Kupfer(I)-chlorid-Addukte von Phosphoraniminen Die Kristallstrukturen von Ph₃PNPh·CuCl und von 2,3-Bis(triphenylphosphoranylidenamino)maleinsäure-N-methylimidKupfer(I)-chlorid

Copper(I) Chloride Adducts of Phosphoranimines

The Crystal Structures of Ph3PNPh·CuCl and of

2,3-Bis(triphenylphosphoranylideneamino)maleic Acid N-Methylimide Copper(I) Chloride

Andrea Maurer, Dieter Fenske

Institut für Anorganische Chemie der Universität Frankfurt, Niederurseler Hang, D-6000 Frankfurt/Main 50

Johannes Beck, Wolfgang Hiller, Joachim Strähle

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7500 Tübingen

Eberhard Böhm und Kurt Dehnicke*

Fachbereich Chemie der Universität Marburg, Hans-Meerwein-Straße, D-3550 Marburg/Lahn

Z. Naturforsch. 43b, 5-11 (1988); eingegangen am 4. September 1987

Copper(I) Chloride Adducts of Phosphoranimines, Synthesis, IR Spectra, Crystal Structure

The title compounds $Ph_3PNPh \cdot CuCl$ (1) and $(Ph_3P)_2N_2C_4O_2(NMe) \cdot CuCl$ (2) have been prepared by the reactions of CuCl with the corresponding phosphoranimines Ph_3PNPh and 2,3-bis(triphenylphosphoranylideneamino)maleic acid N-methylimide, respectively. Both complexes were characterized by their IR spectra as well as by crystal structure determinations.

 $Ph_3PNPh \cdot CuCl$ (1): space group P1, Z=4, 3639 independent observed reflexions, R=0.038. Lattice dimensions (18 °C): a=1047.6; b=1251.5; c=1755 pm; $\alpha=103.43^\circ$; $\beta=97.24^\circ$; $\gamma=101.30^\circ$. The compound forms monomeric molecules; the asymmetric unit contains two crystallographically independent molecules. The CuCl molecule is bonded *via* the N atom of the phosphoranimine. Bond lengths: Cu-N=189 pm; Cu-Cl=209 pm; bond angle $N-Cu-Cl=177^\circ$.

 $(Ph_3P)_2N_2C_4O_2(NMe)\cdot CuCl$ (2): space group Pbca, Z=8, 5611 independent, observed reflexions, R=0.069. Lattice dimensions (25 °C): a=1224.3; b=1962.5; c=2994.0 pm. The compound forms monomeric molecules with the CuCl molecule bonded *via* one of the N atoms of the phosphoranimine groups. Bond lengths: Cu-N=194 pm; Cu-Cl=212 pm; bond angle $N-Cu-Cl=175^\circ$.

Wir haben soeben über die Kristallstrukturen der Phosphoranylidenamine Ph₃PNPh und 2,3-Bis(triphenylphosphoranylidenamino)maleinsäure-N-methylimid berichtet [1], deren mögliches Donor-Verhalten gegenüber Lewis-aciden Metallhalogeniden unser Interesse findet. Wir beschreiben im folgenden die Ergebnisse der Umsetzungen dieser Phosphoranimine mit Kupfer(I)-chlorid.

1. Synthesen und Eigenschaften der CuCl-Addukte

Das CuCl-Addukt des N-Phenyl-iminotriphenylphosphorans entsteht in Form weißer, in trockenem Zustand luftstabiler Kristalle in siedendem Ethanol aus den Komponenten:

$$Ph_3PNPh + CuCl \rightarrow Ph_3PNPh \cdot CuCl$$
 (1)

Nach dem Abkühlen der gesättigten Lösung auf 0 °C läßt sich **1**, das in Lösung oxidationsempfindlich ist, in praktisch vollständiger Ausbeute erhalten.

