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Synaptic plasticity controls the emergence of population-wide invariant
representations in balanced network models
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The intensity and the features of sensory stimuli are encoded in the activity of neurons in the cortex. In the
visual and piriform cortices, the stimulus intensity rescales the activity of the population without changing its
selectivity for the stimulus features. The cortical representation of the stimulus is therefore intensity invariant.
This emergence of network-invariant representations appears robust to local changes in synaptic strength induced
by synaptic plasticity, even though (i) synaptic plasticity can potentiate or depress connections between neurons
in a feature-dependent manner, and (ii) in networks with balanced excitation and inhibition, synaptic plasticity
determines the nonlinear network behavior. In this study we investigate the consistency of invariant representa-
tions with a variety of synaptic states in balanced networks. By using mean-field models and spiking network
simulations, we show how the synaptic state controls the emergence of intensity-invariant or intensity-dependent
selectivity. In particular, we demonstrate that an effective power-law synaptic transformation at the population
level is necessary for invariance. In a range of firing rates, purely depressing short-term synapses fulfills this
condition, and in this case, the network is contrast-invariant. Instead, facilitating short-term plasticity generally
narrows the network selectivity. We found that facilitating and depressing short-term plasticity can be combined
to approximate a power-law that leads to contrast invariance. These results explain how the physiology of
individual synapses is linked to the emergence of invariant representations of sensory stimuli at the network level.
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I. INTRODUCTION

Transformations performed by primary sensory cortices
constitute one of the first computational steps towards the
sensory perception of the environment [1–3]. One fundamen-
tal cortical computation is the representation of the stimulus
intensity [4–7]. For example, an animal may encounter an ob-
ject which elicits visual stimuli of different brightness, scents
of different concentrations, or sound frequencies of different
volumes. Despite these differences in stimulus intensity, many
animals still reliably identify the object [8]. How does the
cortex represent the stimulus intensity (its brightness, concen-
tration, or volume) without compromising information about
the stimulus identity (i.e., its orientation, scent, or frequency)?
In the past decades, the representation of the stimulus intensity
was extensively studied at the single-neuron level [4,7,9,10].
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Here we investigate how changes in the plasticity, i.e., the
synaptic connections between neurons, influence these stim-
ulus representations at the network level.

Primary cortices represent sensory stimuli through the
combined activity of neurons which are selective towards
features such as orientation [9], odor [11], or frequency
[12]. These neurons are preferentially connected to neurons
with similar preferred features [13] through plastic synapses
[14,15] and often respond nonlinearly to the stimulus intensity
[16]. At the network level, the collective pattern of activity of
these neurons can be described by the product of two func-
tions [16,17]: the network selectivity, i.e., its dependence on
the identity of the stimulus, and the network susceptibility, i.e.,
its dependence on the intensity of the stimulus. In the visual
[16,17] and piriform cortices [6] (but not in the auditory cortex
[18,19]), the activity of the network at high stimulus intensi-
ties is a rescaled version of the low-intensity representation.
This phenomenon is referred to as network contrast invariance
in the visual cortex [16,17] and concentration invariance in
the piriform cortex [6]. Notably, contrast-invariant representa-
tions have also been observed and studied at the single-neuron
level [4,7,10,20].

However, network contrast invariance does not necessarily
emerge from the single-neuron property of contrast invariance
(Fig. 1) [4,7,10,20]: counterintuitively, the summed activity of
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FIG. 1. Possible response to orientation and contrast of recurrent cortical networks with synaptic plasticity. (a) Left: Visual stimuli of
orientation θ0 trigger input to neurons in the cortex. The amplitude of the input is larger to those neurons whose preferred orientation
matches the stimulus orientation (θ = θ0, peak of curves). Visual contrast can also control the amplitude of the input to all neuronal preferred
orientations (black, gray curves). Middle: Contrast-invariant neurons of different orientation preference respond selectively to tuned input.
Through synapses, neurons additionally receive tuned recurrent input from other neurons with similar orientation preference to which they are
preferentially connected. Right: The network response is a particular firing rate pattern that depends on the neuronal preferred orientation θ ,
the stimulus orientation θ0 and contrast, and the state of the synapses. (b) Synaptic plasticity can modify the strength of recurrent connections
following changes in the stimulus contrast. This controls the magnitude of the recurrent input to other neurons and can lead to different
susceptibility to contrast in neurons with different preferred orientation θ . (i) If contrast evenly rescales the firing rate by the same factor at all
active orientation domains, the network selectivity is invariant to contrast. On the contrary, the network response becomes contrast-dependent
if the firing rates at different orientations are unevenly rescaled by contrast: tuning width broadens with contrast (ii) if the nonpreferred
orientations (θ �= θ0) are more susceptible to increasing contrast or it narrows with contrast (iii) if the neurons with preferred orientation
(θ = θ0) are more susceptible to increasing contrast. The type of rescaling by contrast (i, ii, or iii) is controlled at the synaptic level.

contrast-invariant neurons may not be invariant [16,17]. This
is because synaptic plasticity can change the susceptibility to
intensity in neurons depending on their feature preferences.
But contrast invariance can only emerge if the representation
of the stimulus is rescaled by the same factor upon changes in
intensity at all active feature-selective neurons [Fig. 1(b), i].
Thus one could expect, in general, a recurrent network with
synaptic plasticity to be contrast-dependent [Fig. 1(b), ii–iii].
To isolate how these plasticity-induced effects impact the
emergence of intensity invariance, we consider network
regimes in which excitation and inhibition are balanced
[21,22]. This regime has been experimentally observed in
cortices where invariant representations are present [23,24].
Theoretical studies have shown that in the limit of per-
fectly balanced networks the nonlinearity in the neuronal
transfer function does not influence the activity of the net-
work [21,22]. This leads to network responses that are linear
functions of the input in the absence of synaptic plastic-
ity [21,22]. Therefore one can assume that the nonlinearity

in balanced circuits with synaptic plasticity is exclusive of
synaptic origin [25]. For this reason we use the balanced
network regime as a model system to study the impact of
synaptic plasticity on the establishment of invariant repre-
sentations. We used mean-field models and spiking network
simulations [26].

