (Fig. 5b), blue line). By multiplying the distance squared with this activity, we
get an experimentally valid estimate of the scaled population spiking activity (Fig. 5b), orange
line), which increases with distance. Thus, experimentally, optogenetic stimulation utilizing
single photon activation does not produce a localized effect.

With this knowledge, we simulated more realistic distributions of stimuli strength to evaluate
its effect on the proposed estimators. We simulated five networks of sizes ranging from 100-500
neurons with additional confounding factors and balanced excitation and inhibition. We gave
each neuron a random spatial distance from the simulated optogenetic stimulus for stimulation.
The stimulus intensity was then set according to Eq. (16), and was constant throughout the
trials. The trial onset had a temporal Poisson distribution with a period of 50 ms and was further
clipped between 10-200 ms. To evaluate the stimulation effect, we measured the hit rate as the
percentage of successful stimulation trials (E [X]). The hit rate was more prominent for larger
network size and stimulus strength (Fig. 5c). The effect of a larger hit rate with network size is
likely due to more neurons being stimulated with high stimulus strength creating a cascade effect
throughout the network. By increasing the maximum stimulus strength, we further observed a
non-linear increase in hit rate across the population where at some point, almost all neurons had
a hit rate at ∼ 90% (data not shown). Condition numbers increased to large numbers with larger
network size (Fig. 5d). Errors, as measured by the combined error across all hit rates, increased
with larger network size (Fig. 5e). Classifications were less accurate with larger network size
(Fig. 5f). Inspecting estimands as a function of ground truth, we observed that OLS/DiD, and
CCH, to a large extent, predict the hit rate (Fig. 5g).

1apps.automeris.io/
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Figure 5: Spatial extent of optogenetic stimulus. a) Due to scattering and geometric loss
the light intensity (I, cyan line) with an intensity of 10mW/mm2 exiting the optogenetic fiber
follows approximately an inverse square law r−2 where r is the distance from the fiber. If neurons
are uniformly distributed, the number of affected neurons in a spherical slice increases by r2 (N,
black line). The total photocurrent (P, blue line) summed over neurons in a spherical slice
increased with distance due to the nonlinear relation between light intensity and photocurrent,
depicted as a percentage of maximum. b) Experimental data for verification24. c) Hit rate
increases relative to stimulus strength with network size. d) Condition numbers get severely
large with increasing network size. e) Errors increase with network size. f) AUROC decrease
with network size. f) Scatter of estimands to ground truth for N=500.
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2.7 Inhibitory networks

In previous sections, we have only explored excitatory connections. However, the estimators
could also be used with inhibitory connections. We simulated a network of 120 neurons with
balanced excitation and inhibition while stimulating five inhibitory neurons to assess the effec-
tiveness of inhibitory estimates. By examining the connectivity of these stimulated neurons, we
generated the results presented in Fig. 6. The IV/DiD and CCH are overall similar (Fig. 6a)
but are again outperformed by the OLS/DiD method (Fig. 6b) for most variations of condition
numbers. Comparing overall results, the OLS/DiD method was significantly better than the
other method. Notably, contrary to estimating excitatory connections, stimuli benefited all esti-
mators. Condition numbers were mainly affected by connection strength (Fig. 6c). Errors were
smaller for OLS/DiD for all connections, and stimulation strengths (Fig. 6e-f). Despite giving
poor effective connectivity estimates, classification was comparable across methods except for
IV/DiD, which performed comparably worse (Fig. 6g-h). Estimating the existence of inhibitory
connections is relatively easy, but estimating their strengths appears harder.
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Figure 6: IV is better than naive, but not OLS/DiD. a) Error in IV/DiD and CCH for
w ≤ 0 and varying condition numbers as a function of stimulus strength, connection strength and
number of neurons. b) Error in OLS/DiD and CCH for w ≤ 0 and varying condition numbers
as a function of stimulus strength, connection strength, and the number of neurons. c) Errors
are significantly lower in OLS/DiD than all other estimators; each line represents a comparison
with the estimator corresponding to the left edge. d) Condition number as a function of stimulus
strength and connection strength, color-coded according to the color bar given in (a,b). e) Errors
from OLS/DiD are generally lower with varying stimulation strength. f) Errors from OLS/DiD
are generally lower with varying connection strength. g) AUROC from are comparable across
methods with varying stimulation strength. h) AUROC from are comparable across methods
with varying connection strength. Error bars represent 95% confidence across network size.
Significance values are encoded as ns not significant, * p < 0.05, ** p < 0.01, **** p < 0.0001
computed with Mann Whitney U test.