In entsprechender Weise entsteht das CuCl-Addukt des 2,3-Bis(triphenylphosphoranylidenamino)-maleinsäure-N-methylimids in Form roter Kristalle unter Verwendung von Aceton als Lösungsmittel:

$$(Ph_3P)_2N_2C_4O_2(NMe) + CuCl \rightarrow (Ph_3P)_2N_2C_4O_2(NMe) \cdot CuCl$$
 (2)

In diesem Fall läßt sich nur das N-Atom einer der beiden Phosphoraniminogruppen mit CuCl koordi-

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932-0776/88/0100-0005/\$ 01.00/0

^{*} Sonderdruckanforderungen an Prof. Dr. K. Dehnicke.

nieren. Die zweite Phosphoraniminogruppe scheint aus sterischen Gründen für eine zweite, monofunktionelle Koordination eines CuCl-Moleküls nicht geeignet zu sein (s. u.). Andererseits weicht das koordinierte CuCl-Molekül einer möglichen Chelatisierung mit dem zweiten N-Atom der zueinander *cis*-ständigen Phosphoraniminogruppen wegen seiner Tendenz zur sp-Hybridisierung aus. Für diese Deutung spricht auch, daß 2,3-Bis(triphenylphosphoranylidenamino)-maleinsäure-N-methylimid gegenüber CoCl₂, MnCl₂ u. a. durchaus als Chelatligand fungiert [2].

Im IR-Spektrum von 1 erfährt die PN-Valenzschwingung gegenüber dem Spektrum von Ph₃PNPh (1344 cm⁻¹ [3]) eine langwellige Verschiebung nach 1250 cm⁻¹, obwohl sich die PN-Bindungslänge nach der Koordination durch das CuCl-Molekül nicht ändert (s. u.). Der Effekt beruht wohl im wesentlichen auf den veränderten Kopplungsverhältnissen. Zwei Banden mittlerer Intensität im IR-Spektrum von 1 bei 389 und 364 cm⁻¹ ordnen wir den Valenzschwin-

gungen ν Cu-Cl bzw. ν Cu-N zu. Im [NBu₄][CuCl₂] werden die CuCl₂-Valenzschwingungen bei 404 (ν_{as}) und 304 cm⁻¹ (ν_{s}) gefunden [4], was gut zu den sehr ähnlichen Cu-Cl-Abständen im [CuCl₂]^{\odot}-Ion und im Molekül 1 paßt (s. u.). Weniger charakteristisch sind die Beobachtungen über Cu-N-Valenzschwingungen, für die ein weiter Frequenzbereich von 253 bis 512 cm⁻¹ angegeben wird [5], so daß die Bande bei 364 cm⁻¹ im Spektrum von 1 hierfür in Betracht kommt. Eine weitere Absorption von 1 bei 136 cm⁻¹ ordnen wir einer δ NCuCl-Schwingung zu.

Ein ähnliches Bild ergibt das IR-Spektrum von **2.** Neben den beiden CO-Valenzschwingungen bei 1676 und 1605 cm⁻¹, die im Vergleich zu dem Spektrum des freien Diphosphoranimids (1680, 1635 cm⁻¹ [1]) nur wenig verschoben sind, wird auch νPN von 1400 cm⁻¹ langwellig nach 1370 bzw. 1330 cm⁻¹ beeinflußt. Zwei Banden bei 380 und 350 cm⁻¹ lassen sich νCuCl bzw. νCuN zuordnen.

2. Kristallstrukturen

Tab. I enthält die kristallographischen Daten und Angaben zu den Strukturlösungen, die Tab. II und III die Bindungsabstände und -winkel, Tab. IV und V die Atomkoordinaten*.

Tab. I. Kristalldaten und Angaben zu den Kristallstrukturbestimmungen von 1 und 2.

		$(C_6H_5)_3PNC_6H_5 \cdot CuCl$ (1)	$[(C_6H_5)_3P]_2N_2C_4O_2(NCH_3)\cdot CuCl\ (\textbf{2})$
Raumgruppe		triklin, PĪ	orthorhombisch, Pbca
Meßtemperatur		18 °C	25 °C
Gitterkonstanten	a	1047,6(2) pm	1224,3(5) pm
	b	1251,5(6) pm	1962,5(12) pm
	c	1755,0(9) pm	2994,0(20) pm
	α	103,43(3)°	90°
	β	97,24(3)°	90°
	γ	101,30(3)°	90°
Zellvolumen	\dot{V}	$2158.8 \cdot 10^6 \text{ pm}^3$	$7193,7 \cdot 10^6 \text{ pm}^3$
Formeleinheiten	Z	4	8
Dichte	Q_{x}	$1,392 \text{ g/cm}^3$	$1,405 \text{ g/cm}^3$
Meßgerät		CAD 4, Enraf-Nonius	AED II, Siemens
Strahlung		$MoK\alpha$	$MoK\alpha$
Meßbereich	θ	2-24°	2-56°
Zahl der unabh. Reflexe mit $I \ge 3\sigma(I)$		3639	5611
Absorptionskorrektur		DIFABS	keine
Strukturaufklärung		Patterson	Patterson
Verfeinerung		alle Atome (außer H) anisotrop	alle Atome (außer H) anisotrop
H-Atomlagen		berechnete Lagen, einbezogen	aus Differenzfouriersynthese, isotrop
C		in Strukturfaktorrechnung	verfeinert
R-Werte	R	0,038	0,069
	$R_{\rm w}$	0,040	0,053