We began by characterizing the type of nonlinearities that
short-term plasticity (STP)—a ubiquitous form of cortical
plasticity [15]—can introduce in balanced networks of ran-
domly connected neurons. We then investigated these synaptic
effects in networks with feature-dependent connectivity, a
type of connectivity observed in cortical circuits [13,27]. For
these types of networks, our results reveal how short-term
plasticity can lead to intensity dependence by inducing dif-
ferent susceptibilities across the network. Yet we find that
if the synaptic transformation approximates a power-law at
the population level, this reconciles network nonlinearity and
intensity invariance. We show how such a power-law-like
approximation can be consistent with STP synapses.
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FIG. 2. Plastic E → E synapses control the susceptibility to input contrast δ in uniform balanced networks. (a) The contrast response
characterized by the value of δ: supersaturating (δ < 0), sublinear (0 < δ < 1), linear (δ = 1), and supralinear (δ > 1). (b) The phase space
of values for δ [Eq. (2)] reveals a sublinear contrast response for depressing states (kEE < 0) and a supralinear or supersaturating response for
facilitating states (kEE > 0). The network response is linear if synapses are constant (kEE = 0, black line). The transition from the sublinear
to the supralinear region is smooth, whereas the transition from the supralinear to the supersaturating is discontinuous and it is characterized
by δ → ∞. The sublinear and supralinear nonlinearities are stable and can be dynamically reached by the network, whereas supersaturation
is unstable and may not be realizable in balanced networks (see Supplemental Material for stability analysis [29]). The trajectories describe
how δ evolves as a function of increasing input contrast in a rate network model with facilitating STP synapses (case 1) and in a network with
depressing STP synapses (case 2) (see Methods - Model II and Table S1 for parameters [29]). Let us note that for positive firing rates and a
stable balanced state, parameters must satisfy wEE < 1 [Eq. (3)] [21,22].

II. RESULTS

We examine how synaptic plasticity alone influences the
network response to intensity in randomly connected bal-
anced networks. We then investigate the effect of the intensity
response on the emergence of invariant representations of
sensory stimuli in balanced networks with feature-dependent
connectivity. To that end we use rate models and spiking
network simulations (see Methods for details). We examine
four types of synaptic interactions: constant, short-term facil-
itating, short-term depressing [25], and power-law synapses
(see Methods). The spiking network models that we examined
consist of leaky integrate-and-fire (LIF) excitatory (E) and
inhibitory (I) neurons. For illustration purposes, we present
our results in the context of the visual system. Thus we refer
to visual contrast as the intensity of the stimulus and to orien-
tation as the feature of the stimulus that neurons code for.

A. How synaptic plasticity modulates the network
response to contrast

Theoretical studies suggested that the nonlinearities in the
contrast response can be explained through synaptic plasticity
in balanced networks with uniformly random connectivity
[25,28]. Here we examine which type of synaptic plasticity
enables a particular response to contrast in this type of bal-
anced networks. To that end we introduce the susceptibility to
input contrast δ as an index. This is a measure for the relative

change in the excitatory firing rate νE as a function of the input
contrast c,

δ = dνE

dc

c

νE
, (1)

where δ defines regimes of four types of contrast response
functions [Fig. 2(a)]: supersaturation (δ < 0), sublinearity
(0 < δ < 1), linearity (δ = 1), and supralinearity (δ > 1). We
assume excitatory input contrasts (c > 0).

In a balanced E/I network with synaptic plasticity in the
E → E connections, uniform random connectivity and input
contrast c to the E and I populations [Eq. (10)], δ can be
elegantly written as (see Methods for derivation)

δ = 1 − wEE

1 − wEE (1 + kEE )
. (2)

Here, for simplicity, we have introduced the quantity wEE ,
which denotes the normalized synaptic E → E strength for
a particular firing rate:

wEE = JEE JII

JIE JEI
wo

EE (νE ). (3)

Jab are the constant weights for synapses connecting popu-
lation b to population a, where a, b ∈ {E , I}, and wo

EE is the
firing-rate-dependent scaling factor of the E → E synapses.
wo

EE can also be interpreted as the probability of neurotrans-
mitter release in STP (see Supplemental Material for details
on the STP model [29]). kEE indicates how the synaptic
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strength changes with the firing rate:

kEE = dwEE

dνE

νE

wEE
. (4)

The synaptic state is depressing if kEE < 0 and facilitating if
kEE > 0. The phase space of values for δ [Fig. 2(b)] shows
that depressing states (kEE < 0) lead to sublinear contrast
response. Moreover, we find that supralinearity and super-
saturation are only possible for facilitating synaptic states
(kEE > 0). This is illustrated by the trajectories of the net-
work response to increasing input contrast for networks with
depressing and facilitating STP (Eq. S3 in the Supplemen-
tal Material [29]). The network with depressing synapses
describes a trajectory in the sublinear space. The network
with facilitating synapses occupies the supralinear space for
positive values of kEE , while it transitions smoothly to the sub-
linear space as wEE saturates. A linear response only occurs
if synapses are constant (kEE = 0). Additional E → I plastic-
ity also permits the emergence of all types of nonlinearities
(Supplemental Material, Fig. S2, Eq. S6 [29]).

There are two possible transitions between regimes. One
is a smooth transition from the sublinear to the supralinear
region (vertical black line at kEE = 0). In this case δ varies
continuously from values smaller than unity to values larger
than unity. The other is a discontinuous transition from the
supralinear regime to the supersaturating regime. This dis-
continuous transition is characterized by diverging network
susceptibility δ → ∞. If a network approaches this transition
from the supralinear regime, it will experience a rapid increase
in firing rate. Facilitating short-term synapses cannot support
this rapid increase in firing rate, leading to a transition of the
trajectory to the sublinear regime. Network states in which
δ < 0 are unstable (see Supplemental Material for stability
analysis [29]). This result indicates that sublinearity, linearity,
and supralinearity are realizable in balanced networks with
uniform connectivity through plastic synapses. Supersatura-
tion, however, is not supported in this type of network. In
the next section we analyze the contrast response in a spiking
network with uniform connectivity and STP.

B. Susceptibility δ in spiking networks with uniform
connectivity and STP

In this section we study if the different types of contrast
response functions reported in Fig. 2 emerge in a spiking
network with uniformly random connectivity and E → E
short-term synaptic plasticity (Eq. S3, Fig. S3 of the Supple-
mental Material [29]). STP modulates the synaptic strength as
a function of the firing rate history of the presynaptic neuron
[30] and acts on the timescale of milliseconds to seconds.

