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List of Abbreviations
AUC area under the curve.

BPH benign prostatic hyperplasia.

ERG stain with a antibody for ERG protein (ERG for Erythroblast transformation-

specific Related Gene).

FDR false discovery rate.

HoLEP Holmium Laser Enucleation of the Prostate.

H&E hematoxilin and eosin.

ISUP international society of urological pathology score.

ML machine learning.

NN neural networks.

PCa Prostate Cancer.

PIN-4 double stain with two antibodies, AMACR(P504S), and high molecular

weight cytokeratin.

QuPath open source software for digital pathology and whole slide image analysis

QuPath (version 0.2.0) [1].

RF random forest.

RFE recursive feature elimination.

ROC receiver operating characteristic.

RPX radical prostatectomy.

SVM support vector machines.

TMA tissue microarray.

UCT University Cancer Center Frankfurt.

1.1 Patient Cohort
Tissue/tumor samples and patient data were provided by the University Cancer

Center Frankfurt (UCT). Written informed consent was obtained from all patients

and the study was approved by the institutional Review Boards of the UCT and

the Ethical Committee at the University Hospital Frankfurt (project-number: SUG-

4-2018). The project expands on the results of Bernatz et al. [2] and in total 418

patients with confirmed PCa who were treated with radical prostatectomy (RPX)

between 2014 and 2019 were screened for study inclusion [2]. In the current study,

contrary to Bernatz et al. [2] patients with neoadjuvant therapy prior to RPX (n=6)

were included and 1 PCa patient had to be excluded due to an insufficient amount of

PCa-tissue leading to final study cohort of 38 PCa patients, see Bernatz et al. [2] for

details. As negative control, 10 patients with benign prostatic hyperplasia (BPH)

who were treated with Holmium laser enucleation of the prostate (HoLEP) were

used. Inclusion criteria for the HoLEP cohort was (I) suffering from BPH and having

received (II) treatment with HoLEP without (III) cancerous tissue in the HoLEP

tissue. The final patient cohort comprised of 48 patients (mean age, 66 ± 6.6 years),

38 patients with PCa and ten patients with BPH.

1.2 Preparation of tissue microarrays
Prior to the TMA establishment, all whole slide specimen were annotated by an

uropathologist (JK, 10 years of experience) to (I) delineate the areas of PCa index

lesion with highest international society of urological pathology (ISUP) score, (II)
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benign tissue at the opposite site of the respective PCa slides, and (III) benign

HoLEP specimen. In total, 48 paraffin-embedded tissue samples from our patient

cohort were used to construct the TMAs by punching 106 representative tissue

cores from the paraffin blocks. The representative punch-locations were annotated

on respective H&E-slides of each tissue block which was used as a mask to identify

respective regions on the tissue block. We punched a core (2 mm diameter) from

the index lesion of each PCa-tissue (n = 38). As matched-controls we used a tissue

punch from the benign opposite site of each PCa whole gland specimen (n = 38) and

three independent tissue-punches from each patient who was treated with HoLEP

for benign prostatic hyperplasia (n = 10 × 3 = 30). In total, 106 cores of prostate

tissue (malignant, n=38; benign opposite site of PCa-patients, n=38; repetitive

punches of HoLEP tissue, n=30) were punched to constuct TMA 1-3. TMA 1,

TMA 2, and TMA 3 contained 42, 42, and 22 cores of prostate tissue, respectively,

see, e.g., Figure S4. TMA blocks were cut into 3 µm thick slices and placed on

an adhesive glass slide. Unstained slides were stained with H&E as well as with

immunohistochemical staining ERG and PIN-4.

1.3 Histological staining
For immunohistochemistry (IHC), we used DAKO FLEX-Envision Kit (Agilent,

Santa Clara, CA, US) and the fully automated DAKO Omnis staining system (Ag-

ilent, Santa Clara, CA, US) according to manufacturer´s instruction. We applied

heat induced epitope retrieval at 97°C in high pH buffer, EnV FLEX TRS High

pH Buffer (Agilent, Santa Clara, CA, US). Afterwards we applied immunohisto-

chemical epitope staining for 20 min by either PIN-4 double stain or ERG single

stain. PIN-4 co-stained high molecular weight cytokeratin, DAKO primary antibody

Cytokeratin High Molecular Weight (Clone 34betaE12, GA051, ready to use dilu-

tion, Agilent, Santa Clara, CA, US), and protein alpha-methylacyl-CoA racemase,

AMACR (Clone 13H4, GA060; ready to use dilution, Agilent, Santa Clara, CA, US).

