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Obstacles to inferring mechanistic similarity using Representational Similarity Analysis



S1. Brief history of RSA 1

In the 1990s there was an important debate taking place on how to compare the men- 2

tal representations of two individuals. On one side of this debate was Paul Churchland. 3

Inspired by the success of connectionist models, Churchland argued that the brain rep- 4

resents reality as a pattern of activations over it’s network of neurons [1]. This pattern 5

of activation can be seen as a position in the brain’s (high-dimensional) state-space. So, 6

Churchland argued that one could compare how two individuals represent an object by 7

comparing the corresponding positions in each individual’s state-space. On the other side 8

of the debate were Jerry Fodor and Ernie Lepore [2]. They pointed out that a problem 9

with Churchland’s proposal was that it “offers no robust account of content identity” (p 10

147). On Churchland’s account, they argued, two mental representations have the same 11

meaning only if they are embedded in identical state-spaces. This condition was highly 12

unlikely to be satisfied in practice, given that no two brains have either the same number 13

or connectivity of neurons and no two individuals have exactly the same experiences. 14

A possible solution to this problem of comparing representations across state-spaces 15

of different dimensions was proposed by Laasko and Cottrell [3], who were investigating 16

whether different neural networks, trained on the same data, represented an input stimulus 17

in a similar manner. A direct comparison of activations across networks was not possible 18

due to the difference in the number of units. To overcome this problem, [3] devised a 19

method that compared encodings based on their relative positions in state-space. That 20

is, based on a second-order isomorphism. They argued that two networks could be said to 21

represent a concept in a similar manner if both networks partitioned their activation space 22

(amongst concepts) in a similar manner – that is, if the activation spaces in both systems 23

had a similar geometry. [3] conducted a series of experiments with neural networks, 24
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showing that neural networks with different sensory encodings and different number of 25

hidden units nevertheless partitioned their activation space in a similar manner, leading 26

them to conclude that these networks learned similar internal representations. 27

Churchland [4] saw Laasko and Cottrell’s method as a decisive response to Fodor & 28

Lepore’s scepticism. He argued that, using Laasko and Cottrell’s method, one could use 29

the state-space approach to compare representations across individuals, even individuals 30

that had different dimensions of their representational spaces. All one needed to do 31

was to replace the requirement of “content identity” with “content similarity”. That is, 32

instead of comparing absolute positions of representations, one could simply compare how 33

representations were organised relative to each other within each representational space. 34

However, Fodor & Lepore [5] argued that Churchland’s reply was, in fact, “an egregious 35

ignoratio elenchi” (p. 382). The problem was not, they argued, that one couldn’t find the 36

right metric to measure similarity across vector spaces of different dimensions. Rather, it 37

was the fact that Churchland (and Laasko & Cottrell [3]) were interested in a semantic 38

similarity – i.e., they wanted to compare whether representations had the same meaning 39

in the two systems. Fodor & Lepore [5] argued that this problem of semantic similarity 40

was intractable because similarity of concepts across systems of different dimensions is 41

undefined. Consider the concept of a ‘dog’. Let’s say one person’s representational space 42

has a dimension of ‘loyalty’, while the other person’s representational space does not. 43

There is no principled answer for how similar the representation of ‘dog’ should be for 44

these two individuals as it depends on how the dimension of ‘loyalty’ is weighted in the 45

concept of ‘dog’. And the relative weight of dimensions can differ for different concepts and 46

circumstances. Moreover, Fodor & Lepore [5] argued that even identical representational 47

geometries could mean very different things. For example, one individual may represent a 48

dog along the dimensions of ‘size’ and ‘speed’ as being small (sized) and medium (speed). 49
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Another individual may represent a dog along the dimensions of ‘usefulness’ and ‘furriness’ 50

as being of small (usefulness) and medium (furriness). Even if the concept of a dog 51

occupies a similar position in both state-spaces (small, medium) the two individuals clearly 52

represent dogs differently. 53

Representation Similarity Analysis is an evolution of Laasko and Cottrell’s method 54

for comparing representations across systems. It retains its core principle of comparing 55

representations based on their relative locations within each system’s state-space. In 56

addition, it formalises the ideas of similarity of representations within and across systems 57

[6]. Like Laasko and Cottrell’s method, a representation is usually coded as a vector of 58

activation over some units (in a neural network or the brain). However, it could also 59

be a behavioural measure, such as similarity judgments or even measures like accuracy 60

or response times. We believe that many of the objections levelled by Fodor & Lepore 61

against Churchland’s idea of comparing systems based on relative positions in state-space 62

also hold for representation similarity analysis. For example, Fodor & Lepore’s point that 63

similar state-space representations could mean different things can also be extended to 64

RSA and in the main text we show how different systems with same representational 65

geometries can, in fact, be encoding very different properties of sensory stimuli. From 66

an externalist’s perspective, activations within these systems mean very different things 67

and yet have very comparable state-space representations (i.e. geometries). The only way 68

to argue that concepts have a similar meaning in systems with similar representational 69

geometries is to adopt a holistic perspective on representations. And as Fodor & Lepore 70

[5] argued, and we discuss in the main text, adopting this perspective comes with its own 71

set of problems. 72
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S2. Study 3 - Image-level RSA 73

