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Abstract
1.	 The most basic behavioural states of animals can be described as active or pas-

sive. While high-resolution observations of activity patterns can provide insights 
into the ecology of animal species, few methods are able to measure the activity 
of individuals of small taxa in their natural environment. We present a novel ap-
proach in which a combination of automatic radiotracking and machine learning 
is used to distinguish between active and passive behaviour in small vertebrates 
fitted with lightweight transmitters (<0.4 g).

2.	 We used a dataset containing >3 million signals from very-high-frequency (VHF) 
telemetry from two forest-dwelling bat species (Myotis bechsteinii [n = 52] and 
Nyctalus leisleri [n = 20]) to train and test a random forest model in assigning ei-
ther active or passive behaviour to VHF-tagged individuals. The generalisability 
of the model was demonstrated by recording and classifying the behaviour of 
tagged birds and by simulating the effect of different activity levels with the 
help of humans carrying transmitters. The model successfully classified the ac-
tivity states of bats as well as those of birds and humans, although the latter 
were not included in model training (F1 0.96–0.98).

3.	 We provide an ecological case-study demonstrating the potential of this auto-
mated monitoring tool. We used the trained models to compare differences in 
the daily activity patterns of two bat species. The analysis showed a pronounced 
bimodal activity distribution of N. leisleri over the course of the night while the 
night-time activity of M. bechsteinii was relatively constant. These results show 
that subtle differences in the timing of species' activity can be distinguished 
using our method.

4.	 Our approach can classify VHF-signal patterns into fundamental behavioural 
states with high precision and is applicable to different terrestrial and flying ver-
tebrates. To encourage the broader use of our radiotracking method, we provide 
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1  |  INTRODUC TION

The behaviour of an animal can be fundamentally divided into ac-
tive and passive states (Halle & Stenseth,  2000), with the former 
requiring a much higher energy expenditure (Rowcliffe et al., 2014). 
Quantifying the distribution of activity periods throughout the day 
provides important insights into species' responses to their environ-
ment, foraging strategies, bioenergetics and adaptations (Torney 
et al., 2021). Moreover, temporal segregation of species that share 
the same niche is one recognised mechanism that can facilitate spe-
cies coexistence (Nakabayashi et al., 2021).

Detailed analysis of individual activity patterns requires high-
resolution observations (Nathan et al., 2022), which are often difficult 
to obtain. The observer's presence may influence animal behaviour 
and thus bias conclusions (Crofoot et al., 2010) and continuous ob-
servation of elusive or highly mobile species in habitats with dense 
vegetation is close to impossible (Maffei et al., 2005). Information 
on medium to large-sized species can be obtained using camera 
traps, GPS transmitters and accelerometers (Kays et al.,  2015), as 
demonstrated by investigations of dynamic habitat and resource 
use (Wyckoff et al., 2018), behaviour (Freeman et al., 2010) and mi-
gration and dispersal (Walton et al., 2018). However, these devices 
are of limited use for small animals (<100 g), due to low detection 
probabilities, the trade-off between transmitter size and weight, 
battery life, and data collection intensity (Hallworth & Marra, 2015; 
Hammond et al., 2016; Wikelski et al., 2007). Newer technical solu-
tions such as the ATLAS system (Advanced Tracking and Localisation 
of Animals in real-life Systems; Nathan et al., 2022) or the Wildlife 
Biologging Network (WBN; Ripperger et al., 2020) allow the tracking 
of small animals with high temporal and spatial resolution, but the 
required installation effort and costs remain high.

Very-high-frequency (VHF) telemetry has been used in wildlife 
tracking since the 1960s (Cochran et al., 1965), with the ongoing min-
iaturisation of VHF transmitters (<0.2 g) allowing the tracking of small 
taxa (body mass <5 g), ranging from large insects to small vertebrates 
(Naef-Daenzer et al., 2005). Some studies take advantage of the fact 
that even small movements of tagged animals result in discernible 
variations in the strength of the received signal (Kjos & Cochran, 1970) 
that reflect changes in the angle and distance between the transmit-
ter and receiver (Figure 1). However, collecting reasonable amounts 
of data on activity bouts using manual radiotelemetry requires an 
enormous amount of fieldwork, which implies a high level of wildlife 

disturbance (Kenward, 2000), and the risk of missing critical events in 
the life of the tagged individuals is high (Lambert et al., 2009).

Kays et al. (2011) proposed a method for automatically classify-
ing active and passive behaviour based on a threshold in the differ-
ence in the signal strength of successive VHF-signals recorded by 
a system commercially available at the time. Schofield et al. (2018) 
applied a similar system to investigate the activity pattern of 241 
individuals out of three migrating songbird species during stopover. 
They found that a threshold of 2.5 dBm optimally separates active 
from passive behaviour. However, the applied systems could only 
track one tag at a time, resulting in a low temporal resolution (i.e. 
a few seconds of observations approximately every 10 min due to 
switching through frequency channels). High-throughput tracking 
systems (<10-s data interval, many individuals at a time) are now 
widely available and enable ground-breaking research in animal be-
haviour, evolution, and ecology (Nathan et al., 2022). In recent years, 
with the ongoing development of low-cost open-source solutions, 
automatic VHF radiotracking now enables such high-resolution 

the trained random forest models together with an R package that includes all 
necessary data processing functionalities. In combination with state-of-the-art 
open-source automated radiotracking, this toolset can be used by the scientific 
community to investigate the activity patterns of small vertebrates with high 
temporal resolution, even in dense vegetation.