ERG contained single-staining ERG primary antibody (GA659, Clone EP111, ready

to use dilution, Agilent, Santa Clara, CA, US). For epitope visualization, we applied

DAKO EnVision™ FLEX DAB+ and Magenta Substrate Chromogen System (Agi-

lent, Santa Clara, CA, US). PIN-4 double stain produced a brownish membranous

signal for cytokeratin and reddish cytoplasmic signal for AMACR [3, 4]. ERG single

stain produced a brownish nuclear signal for high concentration of the protein ERG.

After immunohistochemical staining, we used hematoxylin, DAKO hematoxylin so-

lution (Agilent, Santa Clara, CA, US), for counterstaining. Hematoxylin produced

blue-purple signal for cell nuclei.

For hematoxylin and eosin stain (H&E), slides were automatically processed using

Tissue-Tek Prisma Plus staining device (Sakura Finetek) and Mayer´s Hematoxylin

(AppliChem, Darmstadt, Germany) and Eosin (Waldeck, Münster, Germany) ac-

cording to manufacturer´s instruction. H&E produced blue-purple signal for acidic

cell nuclei and a pink signal for alkaline cytosolic and extracellular structures. Fig-

ure S5 shows three exemplary cores that are stained with H&E, ERG, and PIN-4,

respectively.

Chromosomal rearrangements, or mutations, involving the ERG protein are highly

specific for prostate cancer, occurs in 40–50% cases of prostate cancer and lead to
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the elevated expression of the ERG gene [5, 6]. In the presence of ERG expression,

ERG antibodies yield a positive staining of cancer nuclei and a faint cytoplasmic

staining [7].

1.4 Digitalization
We digitised the histologic slides with a digital slide scanner (Sysmex GmbH, Ger-

many, resolution 2 µm per pixel). We processed the images with an open source soft-

ware for digital pathology and whole slide image analysis, QuPath (version 0.2.0)

[1]. The image processing included de-arraying of the TMA and computation of

feature values for each core.

Out of a total number of 318 stained cores, 106 cores times three stains, three

cores had to be excluded from our analysis due to poor staining quality. The three

excluded cores could not be recognized and processed by QuPath. For the detailed

number of processed malignant and benign cores, we refer to Table S4.

QuPath extracted a grey-scale image for each color transform Red, Green, Blue

(RGB color model), Hue, Saturation, Brightness (HSB color model) and Optical

Density sum (OD–sum), see [8, 1] for a detailed description of the color models. We

applied color deconvolution of QuPath to correct for minor variations between in-

dividual slides. QuPath implements the color deconvolution method of Ruifrok and

Johnston (2001) [8]. The color deconvolution separates three stains based on the

background values and a stain vector for each stain. QuPath provides default stain

vectors, e.g., to characterize hematoxylin, eosin or 3,3’-diaminobenzidine (DAB).

For each slide, we manually selected a representative region containing relatively

clear examples of the stains and background. QuPath adjusted the stain vectors

based on the rgb values of the pixels in the representative region. For H&E, color

deconvolution determined slide specific color vectors for Hematoxylin, Eosin, and

Residual. For ERG, color deconvolution determined slide specific color vectors for

Hematoxylin, ERG, and Residual. For PIN-4, color deconvolution determined slide

specific color vectors that varied strongly from slide to slide and an unique assign-

ment to stains was not possible. The limited ability of automated deconvolution

to account for more than two stains may be the reason for the failure of color

deconvolution in the case of the triple staining PIN-4.

We chose the set of standard features of QuPath. QuPath computed standard

features for each core, as, e.g., five features of the intensity distribution, thirteen

Haralick features based on the co-occurrence matrices for the texture, and shape

values, as, e.g., area, circularity, solidity, max/min diameter of the core [1]. Within

QuPath, the Haralick features are denoted by abbreviations F0–F12, for a list of

abbreviations of features we refer to Table S5. Features of the intensity distribution

and Haralick features were computed for color transforms Red, Green, Blue, Satu-

ration, Brightness, and OD–sum. For color transform Hue, only the mean intensity

was computed. For staining H&E and ERG, features of the intensity distribution

and Haralick features were computed also for the three stain specific color trans-

forms Hematoxylin, Eosin/ERG, and Residual. In total the maximum number of

features, nfeatures, per core was

nfeatures = 18 × ncolor + nshape + 1 .
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For staining PIN-4, the number of color transforms was ncolor = 6. For staining

H&E and ERG, the number of color transforms was ncolor = 9. The number of

shape features was nshape = 8 and one feature was the mean hue. None of shape

features had FDR below 5% , i.e., was statistically significant. After elimination of

features with missing values or zero variance, we recorded 166, 166, and 117 features

values for a core stained with H&E, ERG, and PIN-4, respectively. The values of

the features are available as supplemental Excel files.