Verwendete Rechenprogramme: SDP bei 1, SHELX bei 2 und ORTEP.

^{*} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 52662, der Autoren und des Zeitschriftenzitats angefordert werden.

Tab. II. Ausgewählte Bindungslängen [pm] und -winkel [°] in $(C_6H_5)_3PNC_6H_5\cdot CuCl$ (1).

Molekül 1		Molekül 2	
Cu1-Cl1	207,8(2)	Cu2-Cl2	209,1(1)
Cu1-N1	188,5(4)	Cu2-N2	188,5(4)
P1-N1	160,1(4)	P2-N2	160,1(4)
P1-C121	179,6(5)	P2-C221	180,1(5)
P1-C131	180,6(5)	P2-C231	180,1(5)
P1-C141	179,1(4)	P2-C241	178,7(5)
N1-C111	143,3(5)	N2-C211	142,4(5)
Cl1-Cu1-N1	177,1(1)	C12-Cu2-N2	175,8(1)
Cu1-N1-C11	120,9(2)	Cu2-N2-C211	115,8(2)
Cu1-N1-P1	116,0(1)	Cu2-N2-P2	120,7(2)
P1-N1-C111	123,0(3)	P2-N2-C211	122,5(3)
N1-P1-C121	105,3(2)	N2-P2-C221	113,4(2)
N1-P1-C131	112.8(2)	N2-P2-C231	115,6(2)
N1-P1-C141	112,6(2)	N2-P2-C241	106,3(2)
C121-P1-C131	109.0(2)	C221-P2-C231	106,1(2)
C121-P1-C141	106,0(2)	C221-P2-C241	109,2(2)
C131-P1-C141	110,7(2)	C231-P2-C241	106,0(2)

Tab. III. Ausgewählte Bindungslängen und -winkel in $[(C_6H_5)_3P]_2N_2C_4O_2(NCH_3)\cdot CuCl~(\textbf{2}).$

Abstände i	n pm	Winkel in Grad	
Cu-Cl	211,8(1)	Cl-Cu-N3	174,9(1)
Cu-N3	193,8(1)	N2-P1-C40	117,6(1)
P1-N2	158,7(1)	N2-P1-C50	105,8(1)
P1-C40	182,2(1)	N2-P1-C60	115,3(1)
P1-C50	180,4(1)	N3-P2-C10	113,8(1)
P1 - C60	181,4(1)	N3-P2-C20	105,7(1)
P2-N3	162,0(1)	N3-P2-C30	112,4(1)
P2-C10	181,3(1)	C3-N1-C4	109,0(1)
P2-C20	179,9(1)	C3-N1-C5	125,9(1)
P2-C30	181,4(1)	C4-N1-C5	124,3(1)
O1-C3	121,5(4)	P1-N2-C1	128,1(1)
O2-C4	121,0(5)	Cu-N3-P2	119,3(1)
N1-C3	138,7(5)	Cu-N3-C2	115,6(1)
N1-C4	138,5(5)	P2-N3-C2	123,1(1)
N1-C5	145,6(4)	N2-C1-C2	129,3(2)
N2-C1	136,1(5)	N2-C1-C4	124,0(2)
N3-C2	140,0(1)	C2-C1-C4	106,7(1)
C1-C2	137,1(5)	N3-C2-C1	135,2(1)
C1-C4	150,5(6)	N3-C2-C3	117,0(1)
C2-C3	148,2(6)	C1-C2-C3	107,8(1)
	,	O1-C3-N1	124,9(1)
		O1-C3-C2	126,8(1)
		N1-C3-C2	108,4(1)
		O2-C4-N1	125,5(1)
		O2-C4-C1	126,5(1)
		N1-C4-C1	107,9(1)

Tab. IV. Lageparameter und äquivalente isotrope Temperaturparameter B_{eq} [pm²·10⁴] von Ph₃PNPh·CuCl (1).

