
Supplemental Material

Details on the short-term plasticity model (STP)

Short-term plasticity is a non-linear synaptic mechanism observed in cortical pyramidal neurons [1, 2, 3, 4].

In these synapses, the synaptic strength, measured as the amplitude of the postsynaptic potential, depends

on the availability of presynaptic vesicles and their release probability [2]. Tsodysks and Markram [2] first

proposed a model of short-term plasticity, which was later modified by Mongillo et al. [5], who introduced

synaptic state binary variables. Here, we briefly summarize this STP model in spiking networks. For more

detailed information, we refer to Ref. [5]. We then provide details on the approximation we have used in

this study to derive the mean-field steady-state synaptic factor wo.

Mongillo et al. [5] define STP variables x and y. At an individual synapse, x represents the availability

of neurotransmitter and y is the binding state of calcium ions. Neurotransmitter can be available (x = 1)

or not (x = 0) and calcium can be either bound (y = 1) or not (y = 0). If the presynaptic neuron spikes,

calcium binds to the postsynaptic receptor with probability U. If calcium binds (y = 1) and neurotransmitter

is available (x = 1), neurotransmitter is released (x → 1) and the postsynaptic neuron spikes. In between

spikes, neurotransmitter replenishes with rate 1/τD (x → 1) and calcium unbinds with rate 1/τF (y → 0).

In a network context, Mongillo et al. [5] define

⟨y⟩k+1 = [U + (1− U)⟨y⟩k]e
−∆k+1
τF

⟨x⟩k+1 = 1− [1− (1− U)(⟨x⟩k − ⟨xy⟩k)]e
−∆k+1
τD

⟨xy⟩k+1 = (1− e
−∆k+1
τD )[U + (1− U)(⟨y⟩k]e

−∆k+1
τF ,

(S1)

where ⟨y⟩ denotes the fraction of synapses with calcium being available, ⟨x⟩ the fraction of synapses with

neurotransmitter being available, and ⟨xy⟩ the fraction of synapses where both calcium and neurotransmitter

are available. The probability of neurotransmitter release upon the (k + 1)-th spike is wk+1 = U⟨x⟩k+1 +

(1 − U)⟨xy⟩k+1. Mongillo et al. [5] compute the steady-state synaptic state as a function of the Laplace

transform of the interspike interval probability distribution function. For arbitrary stationary interspike

interval probability distribution functions, they derive the following steady-state values

⟨y⟩ =
Up̃( 1

τF
)

1− (1− U)p̃( 1
τF

)

⟨x⟩ =
1− [1 + (1− U)⟨xy⟩]p̃( 1

τD
)

1− (1− U)p̃( 1
τD

)

⟨xy⟩ =
(
1−

p̃( 1
τD

+ 1
τF

)

p̃( 1
τF

)

)
⟨y⟩

w = U⟨x⟩+ (1− U)⟨xy⟩,

(S2)

where p̃(s) is the Laplace transform of the interspike interval probability distribution function and w is the

steady-state neurotransmitter release probability upon spike.
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At this point, we assume an exponential interspike interval distribution function, which is characteristic

of a Poisson process [6], to get the steady state mean-field approximation for w. In this case, the Laplace

transform is p̃(s) = νE
s+νE

, where νE is the presynaptic excitatory firing rate. Inserting this expression into

Equations (S2) gives the following approximations for the synaptic steady-states ⟨y⟩νE , ⟨x⟩νE , ⟨xy⟩νE and

wo(νE):

⟨y⟩νE =
UνE

UνE + 1
τF

⟨x⟩νE =
1

τD

U2ν2E + UνE
τF

+ 1
τ2
F
+ UνE

τD
+ 1

τD
1
τF

(νE + 1
τF

+ 1
τD

)(UνE + 1
τD

)

⟨xy⟩νE =
1

τD

UνE

(νE + 1
τF

+ 1
τD

)(UνE + 1
τF

)

wo(νE) =
1

τD

U(νE + 1
τF

)(UνE + 1
τF

+ 1
τD

)

(νE + 1
τF

+ 1
τD

)(UνE + 1
τD

)(UνE + 1
τF

)
.