We examine the response to contrast in the spiking network
model illustrated in Fig. 3(a) (see Model II in Methods).
Spiking networks with STP facilitating or depressing E → E
synapses have a nonlinear response to contrast [Fig. 3(b),
dots]. The synaptic scaling factor wo

EE and the synaptic ef-
ficacy kEE in these networks change with the firing rate
[Figs. 3(d) and 3(e), dots]. In contrast, the network with con-
stant synaptic weights is linear [Fig. 3(b), black dots, and
Fig. S1 [29]]—see Fig. S1 [29] for the firing rate of the
inhibitory population when synapses are constant. We confirm

that these networks behave in agreement with the analytical
balanced state prediction [Eq. (10), Fig. 3, solid lines]. The
coefficient of variation CV ≈ 1 values and exponentially de-
caying interspike interval (ISI) distributions [Fig. 3(c)] are
consistent with in vivo recordings [31] and demonstrate that
STP does not modify the irregularity in spiking activity (see
Figs. S1c and S1d, Supplemental Material [29]).

We calculate δ in the spiking networks based on the values
of wo

EE and kEE displayed by plastic synapses [Fig. 3(f)]. As
predicted, the spiking network with facilitating synapses ex-
hibits a supralinear increase in firing rate (δ > 1) that becomes
sublinear (0 < δ < 1) for increasing contrasts [Fig. 3(f),
blue]. This behavior is consistent with the facilitating δ tra-
jectory in Fig. 2. For low firing rates, neurotransmitter is
replenished fast enough in between spikes and facilitating
synaptic transmission is sustained. The value of δ increases
and the trajectory approaches the supersaturating unstable
regime, where δ → ∞. This explains the peak in δ in Fig. 3(f).
At this point, a further increase in synaptic strength cannot
be physiologically supported because synapses demand neu-
rotransmitter quicker than it can be produced. As a result,
the network transitions smoothly from the supralinear to the
sublinear regime. Conversely, the network with depressing
synapses exhibits a sublinear increase in firing rate (0 < δ <

1) for all the input contrasts analyzed, which is also in agree-
ment with the trajectory in Fig. 2.

We show that short-term plasticity can have a dramatic
effect on the nonlinear contrast response in spiking networks
with uniformly random connectivity. In addition, we demon-
strate that δ can be used as a tool to study the behavior of
spiking networks with synaptic plasticity. Having singled out
the effect of synaptic plasticity in a simple network topology,
we now study how these nonlinearities affect the network
selectivity to the stimulus orientation. Interestingly, a nec-
essary condition for the balanced state is that the width of
the input needs to be broader than the width of the recurrent
connections (see also Eq. S30 [29], and [22]). To meet this
criterion, we introduce orientation-dependent connectivity,
which is a type of connectivity consistent with experimental
data [13,27].

C. Facilitating E → E STP breaks contrast invariance in
networks with orientation-dependent connectivity

In this section we study whether the nonlinear contrast
response induced by short-term synaptic plasticity is com-
patible with contrast invariance in networks with orientation-
dependent connectivity [see Model IV in Methods, Fig. 4(a)].
In the model [Fig. 4(a)] the neuronal population gets a
Gaussian stimulus of orientation θ0 and tuning width σstim

[Eq. (11)] representing thalamocortical input (see Fig. S8
[29]). The stimulus contrast is a prefactor c that scales the
magnitude of the thalamocortical input at all orientations [10].
The probability of connection between neurons decays as a
Gaussian with orientation distance such that neurons with a
similar orientation preference are more likely to be connected,
consistent with experimental data [13,27]. In addition, the
E → E synaptic strength is modulated by short-term plastic-
ity (see also Model IV in Methods).
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FIG. 3. Susceptibility to contrast δ in spiking networks of randomly connected neurons with E → E STP. (a) Uniformly randomly
connected network (see Methods - Model II and Table S1 for parameters [29]). The E → E synaptic strength is modulated by the function wo

EE ,
which describes the probability of neurotransmitter release as a function of the presynaptic firing rate (green arrow). Each neuron receives an
external excitatory input that is directly proportional to the stimulus contrast c > 0. (b) The firing rate of the E population vs the input
contrast for constant, facilitating, and depressing STP synapses. Data from spiking network simulations (dots) is shown alongside balanced
network predictions from Eq. (10) (solid lines). (c) The coefficient of variation CV≈ 1, ISI histograms, and exponential fit denote Poissonian
irregular firing patterns. Data computed over 1 s of spiking network simulation for an input contrast of 1.5 mV/s. (d) The probability of
neurotransmitter release wo

EE and (e) the synaptic efficacy kEE in the two plastic networks studied. Predictions from the rate model (solid lines)
are plotted alongside data from spiking network simulations (dots). (f) The susceptibility δ calculated from Eq. (2) (solid lines) and its value
in spiking network simulations (dots). The dashed line indicates δ = 1.

Our results show that STP controls the nonlinearity in the
response to contrast in networks with orientation-dependent
connectivity. In this type of network, the response to contrast
and the selectivity for orientation are related through (see
Supplemental Material for the firing rate in networks with
feature-dependent connectivity [29])

νE (wEE − 1) ∝ c
σE√

σ 2
stim − σ 2

E

e
− (θ−θ0 )2

2(σ2
stim−σ2

E ) . (5)

Here νE denotes firing rate as a function of orientation, wEE is
proportional to the probability of neurotransmitter release in
STP, c is the contrast of the stimulus, σstim is the width of the
thalamic input, and σE is the width of the connectivity from
E → E and from E → I neurons. Note that (1) networks with
orientation-dependent connectivity and constant synapses are

contrast-invariant, but this is just a consequence of the lin-
earity of the balanced nonplastic network (Fig. S4 [29]), and
(2) when the input is orientation dependent, the balanced
state requires σ 2

stim − σ 2
E > 0 for νE (θ ) to exist, which im-

plies that networks of uniformly randomly connected neurons
(σE → ∞) receiving orientation-dependent input do not have
a balanced νE (θ ) solution [22] [Eq. (5)].