Atom	X	У	z	\mathbf{B}_{eq}
Cu 1	-0.03498(7)	0,21655(6)	0,44421(4)	4,61(2)
Cl 1	0,1579(2)	0,2852(2)	0,5053(1)	7,48(5)
P1	-0.2411(1)	0.0471(1)	0,32044(8)	3,46(3)
N1	-0.2116(4)	0,1616(3)	0,3901(2)	3,6(1)
C111	-0.3100(5)	0,2241(4)	0,4080(3)	3,9(1)
C112	-0.2715(6)	0.3228(5)	0,4695(4)	5,4(2)
C113	-0.3627(7)	0,3861(5)	0,4905(4)	6,5(2)
C114	-0.4914(6)	0.3535(5)	0.4534(4)	6,0(2)
C115	-0.5308(6)	0,2559(5)	0.3919(4)	5,3(2)
C116	-0.4405(6)	0.1918(5)	0.3692(3)	4,6(1)
C121	-0.0919(5)	-0.0030(4)	0.3286(3)	3,9(1)
C122	0,0119(6)	0,0453(5)	0.2953(4)	5,0(2)
C123	0,1324(6)	0,0182(6)	0.3077(4)	6,2(2)
C124	0,1509(6)	-0.0565(6)	0,3519(4)	7,4(2)
C125	0,0487(7)	-0,1051(6)	0,3833(4)	7,4(2)
C126	-0.0727(6)	-0.0795(5)	0,3716(4)	5,6(2)
C131	-0.3764(5)	-0.0596(4)	0,3309(3)	3,7(1)
C131	-0.4712(6)	-0.1316(5)	0,2676(4)	4,7(1)
C132	-0.5727(6)	-0.2089(5)	0,2822(4)	6,0(2)
C133	-0.5801(6)	-0.2089(3) -0.2148(5)	0,3584(4)	6,0(2) $6,1(2)$
C134		-0.1447(5)	0,3384(4) 0,4214(4)	5,9(2)
C136	-0,4911(6) -0,3882(6)		0.4214(4) 0.4087(3)	5,9(2) $5,1(2)$
		-0.0656(5)		
C141	-0.2668(5)	0,0703(4)	0,2233(3)	3,5(1)
C142	-0.2858(6)	-0.0179(5)	0,1536(3)	4,7(1)
C143	-0.3023(7)	0,0022(5)	0,0784(3)	5,7(2)
C144	-0.2993(7)	0,1091(6)	0,0728(4)	6,8(2)
C145	-0.2783(6)	0,1981(5)	0,1403(4)	6,1(2)
C146	-0.2618(6)	0,1790(5)	0,2165(3)	4,8(1)
Cu2	0,35376(7)	0,56545(6)	0,06392(4)	4,24(2)
Cl2	0,4448(2)	0,7220(1)	0,0495(1)	5,53(4)
P2	0,2795(1)	0,3903(1)	0,15452(9)	3,53(3)
N2	0,2603(4)	0,4250(3)	0,0723(2)	3,8(1)
C211	0,1566(5)	0,3634(4)	0,0073(3)	3,6(1)
C212	0,1919(6)	0,3114(5)	-0.0633(4)	5,0(2)
C213	0,0947(7)	0,2556(5)	-0.1307(4)	5,9(2)
C214	-0.0357(6)	0,2505(5)	-0.1281(4)	5,4(2)
C215	-0.0705(6)	0,2992(5)	-0.0586(4)	5,7(2)
C216	0,0238(5)	0,3562(5)	0,0088(4)	5,0(2)
C221	0,2595(5)	0,2405(4)	0,1414(3)	4,0(1)
C222	0,3700(6)	0,1960(5)	0,1529(4)	4,8(1)
C223	0,3563(7)	0,0808(5)	0,1405(4)	5,8(2)
C224	0,2357(7)	0,0101(5)	0,1165(4)	6,2(2)
C225	0,1232(7)	0,0506(5)	0,1046(4)	6,2(2)
C226	0,1360(6)	0,1676(5)	0,1172(4)	5,4(2)
C231	0,1719(5)	0,4335(4)	0,2220(3)	3,7(1)
C232	0,1448(6)	0,3816(5)	0,2823(4)	5,2(2)
C233	0.0720(7)	0,4262(6)	0,3379(4)	6,3(2)
C234	0,0261(6)	0,5199(6)	0,3329(4)	6,1(2)
C235	0,0503(6)	0,5699(5)	0,2724(4)	5,8(2)
C236	0,1231(5)	0,5280(5)	0,2173(3)	4,6(1)
C241	0,4441(5)	0,4613(4)	0,2049(3)	3,6(1)
C242	0,5468(5)	0,4666(5)	0.1606(3)	4,7(1)
C243	0,6730(6)	0,5241(6)	0,1996(4)	5,9(2)
C244	0,6995(6)	0,5743(6)	0,2805(4)	6,7(2)
C245	0,6004(6)	0,5670(7)	0,3232(4)	7,0(2)
C246	0,4734(6)	0,5110(5)	0,2864(4)	5,1(2)
	-, (-)	-,(-)	-,(.)	, (-)