(S3)

wo(νE) is the steady-state probability of neurotransmitter release as a function of the presynaptic excitatory

firing rate νE and the synaptic parameters τF , τD and U (Figure S3). wo(νE) is used in the mean-field

description of networks with E → E STP (Models II, IV, and VI; Equation 5).

The susceptibility δ in networks with E → E and E → I plastic synapses.

Here, we expand the definition of δ in networks with E → E plasticity (Equation 2) to networks in which

E → E and E → I synapses are plastic. We examine if the different types of contrast response described in

Figure 2 for networks with E → E plasticity change through the introduction of E → E and E → I plastic

synapses. To that end, we derive the stimulus contrast that drives a network to fire at rates νE and νI from

Equation 10:

c(νE , νI) = νEqpE
JEIJIEw

o
IE(νE)− JEEw

o
EE(νE)JII

JII − JEI
, (S4)

where we have set wo
EI = wo

II = 1 and kEI = kII = 0. Using the definition of kEE (Equation 4), the

derivative of the input contrast c with respect to the excitatory firing rate νE is inserted into Equation 1 to

obtain

δ =
JEEJIIw

o
EE − JEIJIEw

o
IE

JEEJIIwo
EE(1 + kEE)− JEIJIEwo

IE(1 + kIE)
. (S5)

We substitute β = JEIJIE
JIIJEE

, which yields

δ =
wo

EE − βwo
IE

wo
EE(1 + kEE)− βwo

IE(1 + kIE)
. (S6)

We examine the non-linear contrast response of balanced networks with additional plastic E → I synapses

for wEE and kEE ̸= 0. The phase space of values of Equation S6 under these constraints is shown in Figure

S2. Our results show that, similarly to the network with plastic E → E synapses (Figure 3), networks

with both E → E and E → I plastic synapses can exhibit different types of non-linear contrast response.

The type of nonlinearity (i.e sublinearity, supralinearity or supersaturation) is determined by the synaptic

parameters wo
EE , w

o
IE , kEE , and kIE .
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Linear stability analysis

Our results show that plastic E → E synapses control the response to contrast in balanced networks δ.

The contrast response function can be sublinear, supralinear or supersaturating depending on the synaptic

parameters (Figure 2). Yet, the existence of these different steady states does not guarantee that they are

stable in balanced networks. Here, we analyze the stability of the steady states in networks with plastic

E → E synapses. Let us begin by assuming linear dynamics for νE(t) and wo
EE(t) in the vicinity of the

steady state. The excitatory firing rate νE converges to the steady state νsE with timescale τn. Similarly,

the synaptic plasticity factor wo
EE converges to the steady state value wo

EEs
with timescale τs. wo

EEs
(t)

is determined by the network firing rate, such that wo
EEs

(t) = wo
EEs

(νE(t)). In cortical networks, the

excitatory and inhibitory currents have been shown to correlate with milisecond precision [7]. In line with

these observations, we assume that the firing rates balance instantaneously such that τn ≪ τs. This implies

that (see Equation 14)

νE(t) =
c

qpE

JEI − JII
JIIJEEwo

EE(t)− JEIJIE
(S7)

holds at all times t. With this, we are left with one differential equation for the synapses in the vicinity of

the fixed points

τsẇ
o
EE(t) = wo

EEs(νE(t))− wo
EE(t) (S8)

We compute
∂ẇoEE
∂woEE

and evaluate it at the steady state wo
EEs

. The sign of
∂ẇoEE
∂woEE

indicates the stability of

the steady state. If
∂ẇoEE
∂woEE

< 0, the steady state is stable as perturbations around the steady state are

absorbed and the system is pushed back to the equilibrium point. If
∂ẇoEE
∂woEE

> 0, the steady state is unstable

as perturbations around the steady state are amplified and the system is pushed away from the equilibrium

point. From Equation S8, we obtain

τs
∂ẇo

EE

∂wo
EE

=
∂

∂wo
EE

(wo
EEs(νE)− wo

EE)