K E Y W O R D S
automated radiotelemetry system, bats, behaviour, birds, generalised additive models, 
machine learning, Myotis bechsteinii, Nyctalus leisleri, random forest, small animals, tRackIT

F I G U R E  1  Principle of activity-recognition-based on very-high-
frequency (VHF) signal patterns. Top: flying bat; bottom: resting 
bat. The amplitude and variation of the signal strength over time 
increase when the tagged individual is moving.
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capacities. Systems such as the Motus Wildlife Tracking System 
(Taylor et al., 2017) or the tRackIT-system (Höchst et al., 2021) allow 
the tracking of many individuals simultaneously and with a very high 
temporal resolution (seconds) over the complete tagging period. 
Continuous, high-resolution recording of the VHF-signals makes the 
entire signal pattern available for subsequent data analysis.

In this work, we build on the methodology of Kays et al. (2011) by 
calibrating a machine learning (ML) model based on millions of data 
points representing the behaviours of multiple tagged individuals of 
two temperate bat species (Myotis bechsteinii, Nyctalus leisleri). Many 
ML algorithms are optimised for the recognition of complex patterns 
in a dataset and may be more robust against factors that influence 
signal propagation, such as changes in temperature and humidity, 
physical contact with conspecifics and/or multipath signal propa-
gation (Alade, 2013) than a rule-based approach relying on a single 
separation value. ML approaches may therefore provide substantial 
improvements in the accuracy of individual activity states classifica-
tion compared to threshold-based approaches.

Although deep learning methods have been successfully applied 
to several ecological problems where large amounts of data are 
available (Christin et al., 2019), we chose a random forest model due 
to the following reasons: (a) developing a (supervised) deep learn-
ing method requires considerable effort for selecting an appropriate 
neural network architecture, choosing an appropriate framework to 
implement the neural network, training, validating, testing and re-
fining the neural network (Christin et al.,  2019), (b) our classifica-
tion tasks resolve to a simple binary classification of active/passive 
states based on tabular data. In this setting, tree ensemble methods 
such as random forests seem to have clear advantages—they are less 
computationally intensive, easy to implement, robust and at least as 
performant as deep learning (Shwartz-Ziv & Armon, 2022) and (c) in 
a large study comparing 179 classifiers applied to the 121 classifi-
cation data sets of the UCI repository, random forests are the best 
classifiers in over 90% of the cases (Fernández-Delgado et al., 2014).

Our random forest model was used in conjunction with recent de-
velopments in automated radiotelemetry (Gottwald et al., 2019; Höchst 
et al., 2021) to develop a toolset that allows researchers to record the 
activity patterns of even very small species (body mass <5 g) in their 
natural habitat and with high resolution. The method was tested by ap-
plying it to independent data from bats, humans and birds recorded in 
a densely vegetated and hilly area and then comparing the results with 
those obtained by the threshold-based approach of Kays et al. (2011) 
using the separation value suggested by Schofield et al. (2018).

In our method, activity states are recognised with high temporal 
resolution (<10 s) and high accuracy. In the following, we provide de-
tailed information on the application of the random forest model and 
its validation using data on the behaviour of tagged bat and bird indi-
viduals generated with an open-source multi-sensor tool (Gottwald 
et al., 2021). In a case study, we demonstrate the use of the approach 
to detect differences in activity patterns between those of the two 
forest dwelling bat species Myotis bechsteinii and N. leisleri.

In the next sections, we detail our process for developing and 
validating a random forest model to classify VHF-signals based on 

activity data gathered on bats, birds and humans. We showcase the 
possible insights in wildlife monitoring that our approach may bring 
by providing an ecological case study focusing on the comparison of 
activity patterns between two bat species. Detailed information on 
data processing and analysis is provided, along with an R package, 
example scripts and data in a hope to promote broad application in 
wildlife monitoring and ecology.

2  |  FIELD METHODS

2.1  |  Study area

The study was conducted in the Marburg Open Forest (MOF), 
Hesse, Germany, a densely vegetated mixed forest of 200 ha, domi-
nated by European beech (Fagus sylvatica) with some clearings and 
a relatively strong relief for low mountain ranges (lowest elevation 
~200 m, highest ~400 m; Figure 2). The forest is home to 13 species 
of bats and 43 species of birds.