Tab. V. Lageparameter und äquivalente isotrope Temperaturparameter B_{eq} [pm²·10⁴] von [(C₆H₅)₃P]₂N₂C₄O₂(NCH₃)·CuCl (**2**).

Atom	x	у	z	B_{eq}
Cu	0,4979(1)	0,4537(1)	0,3400(1)	2,93(1)
Cl	0,4445(1)	0,5456(1)	0.3100(1)	4,73(1)
P1	0,5458(1)	0,1614(1)	0,4493(1)	3,78(1)
P2	0.5943(1)	0.3104(1)	0,3270(1)	2,30(1)
O1	0,4613(3)	0.4657(2)	0,4221(1)	3,82(2)
O2	0.4467(3)	0,2730(2)	0.5059(1)	3,48(2)
N1	0.4482(3)	0,3810(2)	0.4753(1)	3,63(3)
N2	0.5616(3)	0.2302(2)	0.4222(1)	2,56(2)
N3	0,5492(3)	0.3666(2)	0,3621(1)	2,48(2)
C1	0,5207(3)	0,2930(2)	0,4318(1)	2,20(2)
C2	0,5193(3)	0,3507(1)	0.4060(1)	2,27(2)
C3	0,4740(3)	0,4068(2)	0,4335(1)	2,62(2)
C4	0,4688(3)	0,3116(2)	0.4757(1)	2,59(2)
C5	0,3908(5)	0.4173(3)	0.5106(2)	2,76(2)
C10	0,3908(3) $0,7289(3)$	0,2780(2)		
			0,3406(1)	2,73(2)
C11	0,7779(4)	0,2946(2)	0,3810(1)	2,98(3)
C12	0,8824(4)	0,2712(3)	0,3907(2)	3,88(3)
C13	0,9375(5)	0,2297(3)	0,3612(2)	4,60(3)
C14	0,8900(4)	0,2139(3)	0,3201(2)	4,42(3)
C15	0,7867(4)	0,2384(3)	0,3101(2)	3,76(3)
C20	0,6118(4)	0,3550(5)	0,2750(1)	3,02(3)
C21	0,5339(10)	0,3531(5)	0,2417(2)	5,53(4)
C22	0,5472(6)	0,3922(3)	0,2037(2)	8,06(6)
C23	0,6381(9)	0,4321(4)	0,1984(2)	7,13(5)
C24	0,7177(6)	0,4342(4)	0,2302(2)	5,63(5)
C25	0,7044(5)	0,3940(3)	0,2680(1)	4,52(3)
C30	0.4970(3)	0.2423(2)	0.3173(1)	2,85(2)
C31	0,3866(4)	0,2589(2)	0,3205(2)	3,80(3)
C32	0.3066(5)	0.2110(3)	0.3113(2)	4,76(4)
C33	0,3363(6)	0,1461(3)	0.2974(2)	4,98(3)
C34	0,4451(6)	0.1291(3)	0,2937(2)	4,75(3)
C35	0.5257(5)	0.1765(2)	0,3040(2)	2,97(3)
C40	0,6102(3)	0.1552(2)	0,5040(1)	2,50(2)
C41	0,6663(4)	0.2100(2)	0.5218(2)	3,45(2)
C42	0.7153(4)	0,2040(3)	0,5636(2)	4,07(3)
C42	0.7118(5)	0,1439(3)	0,5864(2)	3,67(3)
C43	0,6582(5)	0,0888(3)	0.5687(2)	4,47(3)
C45	0,6083(4)	0.088(3) 0.0939(2)	0.5273(2)	3,66(3)
C50		,		
	0,6135(3)	0,0963(2)	0,4170(1)	2,22(2)
C51	0,5767(4)	0,0297(2)	0,4165(2)	3,58(3)
C52	0,6351(5)	-0.0208(3)	0,3949(2)	4,74(4)
C53	0,7327(5)	-0.0043(3)	0,3747(2)	4,90(4)
C54	0,7712(5)	0,0610(3)	0,3743(2)	4,50(4)
C55	0,7116(4)	0,1116(2)	0,3956(2)	3,73(3)
C60	0,4057(3)	0,1325(3)	0,4547(2)	2,73(2)
C61	0,3528(4)	0,1220(2)	0,4947(2)	3,39(3)
C62	0,2440(5)	0,1014(3)	0,4949(2)	4,67(3)
C63	0,1895(4)	0.0903(3)	0,4558(2)	4,63(4)
C64	0,2405(5)	0,1010(3)	0,4160(2)	4,68(4)
C65	0.3491(4)	0,1221(3)	0.4152(2)	3,66(3)