20

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2023. ; https://doi.org/10.1101/463760doi: bioRxiv preprint 

https://doi.org/10.1101/463760
http://creativecommons.org/licenses/by-nd/4.0/


3 Discussion

Here we have asked if the refractory period of neurons can be used as an IV to reverse engineer
the causal flow of activity in a network of simulated neurons. We have found that this approach
performs considerably better than the näıve approaches. Moreover, we have found that neither a
näıve linear regression model nor a näıve cross-correlation method produces reliable estimates of
connectivity between neuron pairs. The IV approach improves the inference process by looking at
the missing responses because refractoriness effectively allows better estimates of causal effects.

One might worry that if a downstream cell needs multiple simultaneous inputs to spike, and
some of the stimulated cells converge onto the same downstream neuron, the estimated effective
connectivity of upstream cell X is biased outside of this stimulus regime. However, the stimuli
are considered as part of the confounding error. It activates both the presynaptic neuron of
interest and potentially many other presynaptic neurons. IV addresses this issue by removing
the interaction between stimuli and postsynaptic neurons. Thus, the estimated effect of X on
Y reflects the causal effect regardless of the stimuli. This is reflected in the error measure; zero
error means that the causal effect is regardless of stimuli.

Moreover, every neuron is influenced by all of its presynaptic neurons. If the neuron is roughly
linear then the causal effects βij will approximate the weights Wij . However, if neurons are very
nonlinear then the real causal influences can not meaningfully be approximated by pairwise
causal influences. As such, this approach, along with the bulk of the rest of the literature, is
predicated on a largely untested assumption of neurons being approximately linear.

Currently, we have no ground-truth data set to test our technique and compare it with
other approaches to actual neural activities. Ideally, we would have known causal effects from
single-cell stimulation (e.g., from two-photon optogenetics) to establish causal effects. Such data
should contain many randomly distributed, short, and intensive stimulation trials combined with
traditional optogenetics, designed in a way where refractoriness matter. Since most optogenetic
protocols use set stimulation frequency and light intensity, such a dataset, to the best of our
knowledge, is currently not available and prevents us from testing how well our estimator would
work on experimental data. Future experiments are needed to obtain reliable insights.

For the refractory period to be a good instrument, it must not be overly affected by the
network activity. This criterion will be problematic in many cases. After all, network activity
affects neuron activity and hence refractoriness. However, there are multiple scenarios where
refractoriness will be a good instrument. For example, if we have balanced excitation and inhi-
bition, we may expect largely independent refractory states of individual neurons. If a neuron
biophysically implements something like conditional Poisson spiking, its refractory states will
be random conditioned on the network state. Notably, the phase of a neuron may be far more
random than the activity of the network as a whole.

The randomness of refractory times is the one factor that makes or breaks the IV approach
we introduced here. Even if neurons’ refractory states are strongly correlated during regular
network operation, there may be ways of randomizing refractoriness. First, it would help to use
a task and situation where neurons are as uncorrelated as possible. Second, we may use a set
of conditioning pulses of stimulation to increase the independence of refractory states. Giving
one burst of stimulation strong enough to elicit multiple spikes from each neuron may effectively
randomize their phases18. Third, we may utilize chemical, behavioral, or molecular perturbations
to produce a good IV. For example, we can construct intracellular oscillators unaffected by neural
activities or constructs that force a neuron into quiescence at random times. There has yet
to be any effort to produce good IVs in neuroscience, so there may be many possibilities for
improvements.

