Ferdinand O. Bohmann, Katharina Gruber, Natalia Kurka, Laurent M. Willems, Eva Herrmann, Richard du Mesnil de Rochemont, Peter Rostek, Heike Rai, Philipp Zickler, Michael Ertl, Ansgar Berlis, Sven Poli, Annerose Mengel, Peter Ringleb, Simon Nagel, Johannes Pfaff, Frank A. Wollenweber, Lars Kellert, Moriz Herzberg, Luzie Köhler, Karl Georg Haeusler, Anna Alegiani, Charlotte Schubert, Caspar Brekenfeld, Christopher E. J. Doppler, Özgür A. Onur, Christoph Kabbasch, Tanja Manser, Helmuth Steinmetz, Waltraud Pfeilschifter, STREAM Trial investigators

Supplemental Materials

Figure I: Influence of the STREAM trial intervention on door-to-needle times as primary and secondary analyses	2
Figure II: Interrupted time series analysis of the STREAM trial intervention on the door-to- needle times (DTN)	3
Figure III: Staff participation and acceptance of <i>in situ</i> simulation training	3
Table I: Workflow and Behavioral Changes	4
Table II: STREAM Authors' Contribution	5
Table III: STREAM Collaborators (Co-investigators)	7
CRM-based Stroke Team Training: principles and material	9
Crew Resource Management (CRM) aspects in Stroke Team Training	9
On-site Stroke Team Trainings	10
Material for Simulation Training	11
Teaching Material	11

Figure I: Influence of the STREAM trial intervention on door-to-needle times as primary and secondary analyses

A) Primary analysis: comparing all patients in the pre- vs. all patients in the post-observational phase captures the effect of all five components of the intervention as planned in the trial protocol, but is susceptible to an incomplete penetration of the trial-specific *in situ* simulation trainings to the entire workforce of clinicians involved in acute stroke care at each center. Mean DTN was not altered significantly in the primary analysis (38 min, IQR 25 - 43 min vs. 36 min, IQR 25 - 40 min, p = 0.282).

B) Secondary analysis: comparing the combined effect of workflow adaptation and simulation training in the setting of optimal adherence to the trial intervention by comparing process times of simulation-naive teams in the pre-interventional phase with teams of whom at least one member had participated in the STREAM simulation training in the post-interventional phase. The reduction of the DTN by 5 minutes in the post-interventional phase was significant (38 min, IQR 25 - 43 min vs. 33 min, IQR 23 - 39 min, p = 0.033).

C) Secondary analysis: evaluating the isolated simulation training effect by comparing the operations of simulation-naive teams vs. simulation experienced teams exclusively in the post-interventional phase. The reduction of the DTN by 6 minutes in the post-interventional phase was significant (39 min, IQR 25 - 44 min vs. 33 min, IQR 23 - 39 min, p = 0.051).

Individual DTN is given as a dot and means are presented. Normal distribution was confirmed by quantile-quantile plots. Statistical significance was tested with Student's two-tailed t-test.

Figure II: Interrupted time series analysis of the STREAM trial intervention on door-toneedle times (DTN)

Median door-to-needle (DTN) time trends over the pre- and post-interventional observation phases are depicted to visualize the intervention time series analysis (ITSA) using autoregressive integrated moving average (ARIMA) modelling. Each dot represents a two-week interval. The slopes show a significant difference (p = 0.003).

Figure III: Staff participation and acceptance of *in situ* simulation training

A) Across the seven trial sites, n = 186 stroke team members from different professions and disciplines participated in the simulation trainings. A post-training questionnaire was completed by n = 110 participants.

B) The usefulness of the course was rated on a 10-point Likert scale from "not useful at all" to "extremely useful". The training was rated as useful by 95.5 % (105/110) of all participants and this perception did not differ significantly by profession or – in the subgroup of physicians – by formative level. Most participants (93.6 %, 103/110) would welcome a regular training and the suggested interval for repetition was one year. Results were not statistically different.