2.1. $Ph_3PNPh \cdot CuCl$ (1)

Die Verbindung bildet monomere Moleküle, in denen das CuCl monofunktionell an das N-Atom des Ph₃PNPh gebunden ist. Die asymmetrische Einheit

Abb. 1. Darstellung der beiden symmetrieunabhängigen Moleküle Ph₃PNPh·CuCl (1); a) Molekül 1, b) Molekül 2.

enthält zwei kristallographisch unabhängige Moleküle, die sich vor allem in der Konformation der PPh₃-Gruppe und durch den Diederwinkel des am N-Atom gebundenen Phenylringes zur PNC-Ebene unterscheiden (Abb. 1). Im Molekül 1 beträgt dieser Winkel nur 1,8°, so daß ähnlich wie im Ph₃PNPh-Molekül [1] ein kurzer Kontakt P···C (116) von 309,7 pm möglich wird:

In dem Molekül 2 beträgt der Diederwinkel 63,8°, so daß keine vergleichbare Wechselwirkung besteht. Ähnlich kleine Diederwinkel mit entsprechend kur-

zen P···C- bzw. P···N-Kontakten wurden auch in den Molekülstrukturen von N-Pyrid-4-yl-iminotriphenylphosphoran [6] und in dem isomeren N-Pyrid-2-yl-iminotriphenylphosphoran [7] beobachtet, während ein zum Molekül 2 des Komplexes 1 vergleichbarer Diederwinkel von 35° im *p*-Bromphenylimino(triphenyl)phosphoran [8] gefunden wurde.

Die Koordination des CuCl an das N-Atom des Ph₃PNPh-Moleküls bleibt in beiden Molekülen ohne Einfluß auf die P=N-Bindungslänge. Jedoch wird die N-C-Bindungslänge von 133 pm [1] um 10 pm gedehnt, während sich der Bindungswinkel PNC zugleich von 130° [1] auf 123° verengt. Hierin spiegelt sich die Verringerung der von Kulpe *et al.* [6, 7] diskutierten Bindungskonjugation der PNC-Gruppe (A) zugunsten von Form (B) als Folge der Inanspruchnahme des freien Elektronenpaars am N-Atom wider:

2.2. $(Ph_3P)_2N_2C_4O_2(NMe) \cdot CuCl$ (2)

Die Verbindung 2 bildet diskrete Moleküle, in denen das CuCl-Molekül in nahezu gestreckter Anordnung an das N-Atom einer der beiden Iminophosphorangruppen gebunden ist (Abb. 2). Hierbei handelt es sich um die Iminophosphorangruppe, die wegen des relativ großen Diederwinkels CNP/Maleinsäureimidring im (Ph₃P)₂N₂C₄O₂(NMe)-Molekül von 53,6° [1] in keiner nennenswerten Bindungskonjugation mit dem Ringgerüst steht. Durch die Koordination mit dem CuCl-Molekül verändert sich dieser Diederwinkel drastisch nach 9,2°, so daß nunmehr eine Konjugation mit dem Maleinsäureimidring möglich wird. Die zweite Iminophosphorangruppe, die bereits im Donormolekül nahezu coplanar mit dem Maleinsäureimidring angeordnet war (Diederwinkel 3,5° [1]), ist aus sterischen Gründen nicht zur Koordination mit einem zweiten CuCl-Molekül befähigt. Bei ihr ändert die Komplexbildung mit dem CuCl diesen Diederwinkel nur wenig (3,1°). Der