One popular way of estimating causal effects is fitting generalized linear models (GLMs) to
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simultaneously recorded neuron activities46,48. GLMs are multiple nonlinear regressions and re-
quire multiple neurons to perform well. However, even if activity from all neurons were recorded,
GLMs might fail to estimate causal connections13. However, complete recordings are not possi-
ble in the mammalian brain, especially not in primates, where recordings include only a minimal
subset of the neurons involved in the actual computation. When using GLMs, one may accu-
rately estimate latency distributions and sequences of spikes from individual neurons. These
ideas should be merged with IV approaches. One of the strengths of the IV estimator presented
here is that it only requires one pair to be recorded because we can utilize the randomness of the
refractory periods along with random stimulations. Under those assumptions, the IV estimator
can produce meaningful causal estimates.

The main problem with optogenetic stimulation, when used to infer connectivity, is its non-
local property. This is due to the inverse relationship between changes in light intensity, and
the affected number of neurons combined with a logarithmic relation between light intensity and
photocurrent59. In addition, the distribution of membrane potentials across neurons is relatively
flat14,49,41, making neurons highly sensitive to perturbations. One could imagine situations where
optogenetic activation was more local. If, for example, the membrane potential distributions were
skewed with the mode far from the threshold, a powerful stimulus would be required for a neuron
to elicit spikes. There could also be other ways of making optogenetic stimulation more local.
For example, if one engineered opsins or brain tissue that are more light absorbent (e.g. by
ubiquitously producing melanin), one could stimulate more locally. Having melanin under a
ubiquitously expressed promotor in the brain would dramatically make optogenetics more local
and could probably be a target for the construction of transgenic animals. How to engineer more
localized stimulation is a significant problem when causally interrogating a system.

Very weak laser pulses in noisy networks might mainly elicit spikes in very few close-by
neurons in each trial17. However, the stimulus will still affect the membrane potential of many
neurons further away, some of which will spike. Therefore, more than weak stimulation is needed
to remove the principal problem of correlation-based techniques. After all, the network still
acts as a confounder, and, if anything, the weak stimulation will reduce the statistical power
of the approach. Lowering stimulation amplitudes is not a way of obtaining meaningful causal
estimates.

There are many techniques for causal inference, most of which have yet to be applied to the
field of neuroscience, and are based on approximating randomness in a seemingly regular world.
In many cases, one could use regression discontinuity designs in a spiking system32,28. Moreover,
one could use a difference-in-difference approach1. Matching approaches56,30, can be used when
comparing similar network states and their evolution over time. In general, neuroscience is in
a quest for causal interpretations. Thus, we could benefit considerably by utilizing established
techniques in the field of causal inference.

In the presence of ill-conditioning, the estimates of causal effects will be sensitive (unstable)
to small changes in the underlying data. As outlined in39, ill-conditioning can affect statistical
analyses including the estimation of causal effects in three ways. First, measurement errors,
such as a temporal shift in spike time estimate, e.g., low sampling frequency, inaccurate spike
sorting, or general noisy measurement due to animal movement, can lead to significant estimation
errors. Second, inference can give misleading results in ill-conditioning caused by bad design or
sampling. There will always be natural variability in the observations, necessitating assessing ill-
conditioning before any statistical analysis. Third, rounding errors can lead to small changes in
data. Under ill-conditioning, this numerical problem is often not considered in neuroscience but
will become evermore relevant when large-scale recordings require large-scale inferences. Causal
inference approaches are not immune to the general problems coming from the ubiquitous ill-
conditioning of neuroscience data.
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The finding that inhibitory connections are very hard to estimate surprised us. After all, we
had generally thought of excitation and inhibition as two sides of the same medal. However,
we consistently find it hard to estimate inhibitory connection strengths. There may be some
statistical reasons for this. An excitatory neuron can make another neuron fire at any point in
time. An inhibitory neuron, on the other hand, can only prevent another neuron from spiking
if it actually would be spiking. Neurons spend a vast amount of time not spiking. Similarly,
neurons spend far more time being just below the firing threshold than being just above it. As
such, the power to detect inhibition may be much higher than the power to detect excitation.
Incidentally, this may also relate to the finding that there are far fewer inhibitory neurons in
the brain than excitatory neurons: it is simply easier to learn how to excite than how to inhibit
because there is more data.