=
∂wo

EEs

∂νE

∂νE
∂wo

EE

− 1

=

(
∂wo

EEs

∂νE

c

qpE

JIIJEE(JII − JEI)

(JIIJEEwo
EE − JEIJIE)2

− 1

) (S9)

Next, we substitute c by using the balanced state expression (see Equation S7). This yields

τs
∂ẇo

EE

∂wo
EE

= −
(
∂wo

EEs

∂νE

νE(JIIJEE)

JIIJEEwo
EE − JEIJIE

+ 1

)
(S10)

We now evaluate this expression for wo
EE = wo

EEs
and make use of the definition of the synaptic efficacy

kEE introduced in the main text (Equation 4): here kEE =
∂woEEs
∂νE

νE
woEE

. We substitute kEE into Equation

S10, which yields

τs
∂ẇo

EE

∂wo
EE

= −
(

kEEw
o
EE(JIIJEE)

JIIJEEwo
EE − JEIJIE

+ 1

)
= −

(
kEEw

o
EE

wo
EE − JEIJIE

JIIJEE

+ 1

)
.

(S11)
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Using β = JEIJIE
JIIJEE

, the above expression transforms into

τs
∂ẇo

EE

∂wo
EE

= −
(
wo

EE(kEE + 1)− β

wo
EE − β

)
= −1

δ

(S12)

where δ is the susceptibility to input in balanced networks. From this, we conclude that the supersaturation

regime (δ < 0) is not stable in the limit of balanced networks. Both sublinear and supralinear regimes (δ > 0)

are stable.

Estimation of the firing rate ν in Model V

In a spiking network simulation, the firing rate is usually obtained a posteriori, by dividing the number of

spikes that occurred over a given time frame. In the context of power-law synapses, the firing rate needs to

be estimated for each neuron, upon firing, in order to determine the amplitude of the post-synaptic potential:

wij
ab =

(
νb,j
ν0

)k

. (S13)

Typically, the firing rate of each neuron is estimated by counting the number of spikes emitted in a given

period of time. This approach has multiple drawbacks. First, the number of spikes emitted in a given time

period is discrete, so the relative precision of the firing rate estimation decreases for low firing rates. Second,

the synapses would display limited responsiveness, as they cannot adapt to new states faster than the time

needed to renew the time window. Finally, the choice of the optimal length of the time window is a trade-off

between a better precision (long period of time) and responsiveness (short period of time). Making this

trade-off is especially difficult in networks with feature-dependent connectivity and input, in which neurons

of the same population have a wide range of firing rates. Instead, we choose to estimate the firing rates using

the n interspike intervals (ISIs) that precede any new spike. Assuming that the neuron’s spiking follows a

Poisson process and that the system is in steady state (all ISIs follow the same distribution), the sum of the

n ISIs should follow an Erlang distribution

PΣISI(t) =
νntn−1e−νt

(n− 1)!
, (S14)

where ΣISI is the sum of n ISIs, and ν is the firing rate of the neurons. The mean of the n ISIs is given by

⟨ISI⟩ = ΣISI

n
. (S15)

With the change of variable τ = t
n

P⟨ISI⟩(τ)dτ = PΣISI(nτ)ndτ

= νnτn−1e−νnτ nn

(n− 1)!
.

(S16)
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Following the same approach, the pdf of the inverse of the average ISI (⟨ISI⟩−1) can be obtained with the

change of variable f = 1
τ

P⟨ISI⟩−1(f)df = P⟨ISI⟩(f
−1)

−df
f2

=
νn

fn+1

nn

(n− 1)!
e−

nν
f .

(S17)

For n > 1, the expected value of ⟨ISI⟩−1 is given by

E[⟨ISI⟩−1] =

∫ ∞

0

fP⟨ISI⟩−1(f)df

=
nn

(n− 1)!

∫ ∞

0

νn

fn
e−

nν
f df.

(S18)

With one last change of variable g =
nν

f

E[⟨ISI⟩−1] = − nn

(n− 1)!