2.2  |  Tagging of bats and birds

Every year, we caught and then tagged bats and birds with custom-
ised VHF-transmitters of different sizes and weights (V3+, Dessau 
Telemetrie-Service; 0.3 g 1 g). Tag weights were always <4% of the 
body mass of the tagged individual (see S2 for technical details, meth-
ods and permits). For the ecological case study on bats, we captured 
and tagged 91 bat individuals from two focus species (66 M. bechstei-
nii (~12 g) and 25 N. leisleri (~18 g)). For the evaluation of our approach 
(see ‘transferability to small diurnal flying vertebrates’ section) we 
used data of 19 bird individuals tagged in another study conducted 
in parallel (one Leiopicus medius, three Cyanistes caeruleus, three 
Erithacus rubecula, three Garrulus glandarius, three Parus major, three 
Sylvia atricapilla and three Turdus merula). The frequency separation 
between transmitters used simultaneously was at least 3  kHz. For 
the handling and tagging of the bats and birds, a licence was issued 
by the Nature Conservancy Department of Central Hessen (‘Obere 
Naturschutzbehörde Mittelhessen, Regierungspräsidium Gießen’, 
v54-19c 2015 h01; v54-19c 2015 h01 MR 20/15 Nr. G 10/2019).

2.3  |  Radiotracking

From 2018 to 2021, we operated a network of 15 custom-designed 
automatic radiotracking stations (henceforth ‘tRackIT-stations’; 
(Gottwald et al.,  2019; Höchst et al.,  2021)) distributed over the 
MOF (Figure  2). The stations recorded signal frequency, duration, 
and strength as well as the timestamp of the signal of all individuals 
tagged at a given time simultaneously and automatically.

Each tRackIT-station consisted of four directional antennas 
with moderate directivity (HB9CV-antenna). While this antenna de-
sign reduces the reception range to <1000 m in hilly and vegetated 
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terrain, it guarantees overlapping radiation patterns of neighbouring 
antennas which was necessary for bearing calculation and subse-
quent triangulation as described in Gottwald et al. (2019). However, 
tracking of positions of tagged individuals is not part of this study. 
The towers of the stations had a height of approximately 8 m, and 
antennas were oriented north, east, south and west. We perma-
nently monitored a frequency range of 150.000–150.300 MHz.

From 2018 to 2020, we used the paur 4.3 software developed by 
the open-source project radiotracking.eu (Gottwald et al., 2019) but 
switched to the tRackIT operating system (https://github.com/Natur​
e40/tRack​IT-OS)in 2021 due to high amounts of noise and frequent 
software failures that often went unnoticed (Höchst et al., 2021). The 
tRackIT-system enables live transmission of parameters to assess the 
health of the stations as well as transmission, processing and visualisa-
tion of VHF-signals. The former greatly reduces maintenance time and 
the latter enables tracking of activity, positions and body temperature 
in near real time. For a detailed description of the hardware and soft-
ware, please see Gottwald et al. (2019) and Höchst et al. (2021).

The VHF data were filtered by tag frequency +/− 3 kHz and sig-
nal duration +/− 5 milliseconds according to settings given by the 

manufacturer. For the data recorded with the radiotracking.eu software, 
we had to visually assess the success of the filtering procedure and in 
some cases remove recordings below a station- and frequency-specific 
threshold in dBW due to high amounts of electromagnetic noise.

In total, we used data from 72 individuals (M. bechsteinii: NID = 52, 
NObs = 577,977; N. leisleri: NID = 20, NObs = 204,443) monitored for an 
average of 19 days (according to battery power) to distinguish active 
from passive states.

3  |  A R ANDOM FOREST MODEL TO 
CL A SSIF Y AC TIVIT Y STATES BA SED ON 
AUTOMATIC ALLY RECORDED VERY-HIGH-
FREQUENCY SIGNAL S

3.1  |  Groundtruth

We used the patterns in the strength of the recorded VHF-signals 
together with a supervised ML algorithm to classify the activity of 
the tagged individuals. Supervised ML requires training and test data 

F I G U R E  2  The Marburg Open Forest in Hesse, Germany. The map shows the locations of the tRackIT-stations (Gottwald et al., 2019; 
Höchst et al., 2021), the roost trees of bats (M. bechsteinii, N. leisleri) observed by BatRack multi-sensor stations (Gottwald et al., 2021), the 
breeding site of a woodpecker (Leiopicus medius) and the GPS track (shown in blue) of the activity simulation used to test the transferability 
of the classification method to birds and humans. (Map data from OpenStreetMap)
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for implementation. We monitored 23 out of the 72 tagged bat in-
dividuals (6 N. leisleri and 17 M. bechsteinii) using a multi-sensor tool 
(Gottwald et al., 2021) to supply the random forest model with peri-
ods of known activity and inactivity.