Notably, practical short-term use of the techniques proposed exists. It is possible to stimulate
just a local cluster of neurons optogenetically, say 10. This setup puts us into the situation of
Fig. 4bh, where errors can be quite low, at least in the limit of relatively long recordings. As
such, applying the methods introduced here to such experimental data, ideally with measured
ground truth connectivity, is a promising and realistic next step.

4 Methods

4.1 Instrumental Variables

Central to our approach is the concept of counterfactuals or potential outcomes, which allows
us to compare what actually happened with what could have happened under different circum-
stances. Put simply, this means imagining what would have occurred if a subject had received a
different treatment or intervention than what they actually received. In this paper, we use this
approach to estimate the causal effect of a given treatment or intervention on a specific outcome.
The following proofs and derivation follow the book from Brady Neal37. Using this idea the
causal effect is the difference Yi|do(T=1) − Yi|do(T=0) where Yi|do(T=1), shortened to Yi(T = 1),
denoting the value Y of subject i given that we force some treatment T = 1, denoted by the
do operator. For example, the treatment T can indicate that a patch electrode gives a pulse i,
and Yi indicates the increase in membrane potential. We can not observe the same trial with
and without a given treatment. Therefore, the causal effect is typically estimated by the average
treatment effect (ATE) defined by the expected difference E [Y (T = 1)− Y (T = 0)].

In what follows, X,Y, Z are random variables with binary values, and indexing refers to a
trial, where we assume all trials are independent. Further, X(Z = 1) refers to the value X when
Z = 1. We use Z = 1 to denote if an upstream spike preceded stimulus, and thus Z = 1 indicates
that X = 0 or, in other words, X did comply with treatment. This is opposite to conventional
notation, where Z = 1 → X = 1, which might confuse readers with previous knowledge from
causal inference. Here we want to obtain an estimate of E [Y (X = 1)− Y (X = 0)] which we can
write as E [Y (X = 1)]− E [Y (X = 0)] when they are independent.

The IV technique has been used extensively in econometrics and can provide a provable causal
estimate of β given three main assumptions25.

(i) Relevance: The instrument (Z) has a causal effect on the the regressor (X).

(ii) Exclusion Restriction: There must be no direct influence of the instrument (Z) on the
outcome variable (Y ); its effect must be fully mediated through the regressor (X).

(iii) Instrumental Independence: The instrument (Z) and the outcome variable (Y ) must not
share causes.
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The validity of these assumptions is central when using the IV approach.
A final assumption (iv) is required to prove the causal validity of the estimator Eq. (4),

either a linear parametric assumption or a non-parametric assumption with effect homogeneity
or monotonicity25.