	Pre intervention		Post intervention			Pre intervention <u>without</u> simulation experience		Post intervention <u>with</u> simulation experience		
	n=	=189	n =1	189		n=184		n=9	n=99	
	Yes %	n	Yes %	n	p ^a	Yes %	n	Yes %	n	p ^a
Direct transfer to imaging	43.4	82	53.4	101	0.51	44.0	81	49.5	46	0.64
Involvement of EMS	25.9	49	38.6	73	0.01	26.6	49	40.4	40	0.02
(Neuro-) radiologist present	69.8	132	63.0	119	0.16	69.0	127	66.7	66	0.64
IVT bolus in CT/ MRI	56.1	106	65.1	123	0.07	55.4	102	68.7	68	0.02
Do not await coagulation parameters	92.1	174	93.7	177	0.42	91.2	169	94.9	94	0.20
Patient required additional medical care	13.8	26	19.6	37	0.14	14.1	26	18.2	18	0.39

Table I: Workflow and Behavioral Changes

Abbreviations: EMS, emergency medical services (EMS) in the in-hospital acute stroke care workflow; IVT, intravenous thrombolysis.^a tested via Wilcoxon-Mann-Whitney Test.

Table II - Authors' Contribution

Name	Location	Contribution
Ferdinand O.	University Hospital Frankfurt, Department of	Concept and design of the study; full access to
Bohmann, MD	Neurology, Frankfurt am Main, Germany	all of the data and responsible for the integrity
,		of the data and the accuracy of the data
		analysis: acquisition and interpretation of the
		data: drafted the manuscript: analyzed the data:
		supervised the study.
Katharina	University Hospital Frankfurt Department of	Acquisition and interpretation of the data:
Gruber MD	Neurology Frankfurt am Main Germany	revised the manuscript for intellectual content
Gruber, MD	rearbiogy, Frankfult an Main, Germany	analyzed the data: administrative support
Natalia Kurka	University Hospital Frankfurt, Department of	Acquisition and interpretation of the data:
MD	Neurology Frankfurt am Main Germany	revised the manuscript for intellectual content:
MD	Neurology, Frankfult am Main, Germany	concept and design of the study
L aurent M	University Hospital Frankfurt Department of	Acquisition and interpretation of the data:
Willows MD	Neurology Frankfurt am Main Germany	revised the manuscript for intellectual content
w mems, with	Neurology, Frankfurt am Main, Germany	analyzed the data
Evo Horrmonn	Coatha University Frankfurt Institute of	Pavised the manuscript for intellectual content
	Diostatistics and Mathematical Modelling	analyzed the date
FIID	Equility of Madicina, Examplefunt/Main, Commony	anaryzeu ule data.
Distand da	Luissenite Herritel Frenkfurt Justitute fer	
Richard du	Discussion of Internet in a Neuron diale and	Acquisition, analysis, or interpretation of data
Mesnii de	Englishert and Interventional Neuroradiology,	
Rocnemont,	Frankfurt am Main, Germany	
Peter Rostek	University Hospital Frankfurt, NICU Nursing	Acquisition of data; technical and material
	Staff, Frankfurt am Main, Germany	support
Heike Rai, B.A.	University Hospital Frankfurt, Department of	Acquisition and interpretation of the data;
	Neurology, Frankfurt am Main, Germany	revised the manuscript for intellectual content,
DI III III III		administrative support.
Philipp Zickler,	University Hospital Augsburg, Department of	Acquisition and interpretation of the data;
MD	Neurology and Clinical Neurophysiology,	revised the manuscript for intellectual content.
	Augsburg, Germany	
Michael Ertl,	University Hospital Augsburg, Department of	Acquisition and interpretation of the data;
MD	Neurology and Clinical Neurophysiology,	revised the manuscript for intellectual content.
	Augsburg, Germany	
Ansgar Berlis,	University Hospital Augsburg, Department for	Acquisition and interpretation of the data;
MD	Diagnostic and Interventional Radiology and	revised the manuscript for intellectual content.
	Neuroradiology, Augsburg, Germany	
Sven Poli, MD	Hertie Institute for Clinical Brain Research,	Acquisition and interpretation of the data;
	University of Tubingen, Germany	revised the manuscript for intellectual content.
Annerose	Hertie Institute for Clinical Brain Research,	Acquisition and interpretation of the data;
Mengel, MD	University of Tübingen, Germany	revised the manuscript for intellectual content.
Peter Ringleb,	University Hospital Heidelberg, Department of	Acquisition and interpretation of the data;
MD	Neurology, Heidelberg, Germany	revised the manuscript for intellectual content.
Simon Nagel,	University Hospital Heidelberg, Department of	Acquisition and interpretation of the data;
MD	Neurology, Heidelberg, Germany	revised the manuscript for intellectual content.
Johannes Pfaff,	University Hospital Heidelberg, Department of	Acquisition and interpretation of the data;
MD	Neuroradiology, Heidelberg, Germany	revised the manuscript for intellectual content.
Frank A.	Helios-HSK Wiesbaden, Department of	Acquisition and interpretation of the data;
Wollenweber,	Neurology, Wiesbaden, Germany	revised the manuscript for intellectual content.
MD		
Lars Kellert,	Ludwig Maximilians-University, Department of	Acquisition and interpretation of the data;
MD	Neurology, Munich, Germany	revised the manuscript for intellectual content.
Moriz	Universitätsklinikum Würzburg, Department of	Acquisition and interpretation of the data;
Herzberg, MD	Diagnostic and Interventional Radiology,	revised the manuscript for intellectual content.
	Germany	
Luzie Köhler,	Center for Stroke Research Berlin, Charité -	Acquisition and interpretation of the data;
MD	Universitätsmedizin Berlin, Germany	revised the manuscript for intellectual content.
Karl Georg	Universitätsklinikum Würzburg, Department of	Acquisition and interpretation of the data;
Haeusler, MD	Neurology, Germany	revised the manuscript for intellectual content.
Anna Alegiani,	University Medical Center Hamburg Eppendorf,	Acquisition and interpretation of the data;
MD	Department of Neurology, Hamburg, Germany	revised the manuscript for intellectual content.
Charlotte	University Medical Center Hamburg Eppendorf,	Acquisition and interpretation of the data;
Schubert, MD	Department of Neurology, Hamburg, Germany	revised the manuscript for intellectual content.