We show in Fig. 4 results for a network with orientation-
dependent connectivity and STP facilitating E → E synapses.
The solution of Eq. (5) for these network parameters is
given in Fig. 4(b) (solid lines) for several input contrasts
c. When synapses are facilitating, increasing the stimu-
lus contrast c does not linearly rescale νE . This effect
is also present in spiking networks [Fig. 4(b), dots]. We
quantify the contrast dependence on selectivity using the
full width at half maximum (FWHM) [Fig. 4(c), top].
With an increase in contrast, the FWHM first decreases,
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FIG. 4. Facilitating E → E STP yields nonlinear susceptibility to input contrast and breaks contrast invariance (see Fig. S5 for depressing
E → E synapses). (a) Network with orientation-dependent connectivity and E → E STP synapses (see Methods - Model IV and Table S1
for parameters [29]). (b) Excitatory tuning curves for different input contrast, c = 0.5, 1, 1.5, 2 (mV/s). Predictions from the balanced theory
[Eq. (5), solid lines] compared to the results obtained in a simulation of spiking neurons (dots). (c) Upper panel: FWHM changes with contrast,
which confirms contrast-dependent selectivity. Inset: comparison to a quasi-invariant network with E → E depressing synapses (see Fig. S5
for depressing tuning curves [29]). Lower panel: Peak firing rate increases supralinearly until c approaches 1.5 mV/s (left), which is consistent
with the increase in the probability of neurotransmitter release wo

EE (right). As a signature of facilitating transmission, when firing rates
continue to increase for c > 1.5 mV/s, the probability of neurotransmitter release wo

EE decreases (right) and the network behavior becomes
sublinear (left). The shift from supralinearity to sublinearity is consistent with the trajectory in Fig. 2 (case 1).

indicating a narrowing. Interestingly, after reaching a min-
imum the FWHM then increases, revealing a subsequent
broadening. This dependency on contrast is consistent with
the facilitating trajectory in Fig. 2. For a given input contrast,
the neurons tuned to the stimulus orientation θ0 receive higher
input than any other position in the network, and the firing rate
increases. As a result the point of maximum supralinearity
is approached and the value of δ is higher than the one at
positions that have a different preferred orientation, which
narrows the selectivity. If at this point the contrast increases,
synapses at the position tuned to the stimulus orientation
can no longer meet the demand for neurotransmitter required
to sustain high firing rates, which causes a decrease in δ.
As the position tuned to the stimulus orientation approaches
sublinearity, positions tuned for the nonpreferred orientations
approach the point of maximum supralinearity, which broad-
ens the selectivity (see Video S1 [29]). The transition between
nonlinear δ regimes is also seen in the network response to
contrast and in the STP probability of neurotransmitter release
[Fig. 4(c), bottom, for θ = θ0]. These results demonstrate that
the nonlinear contrast response induced by facilitating E → E
STP can lead to contrast-dependent orientation selectivity.
We repeat this analysis for networks with purely depress-
ing E → E synapses (Fig. S5 [29]). In this case our results
show that pure E → E STP depression induces sublinearity
and quasi-contrast-invariant selectivity (Fig. S5b-c [29]) for
the STP parameters analyzed. This is demonstrated by the
overlapping tuning curves in Fig. S5c [29] and suggests that
depressing E → E STP does not induce large changes in the
susceptibility to input contrast across orientation domains in
the network studied. In the next section we analyze what is
it that preserves a quasi-invariant selectivity when synapses

are STP depressing—as opposed to facilitation—and if it
is possible for a network with facilitating synapses to be
contrast-invariant.

D. A power-law synaptic transformation is required for contrast
invariance in networks with orientation-dependent connectivity

In this section we show that the reconciliation between
the nonlinear contrast response, facilitating and depressing
STP, and the emergence of contrast invariance is plausible
under certain synaptic conditions. Previous theoretical studies
have reported that only a power-law function can transform
contrast-invariant membrane potential input into contrast-
invariant firing rate output in single neurons [32,33]. If single
neurons transformed intracellular membrane potential into fir-
ing rate through a linear-threshold function they would exhibit
a broadening of orientation tuning at high contrast. This is
because the responses to nonpreferred orientations reach the
spiking threshold as contrast is increased [34]. A power-law
nonlinearity, however, rescales firing rates with contrast by
the same amount at all orientations, which preserves con-
trast invariance [32,33]. We test an analogous requirement
for synapses at the network level and impose a power-law
synaptic transformation at the E → E and E → I popula-
tions, wEE = wIE ∼ νk

E (see Model V in Methods). Note that
both a power-law transformation in the E → E [Eq. (5)] and
STP in the E → E and E → I connections (Fig. S6 [29])
can lead to contrast dependence. Instead, here the response to
contrast and the response to orientation are independent from
each other, which yields the network selectivity νE invariant
to contrast (see Supplemental Material for the firing rate in
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FIG. 5. Networks with orientation-dependent connectivity and power-law E → E and E → I synapses show nonlinear susceptibility and
contrast-invariant tuning. (a) Network with orientation-dependent connectivity. Additionally, in this network the E → E and E → I synapses
are nonlinearly modulated by the function wEE = wEI ∼ νk

E , where k is the synaptic efficacy (red arrows) (see Methods - Model V and Table
S1 for parameters [29]). (b). Excitatory tuning curves in response to several input contrast c = 0.5, 1, 1.5, 2 (mV/s). Predictions from the
analytical balanced state [Eq. (6), solid lines] are compared to the results obtained in a simulation of spiking neurons (dots). (c) Normalized
analytical (solid lines) and simulation tuning curves (dots) from (b) show that this type of network is contrast invariant. Inset: Peak excitatory
firing rate at θ = 90◦ increases supralinearly with contrast in the analytical balanced state (solid line) as well as in spiking network simulations
(dots).

networks with feature-dependent connectivity [29]):

νE ∝ c
1

1+k

(
σE√

σ 2
stim − σ 2

E

e
− (θ−θ0 )2

2(σ2
stim−σ2

E )

) 1
1+k

. (6)

In Eq. (6) the synaptic efficacy k is independent of the presy-
naptic firing rate. In this type of network, the susceptibility δ is
given by δ = 1

1+k . The network response is sublinear if k > 0,
linear if k = 0, and supralinear if −1 � k < 0. The analytical
solution of Eq. (6) for k = −0.5 is given in Fig. 5(b) (solid
lines) for several input contrasts c. We start by numerically
validating Eq. (6) in spiking networks in which the probability
of neurotransmitter release at individual E → E and E → I
synapses follows a power-law (see Model V in Methods).
Figure 5(b) shows that the activity of a spiking network with
orientation-dependent connectivity and power-law synapses
can be predicted by Eq. (6). It is possible to factorize Eq. (6)
into a function of contrast and a function of orientation, which
indicates contrast invariance. The normalization of the net-
work activity demonstrates that contrast invariance is also
present in spiking networks [Fig. 5(c), dots]. As predicted, the
contrast response is supralinear with δ = 2 [Fig. 5(c), inset for
θ = θ0]. This demonstrates that depressing synaptic states can
lead to a supralinear response to contrast in spiking networks
[Fig. 5(c)].