Study 3 showed how RSA between networks sensitive to confounds and macaque inferior 74

temporal cortex representational geometry can match the RSA score achieved by networks 75

pretrained on naturalistic images and then fine-tuned on an unperturbed dataset. In the 76

main paper we present category-level RSA scores – computed by first caluclating median 77

distances between all instances of each category with all instances of each other category 78

to get 8x8 RDMs which are then entered into RSA. Here, we present RSA scores without 79

averaging. Activation patterns for each of the 3200 images in the dataset are used to 80

calculate 3200x3200 RDMs which are used to compute RSA scores. 81

Fig 1. Image-level RSA scores from Study 3. RSA-scores with macaque IT
activations were low for all three conditions when images did not contain a confound
(yellow bars). When images contained a confound (blue bars), the RSA-scores depended
on the condition, even exceeding the RSA-score of the normally trained network (grey
band) in the Positive condition, but decreasing significantly in the Uncorrelated and
Negative conditions. The grey band represents a 95% CI for the RSA-score between
normally trained networks and macaque IT activations.
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S3. Statistical analyses 82

In this section we provide more detailed statistical analyses for Studies 2-4. 83

Study 2 84

In order to test for differences in performance (Figure 5, left panel in the main paper), 85

a 4 (normally trained/positive/uncorrelated/negative) by 2 (dataset with/without con- 86

found) mixed analysis of variance (ANOVA) was conducted. The finding was a significant 87

interaction effect (F (3, 36) = 12256.10, p < .001, η2p = .99). Tukey HSD post-hoc com- 88

parisons revealed that performance in the positive, uncorrelated and negative conditions 89

was significantly better on datasets which included the confounds (all p < .001) while the 90

normally trained networks performed equally well on both datasets with and without the 91

confound (p = .99). This shows that networks trained on datasets with confounds learned 92

to classify based on the predictive confounding feature (single pixel) and ignored other 93

features in the dataset (failing to classify if the confound is not present) while the nor- 94

mally trained networks remain unaffected by the presence or absence of the confounding 95

feature. 96

Differences in RSA scores (Figure 5, right panel in the main paper) were tested by 97

conducting a 3 (positive/uncorrelated/negative) by 2 (dataset with/without the con- 98

found) mixed ANOVA. The key findings was a significant interaction effect (F (2, 297) = 99

289.27, p < .001, η2p = .66). Post-hoc comparisons revealed that there were no differences 100

between the networks in RSA scores with normally trained networks when images without 101

the confound were used as input (all p > .954). On the other hand, for images which 102

contained the confound, networks in the positive condition achieved a significantly higher 103

RSA score than both networks in the uncorrelated and negative conditions (p < .001), at 104
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the same time, networks in the uncorrelated condition achieved significantly higher RSA 105

scores than networks in the negative condition (p < .001). This indicates a very strong 106

modulation effect of RSA scores - depending on the relation between the representational 107

geometry of the confounding feature exploited by these networks, RSA scores with nor- 108

mally trained networks can vary from high to low when the confound is present, but are 109

consistently low when there is no confound in the test stimuli. 110

Study 3 111

The same analytical approach was taken as in Study 2, performance (Figure 6, left panel 112

in the paper) was analyzed by conducting a 4 (normal/positive/uncorrelated/negative) 113

by 2 (dataset with/without confound) mixed ANOVA. Again, the key finding was an 114

interaction effect (F (3, 51) = 8086.60, p < .001, η2p = .99). Post-hoc comparisons revealed 115

that performance in the positive, uncorrelated and negative conditions was significantly 116

better on datasets which included the confounds (all p < .001) while the normally trained 117

networks performed equally well on both datasets with and without the confound (p > 118

.99). 119

RSA scores (Figure 6, right panel in the main paper) were analyzed by conducting a 3 120

(positive/uncorrelated/negative) by 2 (dataset with/without confound) mixed ANOVA. 121

The key result being a significant interaction effect (F (2, 42) = 122.46, p < .001, η2p = .85). 122

Post-hoc comparisons revealed that there were no differences between the networks in RSA 123

scores with normally trained networks when images without the confound were used as 124

input (all p > .071). However, for images with the confound present, networks in the 125

positive condition achieve a significantly higher RSA score with macaque IT when com- 126

pared to networks in the uncorrelated and negative conditions (all p < .001). Networks 127

in the uncorrelated condition achieve higher RSA scores than networks in the negative 128
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condition (p = .005). Finally, it is worth emphasizing that networks in the positive condi- 129

tion match RSA scores with macaque IT achieved by networks pretrained on naturalistic 130

images and then finetuned on the dataset without confounds (t(23) = 0.89, p = .384) 131

when the confound is present in the dataset. 132

Study 4 133

For this simulation, performance differences between conditions (Figure 8, left panel in the 134

main paper) were tested by conducting a 3 (normal/hierarchical/random) by 2 (dataset 135

with/without confound) mixed ANOVA. As in previous studies, the eky result was a 136

significant interaction effect (F (2, 42) = 407.61, p < .001, η2p = .95). Post-hoc comparisons 137

revealed that performance in the hierarchical and random conditions was significantly 138

better on datasets which included the confounds (all p < .001) while the normally trained 139

networks performed equally well on both datasets with and without the confound (p > 140

.99). 141

RSA scores with human IT (Figure 8, right panel in the main paper) were analyzed 142

by conducting a 2 (hierarchical/random) by 2 (dataset with/without) mixed ANOVA. 143

The interaction effect was significant (F (1, 28) = 8.46, p = .007, η2p = .23). Follow-up 144

comparisons show that there was no difference between networks in the hierarchical and 145

radnom conditions when the dataset did not contain the confound (p > 99), but networks 146

in the hierarchical condition achieved significantly higher RSA scores when the dataset 147

did contain the confound (p < .001). Again, it is worth emphasizing that networks in the 148

hierarchical condition match RSA scores with human IT achieved by networks pretrained 149

on naturalistic images and then finetuned on the dataset without confounds (t(28) = 0.46, 150

p = .647) when the confound is present in the dataset. 151
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