Bindungswinkel P(2)-N(3)-C(2) verringert sich nach der Koordination des CuCl am N-Atom (3) von 136° [1] nach 123°, was im Betrag noch größer ist als im Komplex 1 (s.o.). Da sich auch die Bindungslänge N(3)-C(2) von 136,9 pm [1] nach 140 pm vergrößert, lassen sich die Bindungsverhältnisse, wie für den Komplex 1 erläutert, mit einer Zunahme des Gewichts von Resonanzform (B) deuten (s.o.).

Auffällig sind im Vergleich zu dem Komplex 1 die etwas längeren Bindungsabstände N(3)-Cu (194 pm) und Cu-Cl (212 pm). Möglicherweise hängt dies mit der benachbarten Carbonylfunktion zusammen, zu deren Sauerstoffatom O(1) das Cu-Atom mit 270 pm einen auffällig kurzen Kontakt hat. Ähnliche Verhältnisse werden bei der Protonierung am N-Atom des Ph₃PNPh₃ in den Salzen [Ph₃PN(H)Ph]-AuI₂ [1] und [Ph₃PN(H)Ph]-[CuCl₄] [9] beobachtet.

Linear koordiniertes Kupfer(I) wurde bisher nur relativ selten beobachtet. In Lewis-Base-Addukten verwirklicht das Kupferatom meist eine tetraedrische, seltener eine trigonal planare Koordination [10]. Auch in den Monohalogeniden des Kupfers, die in der Zinkblendestruktur kristallisieren, weist das einwertige Kupfer tetraedrische Koordination auf [10]. Lineare Koordination wird meist nur mit stark raumbeanspruchenden Liganden gefunden. Beispiele sind [Me₃SiCH₂Cu]₄ [11], der Hexaphenylcarbodiphosphorankomplex (Ph₃P)₂CCuCl [12], die Anionen in den Verbindungen [Li(12-Krone-4)₂][CuMe₂] und [Li(12-Krone-4)₂][(SiMe₃)₂CHCuBr] [13] sowie die Kationen in den 1-Methylpyrazol- bzw. 1,3,5-Trimethylpyrazolkomplexen [CuL₂][BF₄] [14]. Au-Berdem kennt man die hantelförmigen Anionen $[CuCl_2]^{\ominus}$ im $(PPh_4)_3[MoOS_3(CuCl)_3][CuCl_2]$ [15] und $[CuO_2]^{3\ominus}$ im KNa₂[CuO₂] [16]. Auffällig sind die nur geringen Unterschiede in den Bindungsabständen Cu-Cl (im Mittel 208,5 pm) bzw. Cu-N (im Mittel 188,5 pm) im Komplex 1 im Vergleich zu den entsprechenden Bindungslängen in den Ionen [CuCl₂][⊙] $(209.3 \text{ pm } [15]) \text{ bzw. } [\text{CuL}_2]^{\oplus} (186-188 \text{ pm } [14]).$ Dies läßt für 1 auf eine relativ feste Cu-N- und eine entsprechend gelockerte CuCl-Bindung schließen.

Experimenteller Teil

Die Versuche erfordern Ausschluß von Feuchtigkeit und von Luftsauerstoff. Die Lösungsmittel Ethanol und Aceton wurden entsprechend vorbehandelt. Ph₃PNPh [17] und (Ph₃P)₂N₂C₄O₂(NMe) [1]

Abb. 2. Darstellung der Molekülstruktur von $(Ph_3P)_2N_2C_4O_2(NMe)\cdot CuCl$ (2).

erhielten wir wie beschrieben aus den entsprechenden Aziden durch Staudinger-Reaktionen mit PPh₃. CuCl wurde aus CuSO₄-Lösung, NaCl und SO₂ erhalten [18]. Die IR-Spektren wurden mit Hilfe der Geräte Bruker IFS-88 (4000–100 cm⁻¹) bzw. Perkin-Elmer Typ 283 (4000–300 cm⁻¹) erhalten; KBr-Preßlinge und Nujol-Verreibungen; CsBr-Scheiben.