Supplemental Material Simulation-based training improves process times in acute stroke care (STREAM)

Caspar Brekenfeld, MD	University Medical Center Hamburg Eppendorf, Department of Diagnostic and Interventional	Acquisition and interpretation of the data; revised the manuscript for intellectual content.
	Neuroradiology, Hamburg, Germany	
Christopher E.	University Hospital Cologne, Department of	Acquisition and interpretation of the data;
J. Doppler, MD	Neurology, Faculty of Medicine, University	revised the manuscript for intellectual content.
	Cologne, Cologne, Germany	L L
Özgür A. Onur,	University Hospital Cologne, Department of	Acquisition and interpretation of the data;
MD	Neurology, Faculty of Medicine, University	revised the manuscript for intellectual content.
	Cologne, Cologne, Germany	L
Christoph	University Hospital Cologne, Department of	Acquisition and interpretation of the data;
Kabbasch, MD	Neuroradiology, Faculty of Medicine, University	revised the manuscript for intellectual content.
	Cologne, Cologne, Germany	<u> </u>
Tanja Manser	FHNW University of Applied Sciences and Arts	Revised the manuscript for intellectual content;
	Northwestern Switzerland, School of Applied	concept and design of the study.
	Psychology, Olten, Switzerland	
Helmuth	University Hospital Frankfurt, Department of	Revised the manuscript for intellectual content;
Steinmetz, MD	Neurology, Frankfurt am Main, Germany	concept and design of the study.
Waltraud	University Hospital Frankfurt, Department of	Concept and design of the study; full access to
Pfeilschifter,	Neurology, Frankfurt am Main, Germany	all of the data and responsible for the integrity
MD		of the data and the accuracy of the data
		analysis; acquisition and interpretation of the
		data: drafted the manuscript: analyzed the data:
		supervised the study.

Supplemental Material

Simulation-based training improves process times in acute stroke care (STREAM)