Equation (6) confirms that both facilitating (k > 0) or
depressing (k < 0) power-law synaptic models support the
emergence of perfect contrast invariance and a nonlinear
response to contrast in spiking networks with orientation-
dependent connectivity. However, a power-law at each indi-
vidual synapse is not a necessary condition for invariance
[Eq. (6), see Methods for mean-field derivation]. Instead,

Eq. (6) demonstrates that the averaged transformation per-
formed by a population of synapses needs to follow a
power-law rather than each individual synapse. Indeed, in-
dividual synapses in invariant networks do not necessarily
behave as power-laws. This is particularly notable in the
case of facilitating STP (Fig. S3 [29]), but also true for
purely depressing STP synapses, which may not approxi-
mate power-law transformations at low firing rate values (see
Fig. S6c [29]). In line with this, we investigate ways to
approximate such power-law transformations that are compat-
ible with the physiology of facilitating and depressing STP
synapses.

We found that the requirement of a power-law transfor-
mation can be approximated by combining facilitating and
depressing STP synapses. To show this we split the excitatory
synaptic population into two subpopulations, each of them
having different STP dynamics [Fig. 6(a): one facilitating
(Efac) and one depressing (Edep)]. On average, i.e., (wo

E =
αwo

fac + [1 − α]wo
dep), the synaptic transformation performed

by the excitatory population approximates a power-law func-
tion of the presynaptic firing rate, where α is the fraction of the
excitatory population having facilitating synapses [Fig. 6(a)].
We show that the combination of facilitation and depression
approximates a power-law (Fig. 6) and that the fit is better
for low presynaptic firing rates values (Fig. S7, black [29])
compared to pure depression (Fig. S7, blue [29]). We imple-
ment this idea in a spiking network where individual E → E
and E → I synapses follow STP [Figs. 6(b) and 6(c)]. The
response of the network to a stimulus presented at different
contrasts c is given in Fig. 6(b) (dots) alongside the mean-field
results (solid lines). The data plotted in Fig. 6(b) show that the
spiking network and the mean-field model results are consis-
tent. We quantify the degree of invariance using the FWHM.
Our results show that the FWHM is approximately constant
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FIG. 6. Networks of two excitatory subpopulations with E → E and E → I STP can approximate contrast invariance. (a) Network diagram
(left) and average STP synaptic transformation (right). The synapses of the excitatory subpopulation (Efac) follow facilitating STP (wo

fac).
The synapses of the excitatory subpopulation (Edep) are depressing and their release probability is given by wo

dep. On the right, the average
neurotransmitter release probability of the excitatory population (wo

E = αwo
fac + [1 − α]wo

dep), where α = 0.2 is the fraction of the population
in a facilitating state. The value of α is chosen such that wo

E approximates a power-law for the STP parameters given in Table S1 [29]. Notice
that orientation-dependent connectivity is not shown in the network diagram (see Methods - Model VI and Table S1 for parameters [29]).
(b) Tuning curves of the network in response to a stimulus of orientation θ0 = 90◦ at different contrasts c = 0.5, 1, 1.5, 2 mV/s. The spiking
network simulation results (dots) are shown alongside the solution of the rate model. (c) Top: FWHM for the contrasts c analyzed in (b). Bottom
left: Firing rate at the preferred orientation (θ = 90◦) as a function of contrast. Bottom right: Average neurotransmitter release probability wo

E as
a function of contrast in the spiking network simulation (dots) and fit to a power-law (dashed line). Fit = aνk

E (a = 0.2758 and k = −0.3494).

across all contrast input levels analyzed, which confirms con-
trast invariance [Fig. 6(c), top]. We also show that the firing
rate at the preferred orientation (θ = θ0) scales supralinearly
with contrast [Fig. 6(c), bottom left], which is a consequence
of the nonlinear STP dynamics [Fig. 6(c), bottom right]. These
results show that the power-law transformation required for
contrast invariance and a nonlinear response to contrast is
compatible with the type of STP dynamics observed in cor-
tical invariant circuits.

III. DISCUSSION

We analyzed the interplay between synaptic plasticity, net-
work response to stimulus contrast, and selectivity for the

stimulus orientation. Counterintuitively, in balanced networks
contrast invariance of the network does not necessarily follow
from the contrast invariance of individual neurons. Here we
showed how for balanced networks the synaptic state controls
the nonlinearity in the network response to contrast (Figs. 2
and 3), from sub- to supralinear. Moreover, our results show
that synaptic plasticity modulates feature selectivity and leads
to contrast-dependent (Fig. 4, S6 [29]) or contrast-invariant
(Figs. 5 and 6) network selectivity. Contrast-invariant
selectivity requires an effective power-law synaptic transfor-
mation that is compatible with STP (Fig. 6). Therefore this
proposes a mechanism to reconcile a nonlinear contrast re-
sponse, STP, and contrast invariance at the network level that
is compatible with E/I balance.
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A. Network response to contrast

In this work we propose a measure to describe the non-
linear behavior of the network activity and its dependence on
its synaptic states: the susceptibility to contrast δ [Eq. (2)].
The susceptibility δ captures the relative changes in the ex-
citatory firing rate with contrast. In balanced networks with
uniform random connectivity and E → E plastic synapses,
we show that the susceptibility to contrast δ depends only
on two variables: the effective synaptic strength wEE and its
relative dependence on firing rate νE , which we characterize
by kEE [see Eq. (4)]. Using the concept of susceptibility δ, we
identified four types of contrast responses: supralinear, linear,
sublinear, and supersaturating (Fig. 2). The phase space of δ

values allows to connect the synaptic state to phase transitions
of network behavior (Fig. 2, trajectories). We show trajecto-
ries spanning the broad phase space of nonlinear responses
for uniform spiking networks with facilitating and depressing
STP (Fig. 3). We also show that a supersaturating nonlinearity
is unstable in balanced networks with plastic E → E synapses
(see Supplemental Material for stability analysis [29]).