$(C_6H_5)_3PNC_6H_5 \cdot CuCl$ (1)

0,60 g CuCl (5,94 mmol) werden in 30 ml Ethanol bei 80 °C suspendiert und unter Rühren eine Lösung von 1,90 g Ph₃PNPh (5,38 mmol) zugetropft. Nach 1 h wird in der Hitze von wenig Ungelöstem abfiltriert und die Lösung langsam auf 0 °C abgekühlt. Man filtriert den weißen kristallinen Niederschlag, wäscht mit wenig kaltem Ethanol und trocknet i. Vak. Ausbeute 2,32 g (95%, bez. auf Ph₃PNPh).

C₂₄H₂₀NPCuCl (452,4)

Gef. C 63,66 H 4,64 N 3,07 Cu 14,19, Ber. C 63,72 H 4,45 N 3,10 Cu 14,04.

$[(C_6H_5)_3P]_2N_2C_4O_2(NCH_3)\cdot CuCl$ (2)

2,0 g CuCl (20,2 mmol) werden mit 6,60 g $(Ph_3P)_2N_2C_4O_2(NMe)$ (10,0 mmol 2,3-Bis(triphenylphosphoranimino)maleinsäure-N-methylimid) 2 h in 100 ml Aceton am Rückfluß erhitzt. Man filtriert heiß von Ungelöstem und kühlt auf 0 °C ab. Die leuchtend roten Kristalle werden filtriert, mit wenig kaltem Aceton gewaschen und i.Vak. getrocknet. Ausbeute 6,80 g (90%, bez. auf CuCl).

C₄₁H₃₃O₂P₂N₃CuCl (760,68)

Gef. C 64,50 H 4,30 N 5,46, Ber. C 64,73 H 4,37 N 5,53.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für großzügige Förderung.

- [1] E. Böhm, K. Dehnicke, J. Beck, W. Hiller, J. Strähle, A. Maurer und D. Fenske, Z. Naturforsch. 43b (1988).
- [2] A. Maurer, Dissertation Universität Karlsruhe (1987).
- [3] W. Wiegräbe, H. Bock und W. Lüttke, Chem. Ber. **99**, 3737 (1966).
- [4] G. A. Bowmaker, L. D. Brockliss und R. Whiting, Austral. J. Chem. 26, 29 (1973).
- [5] J. Weidlein, U. Müller und K. Dehnicke, Schwingungsfrequenzen II, G. Thieme-Verlag, Stuttgart – New York (1986).
- [6] S. Kulpe, I. Seidel, J. Bödeker und P. Köckritz, Crystal Res. Technol. 19, 649 (1984).
- [7] S. Kulpe, I. Seidel, J. Bödeker und P. Köckritz, Crystal Res. Technol. 19, 655 (1984).
- [8] M. J. E. Hewlins, J. Chem. Soc. (B) 1971, 942.
- [9] J. Beck, A. Macias, J. Strähle, E. Böhm und K. Dehnicke, unveröffentlicht.
- [10] A. F. Wells, Structural Inorganic Chemistry, 5th Ed., Clarendon Press, Oxford (1984).

- [11] J. A. J. Jarvis, B. T. Kilbourn, R. Pearce und M. F. Lappert, J. Chem. Soc. Chem. Commun. 1973, 475.
- [12] H. Schmidbaur, C. E. Zybill, G. Müller und C. Krüger, Angew. Chem. 95, 753 (1983); Angew. Chem., Int. Ed. Engl. 22, 729 (1983).
- [13] H. Hope, M. M. Olmstead, P. P. Power, J. Sandell und X. Xu, J. Am. Chem. Soc. 107, 4337 (1985).
- [14] T. N. Sorrell und D. L. Jameson, J. Am. Chem. Soc. 105, 6013 (1983).
- [15] W. Clegg, C. D. Garner, J. R. Nicholson und R. R. Raithby, Acta Crtystallogr. C 39, 1007 (1983).
- [16] W. Losert und R. Hoppe, Z. Anorg. Allg. Chem. 515, 87 (1984).
- [17] L. Horner und H. Oediger, Liebigs Ann. Chem. 627, 142 (1959).
- [18] G. Brauer, Handbuch der Präparativen Anorganischen Chemie, 3. Aufl., Bd. II, S. 972. F. Enke-Verlag, Stuttgart (1978).