Table III - Co-investigators

STREAM COLLABORATORS

Name	Location	Role	Contribution
Mohammad Alotaibi, MD	University Hospital Frankfurt	Site Investigator	Acquisition of data
AbdulAziz Batarfi, MD	University Hospital Frankfurt	Site Investigator	Acquisition of data
Annemarie Brandhofe, MD	University Hospital Frankfurt	Site Investigator	Acquisition of data
Roxane-Isabelle Kestner.	University Hospital Frankfurt	Site Investigator	Acquisition of data
MD		Site investigator	riequisition of unit
Jan Hendrik Schaefer, MD	University Hospital Frankfurt	Site Investigator	Acquisition of data
Martin A.Schaller, MD	University Hospital Frankfurt	Site Investigator	Acquisition of data
Alexander Seiler, MD	University Hospital Frankfurt	Site Investigator	Acquisition of data
Stephanie Wallenwein, MD	University Hospital Frankfurt	Site Investigator	Acquisition of data
Elke Hattingen, MD	University Hospital Frankfurt	Director of	Acquisition of data
-		Institute for	_
		Diagnostic and	
		Interventional	
		Neuroradiology	
		(Coordinating	
		Center)	
Zeljko Kos	University Hospital Augsburg	Site Investigator	Acquisition of data
Markus Naumann, MD	University Hospital Augsburg	Site Investigator	Acquisition of data
Corinna Blum, MD	University of Tubingen	Site Investigator	Acquisition of data
Paula Bombach, MD	University of Tubingen	Site Investigator	Acquisition of data
Julia Zeller, M.A.	University of Tubingen	Site Investigator	Acquisition of data
Christoph Gumbinger, MD	University Hospital Heidelberg	Site Investigator	Acquisition of data
Jens Regula, MD	University Hospital Heidelberg	Site Investigator	Acquisition of data
Solveig Horstmann, MD	University Hospital Heidelberg	Site Investigator	Acquisition of data
Miriam Heyse, MD	University Hospital Heidelberg	Site Investigator	Acquisition of data
Christian Hamanthan MD	University Hospital Heidelberg	Site Investigator	Acquisition of data
Reiff Tilman MD	University Hospital Heidelberg	Site Investigator	Acquisition of data
Simon Schieber MD	University Hospital Heidelberg	Site Investigator	Acquisition of data
Sibu Mundiyanapurath MD	University Hospital Heidelberg	Site Investigator	Acquisition of data
Silvia Schönenberger MD	University Hospital Heidelberg	Site Investigator	Acquisition of data
Yahia Mokli, MD	University Hospital Heidelberg	Site Investigator	Acquisition of data
Markus Möhlenbruch, MD	University Hospital Heidelberg	Site Investigator	Acquisition of data
Jan Bewersdorf, MD	Ludwig Maximilians University	Site Investigator	Acquisition of data
Maximilian Einhäupl, MD	Ludwig Maximilians University	Site Investigator	Acquisition of data
Katharina Feil, MD	Ludwig Maximilians University	Site Investigator	Acquisition of data
Matthias Klein, MD	Ludwig Maximilians University	Site Investigator	Acquisition of data
Ken Möhwald, MD	Ludwig Maximilians University	Site Investigator	Acquisition of data
Konstanze Mühlbauer, MD	Ludwig Maximilians University	Site Investigator	Acquisition of data
Mathias Mulazzani, MD	Ludwig Maximilians University	Site Investigator	Acquisition of data
Guido Rohrer, MD	Ludwig Maximilians University	Site Investigator	Acquisition of data
Sonja Schönecker, MD	Ludwig Maximilians University	Site Investigator	Acquisition of data
Franziska Dorn, MD	Ludwig Maximilians University	Site Investigator	Acquisition of data
Philipp Mennemeyer, MD	Ludwig Maximilians University	Site Investigator	Acquisition of data
Torleif Sandner, MD	Ludwig Maximilians University	Site Investigator	Acquisition of data
Brigitte Huber	Ludwig Maximilians University	Site Investigator	Acquisition of data
Julia Hill	Ludwig Maximilians University	Site Investigator	Acquisition of data
Jela Gavran	Ludwig Maximilians University	Site Investigator	Acquisition of data
Heinrich Audebert, MD	Charité - Universitätsmedizin Berlin	Site Investigator	Acquisition of data
Rohat Geran, MD	Charité - Universitätsmedizin Berlin	Site Investigator	Acquisition of data
Johannes Schurig, MD	Charité - Universitätsmedizin Berlin	Site Investigator	Acquisition of data
Juliane Herm, MD	Charité - Universitätsmedizin Berlin	Site Investigator	Acquisition of data
Felix Kleefeld, MD	Charité - Universitätsmedizin Berlin	Site Investigator	Acquisition of data

Supplemental Material Simulation-based training improves process times in acute stroke care (STREAM)