These results apply to networks with E/I balance. Previous
theoretical studies have shown that non-neuronal mechanisms
like synaptic plasticity are necessary to achieve a nonlinear
response in balanced networks [25]. On the experimental side,
studies have reported the cancellation of E/I currents in cor-
tices where contrast invariance is present [23]. Furthermore,
E/I balance has been proposed as a necessary mechanism
for the emergence of sharp orientation selectivity in neurons
located at pinwheels in V1 [24]. For completeness let us
note that when excitation and inhibition are loosely balanced
[35], the neuronal nonlinearity has been shown to shape the
network response to contrast. This scenario is captured by the
supralinear stabilized network model (SSN), which considers
constant synapses [36,37]. The SSN permits supersaturation
in rate models [36,37] and in spiking networks [38]. Here, to
single out the synaptic effect on the network nonlinearities we
considered balanced E/I networks with plastic synapses.

B. Contrast-dependent selectivity

In networks with orientation-dependent connectivity, for
constant synapses the response to contrast is linear and the
network is contrast invariant (Fig. S4 [29]). This is a conse-
quence of the linearity of the network for all orientations θ .
However, when synapses follow STP plasticity (Eq. S3 [29]),
the response to contrast is nonlinear and the network may
become contrast dependent (Fig. 4, S6 [29]).

We found that facilitating E → E STP states can narrow
the network selectivity (Fig. 4), while depressing E → E
states leads to a quasi-invariance that only slightly broadens
the selectivity (Fig. S5 [29]). The change in selectivity in-
duced by facilitating E → E STP synapses can be explained
as follows: A stimulus of orientation θ0 preferentially depo-
larizes some neurons in the network. As a consequence, the
firing rate νE (θ0) of these neurons increases. This increase
activates synapses, which start to release neurotransmitter
with probability wo

EE (νE (θ0)). Conversely, neurons tuned to
nonpreferred orientations ψ hardly receive external input and
νE (ψ ) < νE (θ0), and their synapses release neurotransmitter
with probability wo

EE (νE (ψ )). When the stimulus contrast

increases, νE (θ0) and νE (ψ ) increase, and the probability of
neurotransmitter release changes at both orientations. The
key to understanding this phenomenon is that in STP, the
relative change in release probability depends on the starting
firing rate value (Eq. S3 [29]). Thus the synaptic efficacy
kEE (θ0) �= kEE (ψ ) [Eq. (4)]. As a result, if the synaptic state is
facilitating, the firing rate at the network preferred orientation
may be more supralinearly amplified compared to the orthog-
onal orientation. In this case the network selectivity narrows.
Conversely, if the synaptic state is depressing, the firing rate
at the preferred orientation is dampened compared to the
nonpreferred orientations, which could potentially broaden
the selectivity (see Video S1 [29]). Importantly, in depress-
ing STP, however, the probability of neurotransmitter release
approximates a power-law function for medium-to-high fir-
ing rate values, which leads to less pronounced changes in
selectivity as a function of contrast (Fig. S3 [29]). Contrast
dependence has been observed in the auditory cortex, where
the network selectivity for the frequency of a tone changes
when measured at different sound intensity levels [12,39–42].
Therefore our results suggest that facilitating STP may play
an important role in modulating the network selectivity as a
function of contrast in these areas.

C. Contrast-invariant selectivity

The aforementioned scenario changes if the synaptic
strength has a power-law-like dependence as a function of
firing rate [Eq. (6)]. In this scenario we found that a nonlinear
response to contrast is consistent with contrast invariance in
balanced networks with orientation-dependent connectivity,
including positive (facilitating) or negative (depressing) expo-
nents. We showed that this can be achieved by networks with
perfect power-law excitatory synapses (Fig. 5) and approx-
imated by networks with depressing E → E STP synapses
(Fig. S5 [29]) or networks with a combination of facilitat-
ing and depressing excitatory STP (Fig. 6). Thus contrast
invariance does not require that the synaptic strength of each
synaptic terminal has to scale as a power-law function of the
presynaptic firing rate, which would be unlikely due to the
heterogeneity observed across synaptic terminals [43] and the
widespread evidence of STP in cortical synapses [15]. Instead,
it is the average synaptic strength of a given population that
should scale as a power-law for a circuit to be contrast invari-
ant. This condition must be fulfilled, at least, for excitatory
synapses, regardless of whether the postsynaptic neuron is
excitatory or inhibitory. Why do population-wide power-law
synaptic transformations permit a nonlinear response to con-
trast and contrast-invariant selectivity while other synaptic
plasticity rules do not (i.e., purely facilitating STP)? Previous
studies suggest that a power-law is the only function that
can transform contrast-invariant input into contrast-invariant
spike output [33]. This is because power-law functions are
scale-free transformations. In other words, a power-law-like
synapse will amplify or compress the presynaptic rate by
the same relative amount, independently of the firing rate of
the presynaptic neuron. This ensures that the susceptibility δ

is the same across orientations and for all firing rates. This
universal nonlinear rescaling of the network activity supports
contrast-invariant selectivity and permits the nonlinearity in
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the response to contrast. Power-law transformations have been
previously reported in the cortex at the neuronal level [20,44].
Experiments showed that this type of transformation in single
neurons can result from neuronal noise, which smooths the
linear-threshold neuronal transfer function into a power-law
[20,44]. In agreement with this, theoretical studies demon-
strate that a power-law transformation of membrane potential
input into firing rate output is a requirement for single-neuron
contrast invariance [32,33]. However, a power-law neuronal
nonlinearity is insufficient to explain contrast invariance at
the circuit level [16] in balanced networks. This is because
in balanced networks the averaged activity is independent of
the neuronal properties [21]. If that is the case and if a power-
law transformation is necessary for the emergence of contrast
invariance at the network level, then the power-law should be
supported by synaptic rather than by neuronal mechanisms in
balanced networks. At the circuit level, a power-law transfor-
mation can also be approximated by an averaging mechanism
across synapses that release neurotransmitter following dis-
tinct facilitating and depressing STP dynamics. We show this
behavior for a two-excitatory population network (Fig. 6), but
the concept is applicable to networks with larger synaptic
variability. This suggests an analogy for the emergence of
power-laws in single neurons and in networks: the former
emerges from the neuronal variability in spiking responses
[20] while the latter could be the result of synaptic vari-
ability across populations. If that were the case, it would be
possible that neuronal and synaptic power-law nonlinearities
could coexist, each of them serving the function of contrast
invariance at a different level. For example, contrast-invariant
selectivity in single neurons and at the circuit level is found
in the visual cortex [16,45] and the piriform cortex [6]. In the
piriform cortex, the selectivity for a particular odorant is not
modified by the concentration of odorant molecules in the air.
In addition, our results suggest that the emergence of contrast
invariance or contrast dependence in cortical circuits may
not require major anatomical differences. Indeed, numerous
experiments report a similar columnar structure, the same
number of cortical layers, similar cell types, and similar input-
output organization across sensory cortices [46,47]. Instead,
our results suggest that these differences in selectivity across
auditory, visual, and piriform cortices could be explained
through synaptic physiology.