4.1.1 Identification proof of ATE with linear parametric form of IV

The simplest identification proof of the IV estimator is obtained by assuming a linear parametric
form Y = βX + U , and X = α(1 − Z) + E. Remember that the OLS estimate of β is rubbish
since cov (X,U) 6= 0. We start by considering the effect of the instrument on the outcome
E [Y (Z = 0)− Y (Z = 1)], which, if computed directly, would give a combination of α and β,
while we are interested in β. Using the IV assumptions, we obtain

E [Y |Z = 0]− E [Y |Z = 1]

= E [βX + U |Z = 0]− E [βX + U |Z = 1] , (ii) Exclusion Restriction

= β (E [X|Z = 0]− E [X|Z = 1]) + E [U ]− E [U ] , (iii) Instrumental Independence

From this, we can uncover the IV estimator

β =
E [Y |Z = 0]− E [Y |Z = 1]

E [X|Z = 0]− E [X|Z = 1]

Note the denominator differs from zero because of (i) Relevance. However, the linear parametric
assumptions are not satisfying. First, the assumption requires homogeneity, i.e., the treatment
effect is the same for every trial. Moreover, it assumes a constant effect from X on Y , which is
not true if, for example, Y is refractory. Moreover, the assumed constant effect of Z on X does
not hold since when Z = 0, the stimulus-response of X can vary. The next section shows that
the IV estimand has a more satisfying non-parametric interpretation but not of the ATE.

4.1.2 Non-parametric identification of CACE with potential outcomes

In the following non-parametric identification, we use assumption (iv) monotonicity. Using a non-
parametric form, we do not obtain the true ATE, but a local ATE, also known as the compliers
average causal effect (CACE). To obtain the CACE estimate we stratify stimulus response X
given Z in four groups,

“compliers” : Xi(Z = 0) = 1, Xi(Z = 1) = 0,

“deniers” : Xi(Z = 0) = 0, Xi(Z = 1) = 1,

“always takers” : Xi(Z = 0) = 1, Xi(Z = 1) = 1,

“never takers” : Xi(Z = 0) = 0, Xi(Z = 1) = 0.

Of course, these groups are not identifiable since we cannot determine two different responses in
one trial.

By assuming that there are no “deniers” we get the monotonicity assumption Xi(Z = 0) ≥
Xi(Z = 1)∀ i. Again, the index represents potential outcomes; imagine a world where we had two
versions of Xi in the same trial i, one where Z = 0 and one where Z = 1. Moreover, it is assumed
that the net effect of “always takers” and “never takers” will be zero in Y . More formally this
translates for “never takers” to: E [Y (X = 0)− Y (X = 1)|X(Z = 0) = 0, X(Z = 1) = 0] = 0.
Given these assumptions, we can derive the CACE estimator Eq. (4). In the following notation,
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we have reduced the arguments on the right-hand side for Y (Z = z) to Y (z) and similarly for X
in lack of space.

E [Y (Z = 0)− Y (Z = 1)]

= E [Y (0)− Y (1)|X(0) = 1, X(1) = 0]P (X(0) = 1, X(1) = 0), “compliers”.

+ E [Y (0)− Y (1)|X(0) = 0, X(1) = 1]P (X(0) = 0, X(1) = 1), “deniers”.

+ E [Y (0)− Y (1)|X(0) = 1, X(1) = 1]P (X(0) = 1, X(1) = 1), “always takers”.

+ E [Y (0)− Y (1)|X(0) = 0, X(1) = 0]P (X(0) = 0, X(1) = 0), “never takers”.

Here we have used the law of total expectation E [Y ] =
∑
i E [Y |Xi]P (Xi). With the above

assumptions for “deniers”, “always takers” and “never takers” the right-hand side is reduced to
only compliers.

E [Y (Z = 0)− Y (Z = 1)]

= E [Y (0)− Y (1)|X(0) = 1, X(1) = 0]P (X(0) = 1, X(1) = 0), “compliers”.

By rearranging, we obtain

E [Y (Z = 0)− Y (Z = 1)|X(Z = 0) = 1, X(Z = 1) = 0] =
E [Y (Z = 0)− Y (Z = 1)]

P (X(Z = 0) = 1, X(Z = 1) = 0)
.