Karl Schoknecht, MD	Charité - Universitätsmedizin Berlin	Site Investigator	Acquisition of data
Denes Jadranka	Charité - Universitätsmedizin Berlin	Site Investigator	Acquisition of data
Kirsten Brade, MD	Charité - Universitätsmedizin	Site Investigator	Acquisition of data
	Berlin		
Tatjana Wittenberg, MD	Charité - Universitätsmedizin Berlin	Site Investigator	Acquisition of data
Ulrich Mayer-Runge, MD	University Medical Center	Site Investigator	Acquisition of data
Movim Dester MD	University Medical Conten	Site Investigator	A aquisition of data
	Hamburg Eppendorf	Site investigator	Acquisition of data
Michael H. Schönfeld, MD	University Medical Center Hamburg Eppendorf	Site Investigator	Acquisition of data
Fabian Flottmann, MD	University Medical Center	Site Investigator	Acquisition of data
	Hamburg Eppendorf	0.00	1
Lisa Prilon MD	University Medical Center	Site Investigator	Acquisition of data
Lisu Thiop, MD	Hamburg Eppendorf	Site investigator	requisition of data
Hannes Leischner MD	University Medical Center	Site Investigator	Acquisition of data
Hames Leisenner, MD	Hamburg Eppendorf	Site investigator	requisition of data
Andreas Maximilian	University Medical Center	Site Investigator	Acquisition of data
Frölich MD	Hamburg Enpenderf	Site investigator	Acquisition of uata
Sahina Basanan MD	Hamburg Eppendon	Cita Investigator	A aquisition of data
Sabine Roesner, MD	University Medical Center	Site investigator	Acquisition of data
	Hamburg Eppendori	0'' I ('' (A
Gabriel Broocks, MD	University Medical Center	Site Investigator	Acquisition of data
	Hamburg Eppendorf		
Uta Hanning, MD	University Medical Center	Site Investigator	Acquisition of data
	Hamburg Eppendorf		
Stephanie Guder, MD	University Medical Center	Site Investigator	Acquisition of data
	Hamburg Eppendorf		
Matthias Bechstein, MD	University Medical Center	Site Investigator	Acquisition of data
	Hamburg Eppendorf		
Caspar Brekenfeld, MD	University Medical Center	Site Investigator	Acquisition of data
	Hamburg Eppendorf		
Carmen Lange, MD	University Medical Center	Site Investigator	Acquisition of data
	Hamburg Eppendorf		
Sebastian Kautz, MD	University Medical Center	Site Investigator	Acquisition of data
	Hamburg Eppendorf	-	
Focko L. Higgen, MD	University Medical Center	Site Investigator	Acquisition of data
	Hamburg Eppendorf	C C	•
Anna Kyselvova, MD	University Medical Center	Site Investigator	Acquisition of data
	Hamburg Eppendorf	8	1
Götz Thomalla, MD	University Medical Center	Site Investigator	Acquisition of data
	Hamburg Eppendorf		
Jens Fiehler MD	University Medical Center	Site Investigator	Acquisition of data
Jens Fiemer, MD	Hamburg Eppendorf	Site investigator	requisition of data
Gereon Rudolf Fink MD	University Hospital Cologne	Site Investigator	Acquisition of data
Anna Bonkhoff MD	University Hospital Cologne	Site Investigator	Acquisition of data
Allia Dolkholl, MD	University Hospital Cologne	Site Investigator	Acquisition of data
Kethening Kingh MD	University Hospital Cologue	Site Investigator	Acquisition of data
Katharina Kirsch, MD	University Hospital Cologne	Site investigator	Acquisition of data
Sarah Laurent, MD, PhD	University Hospital Cologne	Site Investigator	Acquisition of data
Boris von Reutern, MD	University Hospital Cologne	Site Investigator	Acquisition of data
Jurij Rosen, MD	University Hospital Cologne	Site Investigator	Acquisition of data
Lukas Volz, MD	University Hospital Cologne	Site Investigator	Acquisition of data
Jan-Michael Werner, MD	University Hospital Cologne	Site Investigator	Acquisition of data
Michael Wollring, MD	University Hospital Cologne	Site Investigator	Acquisition of data
Robert Seliger, MD	University Hospital Cologne	Site Investigator	Acquisition of data
Abdulkadir Yildirim, MD	University Hospital Cologne	Site Investigator	Acquisition of data
Marc Schlamann, MD	University Hospital Cologne	Site Investigator	Acquisition of data
Jan Borggrefe, MD	University Hospital Cologne	Site Investigator	Acquisition of data
	- · · · · · · · · · · · · · · · · · · ·		

Supplemental: CRM-based Stroke Team Training

- a) Crew Resource Management (CRM) aspects in Stroke Team Training
- b) On-site Stroke Team Trainings
- c) Material for Simulation Training
- d) Teaching Material

Crew Resource Management (CRM) aspects in stroke team training

Emergency medicine team operations such as acute stroke care are an excellent target for Crew Resource Management (CRM), a work and training philosophy that focuses on non-technical skills and strategies to prevent human error in complex procedures.^{15,19,22} It is based on the fact that errors are inevitable but their consequences can be mitigated by installing safety measures. To achieve this, CRM builds on the use of checklists, decision aids and communication tools.