First, the roost trees of tagged bats were located via manual ra-
diotelemetry between 9 June 2020 and 26 July 2020 and between 
10 May 2021 and 18 August 2021. We then set up custom-made 
video recorder (‘BatRack’) units to automatically record videos of 
tagged individuals (Gottwald et al.,  2021; https://natur​e40.github.
io/BatRa​ck/ (vid. 2)). BatRacks consist of a VHF-antenna and an in-
frared video unit connected to a Raspberry Pi single board computer. 
We installed the cameras with a focus on the roost entrance and its 
surrounding area (40-m radius), which allowed the motion of tagged 
individuals to be captured on the video tracks. The infrared camera 
unit was automatically triggered by the VHF-signal of the bat trans-
mitters and started recording if the VHF-signal strength exceeded 
a threshold of −60 dBW, i.e., when a tagged bat flew close to the 
roosting tree and the BatRack system.

We manually reviewed the video tracks recorded by BatRack 
units in conjunction with the VHF-signal and classified the observed 
behavioural sequence into the categories swarming, passing, enter-
ing or emerging from the roost. Sequences that showed swarming, 
passing or emerging were classified as active, and the time between 
entering and emerging from the roost as inactive. In addition to the 
sequences recorded on video, we classified periods of time as active 
if an individual was recorded in short time intervals on widely sepa-
rated VHF-receivers (tRackIT-stations and BatRacks). From the three 
(2020) to nine (2021) BatRacks set in front of a total of 30 roosting 
trees of 6 N. leisleri and 17 M. bechsteinii individuals (Figure 2), 723 h 
of behaviour were recorded. For these periods of known activity 
type, we assigned a passive or active label to the VHF data recorded 
by one or more of the 15 tRackIT-stations.

3.2  |  Predictor variables

We calculated 29 predictor variables thought to capture the pat-
terns in the signal strengths over time by applying rolling windows 
of ±10 data entries, corresponding to an approximate time window 
of 20 s, to each observation of the classified VHF-data recorded 
by the tRackIT-stations. We chose the window size to capture the 
dominant signal strength pattern without smoothing out even short 
changes of the activity state. To prevent averaging over longer peri-
ods, the dataset was split into 5 min bins per station before applying 
the rolling windows. For each bin, we selected the receiver with the 
most data entries, that is, the best data coverage. We only evaluated 

bins with at least 60 observations, that is, three times the window 
size. This procedure ensures that only stations and receivers with 
relatively good reception are considered for classification.

To smooth out noise or potentially distracting fluctuations in 
the signal, we calculated a Hampel filter, in which data points that 
differ from the window median by more than three standard devia-
tions are replaced by the median (Hampel, 1974). We also applied a 
mean and a max filter on the raw data of the main receiver whereby 
the respective data point was replaced with the mean or max of the 
rolling window. Next, we calculated the variance, standard devia-
tion, kurtosis, skewness and sum of squares for both the raw and 
the smoothed data, to capture the variability and shape of the data 
distribution within the window.

Only one antenna is necessary to classify VHF-signals into active 
versus passive states. However, agreement between receivers of the 
same station provides additional information and can improve the 
reliability of the classification. This is especially likely if the individ-
ual is relatively close to the station (<400 m in our scenario). When 
data were available from more than one receiver at the same station, 
we calculated the variance of signal strength between the receiver 
with the most and the receiver with the second most observations, 
together with the correlation coefficient and the covariance of signal 
strength in a rolling window of ±10 data entries. All variables are 
described in Supplement S1.

3.3  |  Training and test data

To give equal weight to each class and to avoid overoptimistic ac-
curacy metrics caused by a comparably well-detected majority class, 
we balanced the groundtruth dataset by randomly down-sampling 
the activity class with the most data to the amount of data contained 
by the class with the least data. We then split these balanced data 
sets into 50% training data and 50% test data for data originating 
from one receiver. We used the same procedure for data derived 
from the signals of two receivers, resulting in two training and two 
test datasets. From a total of 3,243,753 VHF-signals, we assigned 
249,796 signals to train the two-receiver model and 588,880 signals 
to train the one-receiver model (Table 1).

3.4  |  Model tuning

We used a random forest model as our classification method because 
it tends to outperform other classifiers, as shown in an extensive com-
parative study (Fernández-Delgado et al., 2014). This model type is 

Setup
Active 
data

Passive 
data

Total data 
points

Balanced 
active (train/
test)

Balanced 
passive 
(train/test)

One receiver 588,880 2,654,873 3,243,753 294,440 294,440

Two receivers 249,796 1,469,674 1,719,470 124,898 124,898

TA B L E  1  Characteristics of the test 
and training data obtained from 723 h 
of video observation on 23 tagged 
individuals
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also robust against multicollinearity in predictor variables, especially 
when used with feature selection procedures (Gregorutti et al., 2017), 
as used in our approach. Since not all variables are equally important 
to the model and some may even be misleading, we used 50% of 
the data recorded by either one or two receivers to perform a for-
ward feature selection as implemented in the CAST package (Meyer 
et al., 2018). This resulted in two random forest models, for data col-
lected by one receiver and two receivers, respectively.