∫ 0

∞

νngn

nnνn
e−g nν

g2
dg

=
νn

(n− 1)!

∫ ∞

0

gn−2e−gdg

=
νn

(n− 1)!
Γ(n− 1)

=
νn

(n− 1)!
(n− 2)!

=
n

n− 1
ν.

(S19)

We can therefore build an estimator ν̂ of the neuron’s firing rate based on the n ISIs that precede the time

of evaluation:

ν̂ = ⟨ISI⟩−1n− 1

n
=

n− 1∑n
i=1 ISIi

E[ν̂] = ν.

(S20)

Firing rate profile νE of balanced networks with feature-dependent connectivity

In this section, we outline a rate formalism of balanced networks with feature-dependent connectivity and

plastic synaptic weights.

The firing rate of the presynaptic population a = {E, I} is given by νa(θ) ≡ [⟨sa,i(t)⟩], where θ = i
Na

and

sa,i(t) = δ(t− tn
a,i) is the spike train of the i-th neuron from population a, and tn

a,j are its spike times. In

the continuum limit, the mean input currents are related to the firing rates as follows

µa(θ) ≡ ⟨[Iai (θ, t)]⟩ =
√
Nµ(θ) +

∫ ∞

−∞

(
λE

JaE√
N
paE(θ − ψ)(w0

aEνE)(ψ)− λI
JaI√
N
paI(θ − ψ)(w0

aIνI)(ψ)
)
dψ,

(S21)

where ⟨·⟩ denotes temporal average, [·] denotes population average. The synaptic plasticity factor w0
ab(νb(θ))

modulates the synaptic strength Jab as a function of the presynaptic activity. The term µ(θ) denotes a
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feature-dependent external input, λb is the linear density of population b in the feature space. Since we

assume the feature space Γ to have length 1, we have λb = Nb.

For µa(θ) to be finite, the following condition must be met:

JaE
NE

N
paE(θ) ∗ (w0

aEνE)(θ)− JaI
NI

N
paI(θ) ∗ (w0

aIνI)(θ) + µ(θ) = O
( 1√

N

)
, (S22)

where ∗ is the convolution in the feature space. Taking the limit N → ∞ and writing the resulting equation

in the Fourier domain we get

qJEE p̂EE
̂(w0
EEνE)− (1− q)JEI p̂EI

̂(w0
EIνI) + µ̂ = 0

qJIE p̂IE
̂(w0
IEνE)− (1− q)JII p̂II

̂(w0
IIνI) + µ̂ = 0,

(S23)

where q = NE
N and 1 − q = NI

N are the fractions of excitatory and inhibitory neurons, respectively. As-

suming the inhibitory connections are constant (w0
EI = w0

II=1), and setting pEE=pIE=pE and pEI=pII=pI

the balanced state solution in the Fourier domain yields

JEEJII
̂(w0
EEνE)− JEIJIE

̂(w0
IEνE) =

µ̂

p̂E

JEI − JII
q

. (S24)

We set the feedforward input µ(θ) to be a gaussian function of preferred feature:

µ(θ) = ce
− (θ−θ0)2

2σ2
stim , (S25)

where c is the stimulus contrast, σ2
stim is the tuning width of the feedforward input and θ0 is the input

feature.

Neurons with a similar preferred feature are more likely to be connected. We assume it is given as a

Gaussian function:

pab(θ − ψ) = pmaxbe
− (θ−ψ)2

2σ2
b , (S26)

where pmaxb is the peak probability of connection, for two neurons sharing the same feature preference, θ

and ψ are the feature preference of the postsynaptic and presynaptic neurons, and σb is the width of the

distribution. The number of connections Cb from population b is given by

Cb = pmaxb

∫ ∞

−∞
e
− (θ−ψ)2

2σb λbdψ = λbσb
√
2πpmaxb . (S27)

From this, we can define the connection probability with respect to the presynaptic population, such that

Cb = pbNb:

pb = pmaxbσb
√
2π. (S28)