Moreover, since we are only dealing with “compliers”, trials where the pre-synaptic neuron
responds to stimuli if it has not spiked before stimuli onset and vice versa, we can write

E [Y (Z = 0)− Y (Z = 1)|X(Z = 0) = 1, X(Z = 1) = 0]

= E [Y (X = 0)− Y (X = 1)|X(Z = 0) = 1, X(Z = 1) = 0]

We now apply assumption (iii) Instrumental Independence to obtain E [Y (Z = 0)− Y (Z = 1)] =
E [Y |Z = 0]−E [Y |Z = 1]. Moreover, the probability of being a “complier”, P (X(0) = 1, X(1) =
0), is given by the probability of not being an “always taker” or “never taker” as the probability
of being a “defier” is zero due to monotonicity. This can be stated as

P (X(Z = 0) = 1, X(Z = 1) = 0) = 1− P (X = 0|Z = 0)− P (X = 1|Z = 1)

= 1− (1− P (X = 1|Z = 0))− P (X = 1|Z = 1)

= E [X|Z = 0]− E [X|Z = 1] .

Using this relation we obtain the non-parametric IV estimator

E [Y (X = 0)− Y (X = 1)|X(Z = 0) = 1, X(Z = 1) = 0] =
E [Y |Z = 0]− E [Y |Z = 1]

E [X|Z = 0]− E [X|Z = 1]
.

With this identification, we can now interpret the IV estimator as CACE

β = E [Y (X = 0)− Y (X = 1)|X(Z = 0) = 1, X(Z = 1) = 0]

In other words, an estimator of the post-synaptic response to trials where the pre-synaptic neuron
responds to stimuli if it has not spiked before stimuli onset and vice versa, which is exactly what
we are interested in.’
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4.2 Difference in Differences

When dealing with temporal data we can use an additional method commonly used for causal
inference, namely DiD. The effect of treatment in a longitudinal study with two time points
Y ∗, Y is given by the average treatment effect of the treated (ATT) E [Y (1)− Y (0)|X = 1]. The
ATT can be estimated by taking the differences (E [Y |X = 1]−E [Y ∗|X = 1])− (E [Y |X = 0]−
E [Y ∗|X = 0]) where the two differences in parenthesis denote a treatment group and a control
group respectively. The DiD estimate is valid given two assumptions: (i) consistency and (ii)
parallel trends; see3.

To sample the stimulus trials, let ti denote stimulus onset time for stimulus trials i =
0, 1, 2, ..., NS , and spike response windows [τV0 , τ

V
1 ] for variables V ∈ {X,Y, Z} which are as-

sociated with spikes tVk for upstream neurons X,Z and downstream neurons Y . The variables
are given by

Vi =

{
1 τV0 ≤ tVk − ti ≤ τV1 , ∀tVk
0 else.

The spike windows used for DiD [τV
∗

0 , τV
∗

1 ] are given by [τV0 − τV , τV1 − τV ] for window size
τV = τV1 − τV0 where τV0 < τV1 .

4.3 Binomial GLM simulation

To model neuronal populations, we use a GLM framework similar to9,40. This simulator and
others alike are now implemented in Spikeometric2 However, instead of using the Poisson GLM,
we employed the binomial GLM, and instead of fitting the filters to neural data, we hand-
tuned them. As discussed in a recent blogpost3 the Poisson GLM comes with an exponential
(unbounded) inverse link function which can produce nonphysical high spike rates. The binomial
GLM comes with a (bounded) logistic inverse (sigmoid) link function which is ideal for spike
simulations given as

σ(x) =
exp(x)

exp(x) + 1
(7)

The generative model used throughout this paper is given in Eq. (2). Here the N × time matrix
M ∈ {0, 1}N×T indicated spikes at time t∆ = ∆tt where time bins were of size ∆t = 1ms.
Further, H = 10 denoted spike-history as the number of time steps backward. The bias b = 5
was hand-tuned such that average spike rates were ∼ 10Hz.

The spike-indicator matrix M was given by the sampled number of successes from the
Bernoulli distribution with probability p.