3.5  |  Groundtruth for controlled walks with 
human subjects

We conducted a series of 61 controlled walks with a human volunteer 
to test the reliability of the trained models when applied to various 
activity patterns and tag positions. This was achieved by moving the 
VHF transmitters at two different heights, 15 cm above the ground at 
the ankle and 4 m above the ground, on a pole, around the tRackIT-
stations. We simulated inactive states standing still and movements on 
a small spatial scale were simulated by walking and hopping back and 
forth over an area of about 1 m2. We simulated movements at a me-
dium spatial scale by walking within areas of 40 m2, and multiple back 
and forth displacements and displacements of at least 200 m were used 
to simulate large-scale movements. We performed each movement 
type for 3–10 min at different positions within the north-western part 
of the study area, which is characterised by a diverse topography and 
complete forest coverage (Figure 2). We recorded the beginning and 
end times of each sequences and all signals simultaneously recorded 
by one or more of the 15 tRackIT-stations and then manually assigned 
the known activity type (active or passive). The human activity dataset 
consisted of 32,175 data points (26,133 active, 6042 inactive).

3.6  |  Model validation

We applied the trained random forest models to the 50% of the data 
withheld for testing to evaluate their performance in classifying bat 
activity. The same trained models were applied to the human activity 
datasets. In a first step, we calculated the sensitivity (true positives/
(true positives + false negatives)) and specificity (true negatives/(true 
negatives + false positives)) based on a comparison of the observed 
data with the activity class attributed by the random forest models 
for both datasets. Additionally, we calculated the F1 metric as the 
harmonic mean of the precision (true positives/(true positives + false 
positives)) and sensitivity, the ROC-AUC and the Kappa index, which 
takes the probability distribution of each class into account. Values 

vary between 0 and 1 (<0 and <1 for Kappa), with values close to 
1 indicating that the model shows an almost perfect agreement 
(Chinchor, 1992; Landis & Koch, 1977).

4  |  RESULTS OF MODEL VALIDATION

The trained random forest models performed equally well, with 
F1-scores of at least 0.96 and sensitivities and specificities no less 
than 0.95, when applied to the validation data of bats and the human 
activity-simulation (Table 2). Whether the tag was positioned 15 cm 
or 4 m above the ground during the human activity simulation had 
no impact on the classification accuracy. The four activity levels 
simulated by a human were detected similarly well, with sensitivities 
between 0.95 and 0.97.

4.1  |  Comparison with a threshold-based approach

We compared the results of the ML-based approach with those of a 
threshold-based approach by calculating the difference in the signal 
strength between successive signals for the test datasets of bats and 
humans (for methods and results on the bird data see ‘transferability 
to small diurnal flying vertebrates’ section). We applied a threshold of 
2.5 dB, which was deemed appropriate to optimally separate active 
and passive behaviours in previous studies (Schofield et al., 2018). 
In addition, we used the optimise-function of the R-package stats (R 
Core Team, 2021) to identify the value of the signal strength differ-
ence that separated the training dataset into active and passive with 
the highest accuracy (i.e. 1.08 dB) and applied it to the test datasets. 
We calculated the same metrics as described above, except for ROC-
AUC, which requires probabilities for each classification.

Regardless of the method used, all F1 values were <0.9 (2.5  dB 
threshold, bats: 0.63, humans: 0.74; 1.08 dB threshold, bats: 0.74, 
humans: 0.88) and Kappa values <0.60 (2.5 dB threshold, bats: 0.37, 
humans: 0.3; 1.08 dB threshold, bats: 0.46, humans: 0.53), which 
correspond to a moderate to fair agreement (Landis & Koch, 1977). 
These values remain well below those obtained from our ML models 
however.

4.2  |  Ecological case study: Comparison of activity 
patterns in two forest bat species

In the following, we present an ecological case study to highlight 
the advantages of the fine-scale classification of activity states at a 

TA B L E  2  Performance metrics of the test datasets classified by the trained random forest model

Dataset n passive n active F1 ROC-AUC Sensitivity Specificity Precision Kappa

Bats 1 receiver 294,172 294,172 0.96 0.99 0.96 0.97 0.97 0.93

Bats 2 receivers 110,273 110,273 0.98 1.0 0.98 0.98 0.98 0.95

Human activity 6150 26,504 0.98 1.0 0.97 0.95 0.99 0.90
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1-min rate for two species monitored over four consecutive years. 
Both M. bechsteinii and N. leisleri are protected species (Habitats 
Directive 92/43/EEC) endemic to Eurasian forests, but they differ 
substantially in their foraging behaviour. Nyctalus leisleri feeds on 
ephemeral insects that occur in large numbers, but only for short 
periods at dusk and dawn (Beck, 1995; Rydell et al., 1996) while M. 
bechsteinii partially collects its prey from the vegetation (Dietz & 
Pir, 2011) and is thus generally less dependent on the timing of in-
sect flight activity (Rydell et al., 1996).

We focused on the following questions: (1) Do M. bechsteinii 
and N. leisleri differ in their overall probability of activity? (2) Do M. 
bechsteinii and N. leisleri differ in their timing of activity over the 
course of their circadian rhythms? To answer these questions, we 
compared the timing of the onset and end of activity periods, the 
timing of maximum activity and the overall duration of night-time 
activity bouts using the data processed with the random forest 
model.