The excitatory firing rate profile can be expressed in the Fourier domain as

JEEJII
̂(w0
EEνE)− JEIJIE

̂(w0
IEνE)

JEI − JII
= c

σstim
√
2π

qpE
e−ifθ0e−

f2(σ2stim−σ2E)

2 , (S29)
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and can be transformed back into the feature space:

JEEJIIw
0
EE(νE)νE − JEIJIEw

0
IE(νE)νE

JEI − JII
= c

σstim

qpE
√
σ2
stim − σ2

E

e
− (θ−θ0)2

2(σ2
stim

−σ2
E

) . (S30)

Note that networks of uniformly randomly connected neurons with orientation-dependent input (σE →
∞) do not have a νE(θ) solution in the balanced state. If the synaptic plasticity factor in E → E connections

is the same as in E → I connections, the previous expression can be simplified as

w0
EE(νE)νE = c

JEI − JII
JEEJII − JEIJIE

σstim

qpE
√
σ2
stim − σ2

E

e
− (θ−θ0)2

2(σ2
stim

−σ2
E

) . (S31)

Finally, if the synaptic plasticity follows a power law, w0
EE =

(
νE
ν0

)k
, the firing rate response can be

factorized into a function of contrast and a function of orientation:

νE =
(
c

JEI − JII
JEEJII − JEIJIE

σstimν
k
0

qpE
√
σ2
stim − σ2

E

) 1
k+1

e
− (θ−θ0)2

2(k+1)(σ2
stim

−σ2
E

) . (S32)
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Supplementary tables and figures

Model I
Populations NE = [1.6× 104...6× 104] ; NI = [4× 104...1.5× 104] (neurons)
Connectivity Random, pE = p̄E = 0.05; pI = p̄I=0.05
Synaptic weights JEE = 2.5; JEI = 10; JIE = 4; JII = 13.5 (mV/spike)
Synaptic plasticity No
Input Orientation-independent, c = [0...2.5] (mV/s)

Model II
Populations NE = 105; NI = 2.5× 104 (neurons)
Connectivity Random, pE = p̄E = 0.05, pI = p̄I=0.05
Synaptic weights JEE = 8; JEI = 10; JIE = 4; JII = 13.5 (mV/spike)
Synaptic plasticity STP in E → E:

Facilitation: U = 0.05, τF = 0.8 ms, τD = 0.03 ms

Depression: U = 0.35, τF = 0.15 ms, τD = 0.7 ms
Input Orientation-independent, c = [0...2.5] (mV/s)

Model III
Populations NE = 2× 105; NI = 5× 104 (neurons)
Connectivity Orientation-dependent, p̄E = p̄I = 0.05; σE=σI=0.1
Synaptic weights JEE = 2.5; JEI = 10; JIE = 4; JII = 13.5 (mV/spike)
Synaptic plasticity No
Input Tuned gaussian input, c = 1, 2, 3 (mV/s), σstim = 0.16

Model IV
Populations NE = 4× 105; NI = 105 (neurons)
Connectivity Orientation-dependent, p̄E = p̄I = 0.05; σE=σI=0.1
Synaptic weights JEE = 8; JEI = 10; JIE = 4; JII = 13.5 (mV/spike)
Synaptic plasticity STP in E → E:

Facilitation: U = 0.05, τF = 0.8 ms, τD = 0.03 ms

Depression: U = 0.2, τF = 0.2 ms, τD = 0.2 ms
Input Tuned gaussian input, c = [0...4] (mV/s), σstim = 0.16

Model V
Populations NE = 4× 105; NI = 105 (neurons)
Connectivity Orientation-dependent, p̄E = p̄I = 0.05; σE=σI=0.1
Synaptic weights JEE = 2; JEI = 10; JIE = 5; JII = 12 (mV/spike)
Synaptic plasticity Power-law plasticity in E → E and E → I:

Synaptic efficacy k = −0.5
Input Tuned gaussian input, c = 0.5, 1, 1.5, 2 (mV/s), σstim = 0.16