The coupling matrix W ∈ RN×N contained cross-coupling weights. The cross-coupling filter
was given by

c(t) =

{
exp(−αt) for 1 ≤ t ≤ 5

0 for 6 ≤ t ≤ H,
(8)

where α = 0.2. The refractory filters representing the absolute and relative refractory period
were given by

r(t) =

{
−100 for t = 1, 2, 3 (absolute)

−30 exp(− 1
2 (t+ 4)) for 4 ≤ t ≤ H (relative)

(9)

2spikeometric.readthedocs.io
3xcorr.net/2011/10/03/using-the-binomial-glm-instead-of-the-poisson-for-spike-data/ aug6
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A normal distribution gave the connection strength W ∼ N (0, σ/
√
N) with zero mean and

standard deviation scaled by the square root of the number of neurons. This scaling had two
purposes: to keep the spike variance constant through time21 and to keep the largest singular
value constant as a function of network size19.

The noise term U was employed to impose perturbations upon the system. Noise terms were
stimuli and excitatory and inhibitory external confounding given as U(t) = US(t)+Upositive(t)+
Uin(t) with respective strengths given by γS , γpositive, γin. The simulated optogenetic stimulation
was given by

US(t) =

{
γS for tS ≤ t ≤ tS + 2

0 else .
(10)

The excitatory external confounding was given by

Uex(t) =

{
γex for tex ≤ t ≤ tex + τex

0 else
(11)

and the inhibitory external confounding was given by

Uin(t) =

{
γin for tin ≤ t ≤ tin + τin

0 else
(12)

Stimulation onset times tS , tex, tin were drawn from a clipped Poisson distribution with average
period λS , λex, λin ms maximum period λmaxS , λmaxex , λmaxin ms and minimum period λminS , λminex , λminin

ms.
The following parameters were used to produce the resulting figures.

Name fig 1 fig 2 fig 3 fig 4 fig 5 fig 6

γS 5.0 6.0 6 [0,8] [0,8] 3.0
λS 50.0 50.0 50.0 50.0 50.0 50.0
λminS 10.0 10.0 10.0 10.0 10.0 10.0
λmaxS 200.0 200.0 200.0 200.0 200.0 200.0
τex 10.0 10.0 - 10.0 10.0 10.0
γex 2.0 [0,7] - 2.0 2.0 2.0
λex 100.0 100.0 - 100.0 100.0 100.0
λminex 30.0 30.0 - 30.0 30.0 30.0
λmaxex 400.0 400.0 - 400.0 400.0 400.0
τin 10.0 10.0 - 10.0 10.0 10.0
γin -5.0 [0,-7] - -5.0 -5.0 -5.0
λin 100.0 100.0 - 100.0 100.0 100.0
λminin 30.0 30.0 - 30.0 30.0 30.0
λmaxin 400.0 400.0 - 400.0 400.0 400.0

4.3.1 Inhibitory and excitatory neurons

’ To follow Dale’s law we split networks into equal amounts of excitatory and inhibitory neurons
with the following trick. First, we drew random weights W ∈ RN/2×N/2 with zero mean and
normalized by the square root of half of the number of neurons. Then we combined four variants
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of the weight matrix in the following way

Wi,j =

{
Wi,j if Wi,j > 0

else 0

Wi,2j =

{
Wi,j if Wi,j > 0

else 0

W2i,j =

{
Wi,j if Wi,j < 0

else 0

W2i,2j =

{
Wi,j if Wi,j < 0

else 0

The reasoning behind this procedure was to ensure we had a maximum singular value of one in
the connectivity matrix which gives stable network dynamics.