D. Biological plausibility

Our results predict that the excitatory synaptic strengths
of neuronal populations in contrast-invariant cortices should
scale as a power-law with the excitatory presynaptic firing
rate. This scaling is consistent—for a broad range of firing
rates—with the depressing STP-modulated amplitude of the
postsynaptic current as a function of presynaptic firing rates
measured in patch clamp recordings from pairs of neocortical
pyramidal neurons [48] and in local field potentials in slices
of rat visual cortex [49]. But our analysis also reveals that
such power-law synaptic transformations could emerge from a
combination of facilitating and depressing STP (Fig. S7 [29]).
Moreover, our results suggest there is a dependency between
short-term plasticity and the network selectivity (Figs. 4–6).
To show experimental evidence of this dependency it would

be necessary to assess the impact of the synaptic strength
modulation on the network firing rate as a function of con-
trast. But how can one assess the impact of the synaptic
strength—which is a dynamic and distributed cellular prop-
erty acting at the microscale—on the overall behavior of
the network such as its firing rate? Given that the synaptic
strength is sensitive to variations in the extracellular fluid,
spontaneous activity, patterns of stimulation, and the pres-
ence of neuromodulators [50], it is important to study in vivo
data. However, this is challenging. For example, one needs to
identify cellular connections. One way could be to identify
synaptically connected neurons guided either by single-cell
optogenetic control of the presynaptic activity [51] or by flu-
orescent genetic labeling of specific cell types [52,53]. Once
synaptic strengths can be measured in a representative number
of synaptic connections, differences in the synaptic physiol-
ogy of invariant and noninvariant cortices can be studied, as
our theoretical results suggest. In a next step, neuromodula-
tors could be employed, which can change the function and
dynamics of synapses and circuits [54], while the network
activity could be recorded using two-photon calcium imaging.
Indeed, the application of cholinergic agonists or antagonists
has been shown to change the receptive field properties of
single neurons in the somatosensory [55] and auditory cortex
in vivo [56]. As a neuromodulator, one promising candidate
is adenosine: First, it down-regulates the release probabil-
ity at excitatory synapses, while it has no or little effect
on inhibitory transmission [57,58]. Second, the mechanism
mediating the decrease in release probability is presynaptic
(as in our model): the activation of A1 adenosin receptors
reduces the open probability of presynaptic Ca2+ chan-
nels [58]. Our results predict that contrast-invariant cortices
loose this property when the synaptic behavior is disrupted
by the administration of neuromodulators, while contrast-
dependent cortices may experience changes in their selectivity
properties.

In summary, we have shown that different types of synap-
tic plasticity can generate a variety of nonlinearities in the
representation of input contrast. These play a crucial role in
the establishment of selectivity in balanced networks, where
contrast invariance requires a power-law-like synaptic trans-
formation that is compatible with STP. Thus our results
indicate that the ability of balanced cortical networks to ex-
tract invariant information about sensory stimuli is directly
connected to the physiology of synapses.

IV. START METHODS

A. Detailed description of the spiking network implementation

We study six network models (I, II, III, IV, V, and VI)
[26]. All the models consist of N neurons, of which NE =
qN are excitatory and NI = (1 − q)N are inhibitory, where
q = 0.8 is the fraction of excitatory neurons [59]. Neurons are
uniformly distributed in a one-dimensional state space of ori-
entation preference. Let us remark that this defines the feature
space, not the physical space. Neuron i in population a has
the orientation preference θ = i

Na
(i = 1, . . . , Na), where a =

{E , I}. Connected neurons with preferred orientation θ and
ψ are sampled from a probability distribution ∼pab(θ − ψ ).
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We consider a periodic domain � = [0, 1] such that on �,
p�

ab(θ − ψ ) = ∑∞
m=−∞ pab(θ − ψ − m). Let us note that in

the figures we rescale � to 180◦ for illustrative purposes. We
assume pEE = pIE = pE and pEI = pII = pI . The membrane
potential V a

i (t ) of neuron i from population a = {E , I} obeys
the leaky-integrate-and-fire (LIF) dynamics described by

dV a
i

dt
= − 1

τm

(
Vi

a − Vrest
) + RmIa

i

τm
, (7)

where τm is the membrane time constant, Vrest is the resting
potential, Rm is the membrane resistance, and Ia

i (t ) is the
sum of the recurrent current from other neurons in the net-
work and an external feed-forward current Fffw(θ ). Whenever
V a

i (t ) reaches the threshold voltage Vth, neuron i spikes and
its membrane potential is reset to Vrest. Each neuron in the
network receives input from a fixed number of CE and CI

presynaptic excitatory and inhibitory neurons, respectively.
The total synaptic input to the ith neuron from population
a = {E , I} is given by

RmIa
i

τm
=

NE∑
j=1

∑
n

Ji j
aE√
N

w
0,i j
aE ,nδ

(
t − tn

b, j
)

−
NI∑
j=1

∑
n

Ji j
aI√
N

w
0,i j
aI,nδ

(
t − tn

b, j
) + Fffw(θ ), (8)

where
∑

n δ(t − tnb, j ) is the spike train of the jth neuron from
population b, Ji j

ab,0/
√

N is the maximal synaptic weight from

neuron j in population b to neuron i in population a, and w
0,i j
ab,n

is a synaptic plasticity factor, which here depends on the spike
time. If two neurons are connected, Ji j

ab = Jab; otherwise Ji j
ab is

zero. Given that each connection is rescaled by 1√
N

, the total

recurrent input is on the order of
√

N . The feed-forward input
is given by Fffw(θ ) = √

Nμ + σθξ . Here, μ = c · μ̄(θ ), where
c � 0 denotes contrast, μ̄(θ ) is the orientation-dependent
component of the input, and ξ is white noise with standard
deviation σθ . All parameters are given in Table S1 [29].