Model VI
Populations Figure 6: NEdep = 3.2× 105; NEfac = 8× 104 NI = 105 (neurons)

Figure S6: NE = 4× 105; NI = 105 (neurons)
Connectivity Orientation-dependent, p̄E = p̄I = 0.05; σE=σI=0.1
Synaptic weights JEE = 10; JEI = 10; JIE = 27; JII = 13.5 (mV/spike)
Synaptic plasticity STP in E → E and E → I:

Figure 6: Facilitation: U = 0.05, τF = 0.8 ms, τD = 0.03; Depression:

U = 0.6, τF = 0.3 ms, τD = 1 ms; α = 0.2

Figure S6: Depression: U = 0.2 ms, τF = 0.2 ms, τD = 0.2 ms
Input Tuned gaussian input, σstim = 0.16

Figure 6: c = 0.5, 1, 1.5, 2 (mV/s); Figure S6: c = 0.5, 2, 3.5, 5 (mV/s)

Table S1: Parameters for each network model. For all spiking network models: τm = 20 (ms), Vth = 1 (mV),

vrest = 0 (mV), σθ = 2 mV/
√
s, the simulation time step dt = 0.05 (ms), and the recording bin size is 50

ms. The synaptic weights and the input are re-scaled by 1√
N

and
√
N , respectively (see Equation 8) [8].

Let us note that we re-scale the feature space Γ, σE and σI to 180◦ in the figures for illustration purposes.
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Figure S1: Linear response to contrast for uniform networks of randomly connected LIF neurons and constant

synapses. (a) The mean activity of the excitatory (blue) and the inhibitory (black) populations in a network of N = 5 · 104

LIF neurons (dots) with constant synapses (wo
ab = 1) is captured by the balanced state equations (Equation 10, solid lines).

(b) An increase in the number of neurons from N = 2 · 104 to N = 5 · 104 corrects a maximum deviation from balance (solid

lines) of 4.5%. (c) Spike raster of 25 excitatory and 25 inhibitory neurons across 1 s for the data point denoted by an asterisk in

(a). (d) Top: coefficient of variation (CV), inter-spike interval (ISI) distribution and exponential fit for the data point denoted

by asterisk in (a) indicate asynchronous irregular firing. Bottom: temporal correlations of the E and I inputs estimated for

data point denoted by asterisk in (a) indicate E-I balance. For parameters see Table S1, Methods – Model I.
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Figure S2: Susceptibility to contrast δ in networks with plastic E → E and E → I synapses. (a) The phase space of

values for δ (Equation S6) for wo
EE = 0.4 and kEE = −0.6 (depressing state). (b) The phase space of values for δ (Equation

S6) for wo
EE = 0.4 and kEE = 0.1 (facilitating state). Let us note that for positive input contrast and JII > JEI , parameters

must satisfy wo
IE <

woEE
β

for positive firing rates [8, 9].

Figure S3: Steady-state probability of neurotransmitter release wo(νE) (Equation S3). (a) Facilitating transmission:

wo increases until neurotransmitter vesicles can not replenish fast enough to be released upon spike arrival. At this point, wo

decreases for increasing νE . Parameters: U = 0.05, τF = 0.8 ms, τD = 0.3 ms. This function models the E → E synapses in

Figures 2, 3, 4, and 6. (b) Depressing transmission: wo decreases with increasing νE as a result of neurotransmitter not being

available. Parameters: U = 0.35, τF = 0.15 ms, τD = 0.7 ms. This function models the E → E synapses in Figures 2 and 3.
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Figure S4: Networks with orientation-dependent connectivity and constant synapses have linear susceptibility

and are contrast-invariant. (a) A Network with feature-dependent connectivity (see Methods - Model III and Table S1

for parameters). The connection probability functions pE and pI are Gaussian. (b) Excitatory tuning curves in response to

different input contrast, c = 1, 2, 3 (mV/s). Prediction from the balanced theory (Equation 10, solid lines) compared to the

results obtained in a simulation of spiking neurons (dots). (c) Overlapping normalized tuning curves from (b) show contrast