4.3  |  Statistical analyses

All analyses were conducted with R v. 4.1.2 (R Core Team,  2021), 
using the mgcv package for additive models (Wood, 2011).

We used hierarchical generalised additive models (HGAMs) to 
compare differences in the overnight activity patterns of M. bech-
steinii and N. leisleri. These classes of models can be applied to es-
timate nonlinear relations between responses while allowing for a 
variety of error terms and random effect specifications (Pedersen 
et al., 2019). In this study, we modelled activity over the course of 
the 24-h cycle as shown in Equation 1:

where the probability of activity for observation i is modelled as a bi-
nomial variable (0: inactive, 1: active) as a function of the time of day 
(centered around sunset to account for seasonal shifts in daylight). 
We used a circular cubic spline with 120 equally spaced knots to con-
strain the beginning and end of the 24-h cycle so that they matched. 
Individual identity and date were added as random effects to account 
for individual, seasonal and yearly effects. Given the volume of data 
(>700,000 observations), all models were fitted through the bam() 
function for faster model estimation.

Given the short timespan between observations, our models 
had highly autocorrelated residuals (𝝆 > 0.50). While there are no 
strict guidelines for accounting for autocorrelation with binomial 
data in HGAMs, the residual autocorrelation was not influenced 
by the choice of the error family specified (gaussian vs. binomial). 
We, therefore, set the autocorrelation manually at a value equal to 
that of the first lag (𝝆 = 0.57) using the start_value_rho() from the  
itsadug package (van Rij et al., 2020). Next, we refitted with the esti-
mated autocorrelation value with an AR1 structure. This procedure 
successfully accounted for autocorrelation, as evidenced by the de-
crease in the median autocorrelation to −0.13 in the refitted model. 

Visual inspection of the autocorrelation confirmed that 𝝆 remained 
< |0.15| at all lags.

We compared the activity patterns of the two species by con-
trasting the Akaike information criterion (AIC) values for a model in 
which species did not vary in their daily activity patterns (Model 0) 
against one in which the effect of time of day varied between species 
(Model 1, using the ‘by = species’ argument to specify a time × species 
interaction). To visualise the fine-scale difference in activity patterns 
between M. bechsteinii and N. leisleri, we calculated the difference in 
spline functions, Δ f(time). This more precisely revealed the period of 
the day when the two species were most likely to differ in their prob-
ability of activity (negative value: P(activity )Bechstein < P(activity)Leisler, 
positive value: P(activity)Bechstein > P(activity)Leisler).

We further characterised the activity patterns of the two bat 
species by calculating the following metrics based on the predicted 
values for Model 1:

•	 Onset and end of activity periods, defined as the first and last time 
of day when the probability of activity was larger than chance (i.e. 
p(activity) > 0.5).

•	 Time of peak activity, calculated as the time of the day when the 
probability of activity, was maximal.

•	 Activity duration, defined as the duration of the activity period 
during a 24 h period weighted by the average probability of being 
active (in hours). This metric was calculated as the area under the 
curve between the onset and end of the activity period.

4.4  |  Species comparisons of circadian activity

Nyctalus leisleri and M. bechsteinii showed pronounced differences 
in the shapes of their activity curves and these species differ-
ences were also supported by AIC model selection (∆AIC = 15,092, 
Table 3; Figure 3). While both species appeared to synchronise their 
onset of activity with sunset, N. leisleri was active an average of 
19 min earlier than M. bechsteinii. N. leisleri also reached peak activity 
earlier, but its activity markedly declined as soon as M. bechsteinii 
became highly active.

The latter species was highly active throughout most of the 
night, as indicated by a significantly higher activity duration (area 
under the curve when p(activity) > 0.5 [95% CI]; M. bechsteinii: 4.70 
[4.56; 4.83]; N. leisleri: 3.42 [3.23; 3.62]). However, M. bechsteinii 
reached the end of its activity period an average of 12 min sooner 
than N. leisleri (Table 4).

4.5  |  Transferability of the models to diurnal flying 
vertebrates (birds)

Our previous section shows that the tRackIT-system can provide 
important insights into ecological differences between bat species 
with which the model was trained on. We know focus on the broader 
application of this method to other flying vertebrates.

(1)P(activity)i = f(time)i + � ID + �DATE,
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To test the reliability of the model on birds, we attached a 
transmitter to the back of a middle spotted woodpecker (L. medius), 
and placed a daylight variant of the BatRack (‘BirdRack’) in front 
of its nesting tree for 4 consecutive days. The tree was located on 
a steep and completely forested slope of a small valley (Figure 2). 
A typical recorded sequence consisted of flying, hopping up the 
stem, and a very short feeding sequence during which the bird 
remained motionless at the entrance of its breeding cavity. Since 
the feeding sequence was usually shorter than three consecutive 
VHF-signals (~2.5 s), we classified all recorded signals within such 
a sequence as active. To generate sufficient inactive sequences, 
2200 random data points were sampled from signals recorded by 
tRackIT-stations each night between 0:00 h and 2:00 h, while the 
woodpecker was presumably asleep, over four consecutive nights. 
The dataset of the woodpecker, based on the 75 observed activ-
ity sequences, consisted of 17,541 data points (8741 active, 8800 
inactive).