4.3.2 Distributed optogenetic perturbation intensity (fig 5)

To approximate an optogenetic experiment we modeled the transmission of light through brain
tissue with the Kubelka-Munk model for diffuse scattering in planar, homogeneous media26 given
by

T =
1

Sr + 1
. (13)

Here T denotes a transmission fraction, S is the scattering coefficient for mice4, and r is the
distance from a light source. Further, we combined diffusion with geometric loss assuming that
absorption is negligible as in4 and computed the intensity as presented in Fig. 1a by

I(r)

I(r = 0)
=

ρ2

(Sr + 1)(r + ρ)2
(14)

where r is the distance from the optical fiber and

ρ =
d

2

√( n

NA

)2

− 1. (15)

Here d is the diameter of the optical fiber, NA is the numerical aperture of the optical fiber and
n is the refraction index for gray matter26; see numerical values for parameters in Table 1.

To estimate the distribution of light intensity on stimulated neurons, we distributed neurons
uniformly in 15 spherical slices in the range [0, 1mm], which had a radius given by the cone-
shaped light; see Fig. 1a inset.

To further estimate the peak amplitude photocurrent, we used the Hill equation fitted by
parameters found in Wang et al. 59 given by

P = Imax
In

Kn + In
(16)

Here, Imax = 642pA is the maximum current, n = 0.76 is the Hill coefficient, and K =
0.84mW/mm2 represents the half-maximal light sensitivity of the ChR2. We used the light
intensity I given by crefeq:intensity multiplied by an initial intensity of 10mW/mm2.

Since the model neurons do not have membrane potentials, we scaled the maximum value of
input current relative to the hit rate close to 100%.
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name model 1 model 2 model 3 units

density ∼ 1960 Nmm−3

S 10.3 mm−1

NA 0.37
r 0.1 µm
n 1.36
nHill 0.76
K 0.84
depth 0.7 mm

Table 1: Stimulation parameters of three different models.

4.4 Cross correlation histogram

The statistical tests giving the probabilities pdiff and pfast were done according to53,17. We
employed two tests to test whether the cross-correlation histogram (CCH) peak was significant.
By using the Poisson distribution with a continuity correction53 given by Eq. (17), we calculated
pdiff by comparing the peak in positive time lag with the maximum peak in a negative time lag,
called pcausal in English et al. 17 . The probability pfast represents the difference between CCH
and its convolution with a hollow Gaussian kernel53. These two measures of significance were
required to be < 0.01 and given by

p(N |λ(m)) = 1−
N−1∑
k=0

e−λ(m)λ(m)k

k!
− e−λ(m)λ(m)N

2N !
. (17)

Here λ represents the counts at bin m, and N is the number of bins considered. To naively
estimate the effective connectivity between pairs, we used the ”spike transmission probability“
defined in English et al. 17 as

ptrans =
1

n

6ms∑
m=3ms

CCH(m)− λGauss(m), (18)

n is the number of spikes detected in the presynaptic neuron and λGauss(m) is the CCH count
convolved with a hollow Gaussian kernel at bin m.

4.5 Computing errors

We computed errors according to

εij = ˆbetaij − βijβij = 0.9477(σ(Wij − b)− σ(−b))σ(x) =
1

1 + exp−x
(19)

The reported error was then given by the mean absolute error over all estimated weights

Error =
1

N

∑
|ε| (20)

We further separated error measures into excitatory and inhibitory connections denoted as
Error(w ≥ 0) and Error(w ≤ 0), respectively. To estimate the ground truth β we ran two
blocks of simulations where two connected neurons; one with refractoriness given by Eq. (9) and
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one with r = 0. In each block, we simulated 106 time steps. With this setup we could verify
that with r = 0 βOLS gave the correct estimate of β = σ(W − b) − σ(−b). This gave us the
confidence that we could use the OLS estimate with refractoriness to define the ground truth
given in Eq. (19). To do this we fitted a linear curve y = α(σ(W − b) − σ(−b)) to the OLS
estimate to obtain α = 0.9477

5 Data availability

All data and code used to produce respective results can be found at https://github.com/

lepmik/causal-optoconnectics
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