During the briefing as well as in the debriefing of the stroke team simulation training, we provided three main tools: 1) a stroke team pocket card, 2) an introduction into closed-loop communication and the encouragement to use it during the simulation and in clinical practice and 3) a stroke specific team timeout (termed 'STANDARD of CARE').²²

Closed-loop communication is a valuable tool to improve communication and thereby patient safety in stressful situations. It acknowledges that there are many levels at which e.g. a communicated order can 'get lost' leading to a break of the communication loop: What is thought is not said - what is said is not heard - what is heard is not understood - what is understood is not accepted - what is accepted is not executed - what is executed is not completed.

Closed-loop communication uses self-contained verbal chains, where every order is acknowledged by its receiver who then reports back after the task is accomplished. Additionally, team members should know and address each other by name and maintain eye contact when speaking and listening to avoid misunderstandings.²²

Standardized team timeouts, which are already widely implemented in surgical disciplines, can also be adopted to acute stroke care. The benefits are a better information footprint within the team (e.g. to navigate simultaneous actions) and the ability to identify and prevent potentially

Supplemental Material

Simulation-based training improves process times in acute stroke care (STREAM)

dangerous aspects early on. During the team timeout, the whole team gathers and only the team leader speaks and sums up all relevant information while all others carefully listen. Afterwards, team members address any noticed mistakes or lack of clarity, the team leader clarifies these and the team plans the next steps.

A stroke-specific team timeout may help to structure the summary of relevant facts for the whole team, to plan the following minutes and to identify missing information. The seven most relevant aspects are:

- 1. stroke syndrome;
- 2. time since onset;
- 3. patient age;
- 4. the NIHSS;
- 5. other diseases;
- 6. anticoagulation or antiplatelets;
- 7. red flags and contraindications to intravenous thrombolysis (e.g. recent operations, active malignancy, patient wishes).

To standardize the team timeout procedure, we developed a '10-for-10' (10 seconds to plan the next 10 min) with acronym 'STANDARD of CARE'.²² We recommended a first '10-for-10' after the initial assessment by the neurologist and emergency department nurse, a second '10-for-10' at the CT scanner to involve the (neuro-)radiologist and technician and in case of an thrombectomy candidate a third '10-for-10' at the arrival in the angio suite to involve the neurointerventionalist and the anesthesiology team.

On-site Stroke Team Trainings

Team trainings at each trial site were led by the principal investigator's dedicated stroke team trainers, starting with a theoretical introduction focused on acute stroke therapies as well as CRM with an introduction of the specific tools closed loop-communication and 'STANDARD of CARE' team timeout. This theoretical primer was followed by *in situ* simulation for the entire interdisciplinary multiprofessional stroke team. The simulation training was structured in briefing – simulation – debriefing and lasted approximately three hours. The training was located at the emergency department, CT and angiography suite to reflect the whole treatment

pathway from arrival at the hospital to groin puncture. Pre-defined scenarios (e.g. elevated blood pressure) had to be treated by the teams. A 'hot' debriefing was performed directly after the simulation with all participants, focusing on CRM-aspects and the identification of time eaters.¹⁹

Figure III: STREAM simulation training

Material for Simulation Training

We decided to use a high-fidelity manikin (Resusci Anne, Laerdal Medical, Puchheim, Germany) with a monitoring system to on the one hand provide the usual cardiorespiratory alarms and on the other hand standardize the simulation with a focus on team communication. The manikin was controlled by a stroke team trainer and provided voice (by stroke team trainer) and vital parameters (depending on specific treatment, controlled by stroke team trainer). In addition, the standard environment of the respective emergency room was used and blood samples were provided. As routine a CT scan was performed and sample scans were presented via local radiology system to enable the assessment of acute stroke imaging for the participants of the simulation.

Teaching Materials

- Pocket Cards of an exemplary stroke team algorithm
- Exemplary sequence of a stroke team training
- Presentation for the theoretical introduction

- Scripted simulation scenarios
- Questionnaires for training evaluation
- Further information material about simulation training and theoretical aspects