We applied the two random forest models to all recordings of the 
tagged woodpecker and calculated the same performance metrics as 
for bats and human activity for the sequences of known activity. We 
used the entire woodpecker data set as well as the activity classifi-
cations of six additional bird species, each represented by three indi-
viduals, to assess the transferability of the model to birds of different 
size and movement habits. Since there are no actual observations 
for the latter and only partial observations for the woodpecker, we 
visually compared the classified activity of the woodpecker to pat-
terns expected for diurnal vertebrates. Then, we calculated activity 
probability in relation to the time after sunset for three individuals 
from each of six small to medium-sized bird species (Table 5) using 
methods comparable to those of the ecological field study for bats.

Performance metrics for the sequences of known activity type 
of the woodpecker were in line with those for bats and human ac-
tivity (F1 = 0.97; ROC-AUC = 1, Sensitivity = 0.95; Specificity = 1; 
Precision = 1, Kappa = 0.94). Note that a threshold-based approach 
also behaved poorly on this dataset (2.5  dB threshold, F1  =  0.62, 
Kappa = 0.38; 1.08 threshold, F1 = 0.79, Kappa = 0.58).

Visual assessment of the active/passive sequences for the 
woodpecker showed typical patterns of high activity during the day, 
starting around sunrise (05:12) and ending around sunset (21:30; 
Figure 4). The activity probability in relation to time after sunrise of 
the six additional bird species also correspond to the expected pat-
terns for diurnal birds (Figure 4). Even though no actual observations 
were available, these patterns suggest a successful classification of 
the activity of different bird species.

5  |  DISCUSSION

Using a large dataset consisting of the observed behaviour of 
tagged bat individuals, we trained two random forest models to 
classify novel data from the same species into fundamental behav-
iour, and with high precision and high temporal resolution (~1 s in-
terval). Our approach outperformed previous methods based on a TA
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threshold-based approach even when using a value calibrated with a 
large groundtruth dataset. Although not inadequate, the threshold-
based approach had generally lower and more variable performance 

metrics compared with our ML model. We also achieved similar pre-
cision when applying the ML models to groundtruth data from other 
species (woodpecker and controlled human walks). The activity 
probability estimates of 18 additional bird individuals out of six spe-
cies also matched expected activity patterns for diurnal vertebrates. 
This strongly suggests that our method generalises well and could 
be applied to a variety of vertebrates with similar accuracy (e.g. 
down to a body mass of 4 g with 0.2 g transmitters; Naef-Daenzer 
et al., 2005).

In the ecological case study, we demonstrate that our approach 
enables the detection of even subtle differences in the timing of ac-
tivity according to a species' ecological preferences (differences in 
activity onset of <20 min). Specifically, we were able to show distinct 
activity patterns for these two species, characterised by a slight shift 
in their timing of activity and a significantly lower activity of N. leis-
leri during the night. Given that these species have evolved to occupy 
different ecological niches, these patterns are much more likely due 
to a synchronisation of activity peaks with prey abundance rather 
than to an avoidance of competition (Ruczyński et al., 2017). N. leis-
leri, like other aerial hawking bats, has likely evolved to exploit insect 
emergence at dusk and dawn, thus avoiding the greater predation 
risk that may occur at higher light levels (Rydell et al., 1996). By con-
trast, M. bechsteinii and other gleaning bats are less constrained to 
flying insects as a food source such that an onset of activity com-
parable to that of N. leisleri would not bring substantial additional 
benefit.

Our findings are generally in line with previous observations 
of the activity patterns of N. leisleri (Ruczyński et al.,  2017, Shiel 
et al., 1999). No comparable studies exist for M. bechsteinii, but in 
acoustic studies with results reported at the genus level all-night 

F I G U R E  3  Nyctalus leisleri was 
consistently active sooner than Myotis 
bechsteinii, but the latter species had 
longer periods of continuous activity. 
Top panel: The points represent the 
activity probability calculated over 1-h 
intervals, and the solid lines the predicted 
values from the best hierarchical 
generalised additive model (HGAM) 
model. The dashed line indicates the 
times when the population was equally 
likely to be detected as active or passive. 
Bottom panel: Difference in the activity 
probability calculated from the best 
HGAM model. Positive values indicate a 
larger activity probability for M. bechsteinii 
than for N. leisleri.