B. Methods related to the rate formalism

The firing rate of population a = {E , I} is given by νa(θ ) ≡
[〈sa, j (t )〉], where sa, j (t ) = ∑

n δ(t − tna, j ) is the spike train
of the jth neuron from population a, 〈·〉 denotes temporal
average, and [·] denotes population average. Assuming E/I
balance [21,22,25], the mean input currents are related to the
firing rates as

μa(θ ) ≡ 〈[
Ia
i (θ, t )

]〉 =
√

N

[
JaE

NE

N
paE ∗ (

wo
aEνE

)

− JaI
NI

N
paI ∗ (

wo
aIνI

) + μ

]
, (9)

where ∗ is the convolution in the orientation space, wo
ab(νb)

is a synaptic plasticity factor that modulates the effective
synaptic strengths with the presynaptic activity, paE and paI

are the connection probability functions between populations,
and μ represents a stimulus of orientation θ0 and contrast c. In
the limit N → ∞ and requiring that μa in Eq. (9) is finite, we

get that

JEE qpE ∗ (
wo

EEνE
) − JEI (1 − q)pI ∗ (

wo
EIνI

) + μ = 0,

JIE qpE ∗ (
wo

IEνE
) − JII (1 − q)pI ∗ (

wo
IIνI

) + μ = 0,

(10)
where q = NE

N is the fraction of excitatory neurons and we
have made the assumption that pEE = pIE = pE and pEI =
pII = pI . The probability of connection is given by pb(θ −
ψ ) = p̄b

σb
√

2π
e
− (θ−ψ )2

2σ2
b , where θ − ψ denotes difference in pre-

ferred orientation and σb denotes connectivity width. We
model the input μ as a Gaussian function,

μ = ce
− (θ−θ0 )2

2σ2
stim , (11)

where c is the stimulus contrast, σstim is the tuning width of
the input, and θ0 is the stimulus orientation (see Table S1 for
parameters [29]).

C. Methods related to network models

Model I describes homogeneously randomly connected
networks with constant synaptic weights (Fig. S1 [29]). The
connection probabilities pE and pI are uniform across the
feature space �. The synaptic plasticity factors are constant
and equal unity, w

0,i j
ab = wo

ab = 1. The external feed-forward
input Fffw is orientation independent, with μ = c.

Model II describes homogeneously randomly connected
networks with plastic E → E synaptic weights (Fig. 3). The
synaptic plasticity factor w

0,i j
EE models STP as in Refs. [25,48].

The firing rate approximation for wo
EE in STP is given in the

Supplemental Material [29]. The synaptic plasticity factors for
the remaining population connectivities are constant and equal
unity. The connection probabilities pE and pI are constant.
The external feed-forward input Fffw is orientation indepen-
dent, with μ = c.

Model III describes networks of neurons connected
with orientation-dependent probability and constant synaptic
weights [Fig. S4 [29], Eq. (10)]. For each neuron, Ca presy-
naptic neurons are sampled from a probability distribution
pab(θ − ψ ), which is described by a Gaussian function of
width σ 2

a . Therefore the number of presynaptic inputs to a
neuron for a particular network size N is the same as in models
I and II, but here the majority of connections are made within
the nearby orientation space. The synaptic plasticity factors
w

0,i j
ab and wo

ab are constant and equal unity.
Model IV describes networks of neurons connected with

orientation-dependent probability and plastic E → E synaptic
weights [Fig. 4, Eq. (5)]. The connectivity is implemented as
in model III, while the synaptic plasticity factors w

0,i j
EE and wo

ab
are defined as in model II.

Model V describes networks of neurons connected with
orientation-dependent probability (see model III) and with
a power-law type of synaptic plasticity in the E → E and
E → I connections [Fig. 5, Eq. (6)]:

w
0,i j
EE = w

0,i j
IE =

(
νb, j

ν0

)k

, (12)
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where ν0 = 1 Hz, and k denotes the synaptic efficacy. The
firing rate νb, j of neuron j is estimated using the sum of its last
n = 10 interspike intervals (ISIs) (see Supplemental Material
for details [29]):

νb, j = n − 1∑n
s=1 ISIs

. (13)

Model VI describes networks of neurons connected with
orientation-dependent probability (see model III) and with
STP in the E → E and E → I connections (Fig. 6, S6 [29]).
The synaptic plasticity factors w

0,i j
EE and w

0,i j
IE are defined

as in model II. The network in Fig. 6 has two excitatory
subpopulations, one is connected to other excitatory and in-
hibitory neurons through facilitating STP synapses and the
other through depressing STP synapses. The synaptic plas-
ticity factors for the remaining population connectivities are
constant and equal unity.

Parameters for each network model are given in Table S1
[29].

D. Mathematical details on the susceptibility to input contrast
δ in uniform and randomly connected networks

with E → E plasticity

Here we consider E → E plasticity (see Supplemental Ma-
terial for analogous calculations for networks with E → E
and E → I plastic synapses [29]). From Eq. (10) we define the
input contrast c that is consistent with a balanced network with
uniform random connectivity and E → E plastic synapses to
fire at rate νE (wo

EI = wo
IE = wo

II = 1):

c(νE ) = νE qpE
JEI JIE − JII JEEwo

EE

JII − JEI
. (14)

Note that for uniform connectivity pE and pI and firing rates
νE and νI , the convolutions in Eq. (10) simplify to a product.
Using the definition of kEE [Eq. (4)], the derivative of the
input contrast c with respect to the excitatory firing rate νE

is inserted into Eq. (1) to obtain

δ = 1 + wo
EE kEE

β − wo
EE (1 + kEE )

, (15)

where β = JEI JIE
JII JEE

. This equation is equivalent to Eq. (2), where

wEE = wo
EE
β

. We introduce the normalized E → E synaptic

factor wEE = wo
EE
β

to get

δ = 1 − wEE

1 − wEE (1 + kEE )
. (16)

The phase space of values for δ is shown in Fig. 2.
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