invariance. Inset: peak firing rate at θ = 90◦ from tuning curves in (b) linearly increases with contrast.
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Figure S5: Depressing E → E STP induces sublinear susceptibility to contrast and leads to quasi-invariant

network selectivity. Same network model as in Figure 4a with depressing E → E STP synapses (see Methods - Model IV

and Table S1). (a) Excitatory tuning curves for different input contrast, c = 0.1, 1.6, 3.1, 4.6 (mV/s), in a mean-field network

description (Equation 5, solid lines) compared to spiking network simulations of N = 5·105 neurons (dots). Notice the difference

in tuning curves compared to a network with facilitating STP E → E synapses (Figure 4b). (b) Normalized excitatory tuning

curves in (a) show a quasi-invariant selectivity as a function of input contrast. Inset: firing rate of tuning curves in (a) in

spiking networks (dots) and balanced theory (solid line) for θ = 90◦.
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Figure S6: Depressing STP in the E → E and E → I synapses induces a supralinear response to contrast and

narrows the network selectivity. (a) Network with orientation-dependent connectivity. Plastic synapses (green) follow

depressing STP dynamics (see Methods - Model VI and Table S1). (b) Excitatory tuning curves for different input contrast,

c = 0.5, 2, 3.5, 5 (mV/s), in a mean-field network description (Equation 10, solid lines) compared to spiking network simulations

of N = 5 · 105 neurons (dots). (c) Top: full width at half maximum (FWHM) for the contrasts c analyzed in b. The difference

between spiking and mean-field data for c = 5 mV/s could be due to variations between the STP firing rate approximation to

the synaptic spiking model for those firing rates (Equation S3). Bottom left: firing rate at the preferred orientation (θ = 90◦)

as a function of contrast. Bottom right: average neurotransmitter release probability, wo
EE as a function of contrast and fit to

a power-law for νE > 10 Hz (dashed line).
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Figure S7: STP synaptic transformation and approximation to a power-law. (a) The effective probability of neuro-

transmitter release wo
E in: a population of facilitating and depressing STP synapses (main plot, solid black, α = 0.2, see Figure

6), facilitating STP synapses (inset, solid red), and depressing STP synapses (inset, solid blue) as a function of presynaptic firing

rate νE . Dotted lines show the fit to a power-law for depression (blue), facilitation (red) and the combination of facilitation and

depression (black). (b) Same as in (a) for logarithmic axis. The plot shows how the combination of facilitation and depression

approximates a power-law better for low firing rate values compared to pure depression. Color code as in (a). Parameters as in

Figure 6 - see Table S1.
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Figure S8: The network response depends on the difference between the neuron’s preference and the stimulus

orientation. Previous approaches have defined the network response to orientation ν as the mean activity of single neurons

aligned at the preferred orientation [10]. This can be mathematically formalized as ν = 1
N

∑
θ0

f(θ0, θ0+θ′). We have assumed

a preferred orientation for each neuron and defined the network response as the mean activity of the neurons relative to the

stimulus orientation. Mathematically, this implies that ν = 1
N

∑
θ f(θ − θ′0, θ). Here we show that both descriptions of the

network response are equivalent as θ = θ0 + θ′.

.

Video S1: Approximation for excitatory firing rate νE in a network with E → E plasticity with feature-dependent

input µ. Here, νE = µδ(µ) is used, where for simplicity dimensionless quantities are used, and where we have used δ(µ) as

a first order approximation for δ(νE). This is a valid approximation for δ close to unity. Here, µ = ce−θ2 and preferred

orientation θ = 0. As a plasticity rule, an STP-like rule w(ν) = (1− e−ν)e−0.3ν is used, where the term (1− e−ν) implements

facilitation and the subsequent term e−0.3ν implements depression. Equation 1 is then used to derive the expression for δ(ν).

One can observe a regime for small contrasts c < 1 in which δ > 1 in the preferred orientation, and in which νE narrows. This

is followed by a regime c > 1 in which δ in the preferred orientation drops below unity, and the output firing rate broadens.
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