TA B L E  4  Activity metrics of Nyctalus leisleri and Myotis 
bechsteinii. Wake-up and sleep times were calculated as the first 
and last time when the probability of activity was >0.5. All times 
are presented as hours since sunset. The time of peak activity 
represents the time of day when the probability of activity was 
maximal. Activity duration was calculated as the area under the 
curve between wake-up and sleep times

Metric N. leisleri M. bechsteinii

Activity onset (h) 00:12 00:31

Time of peak activity (h) 00:37 01:33

Activity end (h) 07:23 07:11

Peak P(activity) 0.82 [0.80; 0.84] 0.70 [0.75; 0.79]

Activity duration (h) 3.42 [3.23; 3.62] 4.70 [4.56; 4.83]

TA B L E  5  Number of activity observation (1-min resolution) per 
bird species

Species
Number of 
observations

Cyanistes caeruleus 55,735

Erithacus rubecula 54,458

Garrulus glandarius 58,088

Parus major 84,170

Sylvia atricapilla 59,504

Turdus merula 129,521
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activity was determined for Myotis (Perks & Goodenough,  2020). 
However, our study is the first to investigate the overlap of these 
two species within the same study area. Our approach also allows to 
detect changes in activity probability according to the reproductive 
status of individuals and indicates that these shifts are species spe-
cific (see Supplementary Material S4).

The high precision and high temporal resolution of our approach 
together with the easy accessibility of the developed methods may 
open new research avenues on the variations in the activity patterns 
among and within species in their response to the environment.

A more in-depth analysis of activity bouts as a function of abi-
otic factors or the detection of changes in patterns indicating, for 
example, breeding has not been conducted here, but such studies 
are likely to be feasible. Whether specific behaviours can be rec-
ognised (i.e., foraging, parental care, grooming), as is possible with 
accelerometers, also remains to be determined. The fact that the 
variance in the signal pattern depends less on the intensity of the 
movement than on the signal path remains an issue, however. While 
the amplitude of the measurements from accelerometers can be 

directly related to different behaviour classes (Kays et al.,  2015), 
the amplitude of stationary recorded VHF-signals also changes due 
to the distance to the radio tracking station. The spatial context 
of the receiving stations as well as the localisation algorithms pre-
sented in Gottwald et al., 2019 could provide additional informa-
tion, such as distance to the station and direction of movement. 
However, for localisations, at least two radiotracking stations are 
necessary and the spatial accuracy and reliability of position track-
ing when operating in cluttered environments such as forests is still 
under investigation.

The tRackIT-system can currently record up to 90 individuals at a 
time within the same spatial context, but technology that allows for 
higher numbers is under development. Given the relatively low costs 
of the transmitters (~130 €) and tRackIT-stations (~1500 €), the mon-
itoring of an entire community of small vertebrates at high temporal 
resolution becomes possible with this system. For instance, a study 
investigating the activity states of an entire temperate forest bird 
community is currently conducted in the Marburg Open Forest. The 
tRackIT-system now allows activity classification in real-time, which 

F I G U R E  4  (a) Signal strength [dBW] from a woodpecker tagged over four consecutive days and nights and the corresponding 
classification of the bird's activity into active (N = 146,962) and passive states (N = 303,802). (b) Probability of activity in relation to 
time since sunrise of six bird species calculated from activity classifications of three individuals per species (see ecological case study for 
methods). Periods of high activity are consistent with the diurnal activity patterns expected for these species.
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opens several exciting research avenues. For example, it is now 
being used to narrow down the time of death of chicks in meadow-
breeding birds to subsequently reduce error bars in nest survival 
models (https://www.audi-umwel​tstif​tung.de/umwel​tstif​tung/de/
proje​cts/green​ovati​on/telem​etry-techn​ology.html). Personal obser-
vations during the bird-breeding season also showed clear shifts in 
the frequency and regularity of activity periods during the transition 
from the nonbreeding to the breeding season (J. Gottwald). Future 
applications may also help automatically determine the (species-
specific) onset of the breeding season in songbird communities.

Over the 4 years of the study, we collected data with two dif-
ferent software designs (radiotracking.eu and tRackITOS) that show 
significant differences in data quality. We also covered a range of 
suboptimal recording conditions caused by topography and vegeta-
tion, which leads us to the assumption that the approach presented 
here is not exclusively applicable to data recorded with tRackIT-
stations. Other open-source systems such as Motus (sensorgnome; 
Taylor et al., 2017), but also commercial systems such as the Lotek 
SRX/DX series receivers (Taylor et al.,  2017), record comparable 
data that may be used with the functionalities and models presented 
here. However, this was not tested as part of this study.

The scientific insights that can be expected from automatic 
radiotracking based activity studies have the potential to deepen 
our understanding of the ecology and behaviour of small animal 
species in unprecedented ways (Nathan et al., 2022). With the re-
cent advances in open-source automatic radiotracking (Gottwald 
et al., 2019; Höchst et al., 2021; Taylor et al., 2017) together with the 
trained models and data-processing functionalities of the tRackIT 
R-package, the scientific community is now equipped with an acces-
sible toolset that allows the activity patterns of small animals to be 
analysed and classified at high temporal resolution.
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