1.5 Stain specific features sets
We denoted features with p ≤ 0.001 (Wilcoxon-Mann-Whitney U test) as statisti-

cally significant. For H&E and ERG, we chose color transform Brightness and took

12 and 13 significant features, respectively. For PIN-4, we chose the 16 significant

features of color transform Saturation. The significant features were, ordered by

decreasing Gini score:

• H&E staining, color transform Brightness, 12 significant features: F11, F12,

F0, F4, F2, F9, F8, Median, Mean, F5, F7, F10.

• ERG staining, color transform Brightness, 13 significant features: Mean, F5,

F7, F8, Median, F10, F4, F0, F9, F1, Std.dev., F3, F6

• PIN-4 staining, color transform Saturation, 16 significant features: Max, F12,

F0, F7, F8, Median, Mean, F5, F9, F2, F4, F6, Std.dev., F3, F10, F1.

For the full names of the thirteen Haralick features F0–F12, we refer to Table S5.

1.6 Features sets of recursive feature elimination
We applied the recursive feature elimination method of Guyon et al. (2002) [9],

implemented as function RFECV in the scikit-learn library (version 0.22.1). We

successively increased numbers of top features and saved the set with highest ac-

curacy. If two sets yielded identical accuracy, we favoured the smaller set. For the

three stains, RFE yielded the sets:

• H&E staining, 25 features with mean accuracy 0.780 ± 0.061:

Hematoxylin: F1, F8, Eosin: F1, F3, F6, Residual: Max, F2, F6, F11, F12,

Green: F1, F5, F7, F10, Blue: F1, F7, F8, F10, Brightness: Min, Saturation:

F1, F8, F10, and OD Sum: Max, F8, F10.

• ERG staining, 9 features with mean accuracy 0.829 ± 0.066:

Red: Median, F3, Green: Mean, F1, Brightness: F1, F6, F3, and OD Sum: F8,

F7

• PIN-4 staining, 5 features with mean accuracy 0.973 ± 0.037:

Red: Median, F6 (Haralick Sum variance), Blue: F3 (Haralick Sum of squares),

F1 (Haralick Contrast), and Saturation: F6 (Haralick Sum variance).

For the full names of the thirteen Haralick features F0–F12, we refer to Table S5.

To compute reference accuracy values for the three sets of selected features, we

applied NN, stratification at patient level, and Monte Carlo cross-validation with

100 random splits into 70% training set and 30% test.

1.7 Statistical Analysis
We applied the non-parametric Mann–Whitney U test [10] to compare two unpaired

groups, e.g., malignant versus benign tissue. The Mann-Whitney U test computes
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the U statistic of two samples x1, ..., xm and y1, ..., yn as

U =

m∑
i=1

n∑
j=1

(I[yj < xi] +
1

2
I[yj = xi]),

where I[A] = 1 if the event A is true, and I[A] = 0 otherwise [11]. The U statis-

tic determines the significance of the inequality of the two groups and the Gini

coefficient

Gini =

∣∣∣∣ 2 U

m n
− 1

∣∣∣∣
with m,n the sizes of the two groups [12, 13]. The Gini coefficient can be scaled to

the area under the receiver operating characteristic (ROC) curve (AUC) [12]

AUC =
Gini + 1

2
.

The AUC represents the probability that a randomly chosen subject is correctly clas-

sified. An AUC of 0.5 (Gini = 0) corresponds to a random choice and an AUC of 1.0

(Gini = 1) corresponds to a perfect discrimination between the two groups [14, 12].

To correct the significance for multiple testing, we applied a Bonferroni adjustment

and computed the false discovery rate (FDR) by the Benjamini-Hochberg proce-

dure [15].

1.8 Parameter optimization
We optimized hyperparameters with the function model selection.GridSearchCV

of the scikit-learn library (version 0.22.1) [16] in Python. For SVM, we adjusted

the regularization parameter, C, kernel coefficient, γ, and kernel. For RF, we ad-

justed number of trees in the forest, n estimators, the maximum depth of the tree,

max depth, randomness of the bootstrapping of the samples, random state, the

minimum number of samples required to split an internal node, min samples split,

and the minimum number of samples required at a leaf node, min samples leaf.

For NN, we adjusted structure of a network, hidden layer sizes, activation func-

tion, activation, learning rate schedule for weight updates, learning rate, solver

for weight optimization, solver, regularization term, α, maximum number of itera-

tions, max iter, and random number generation for weights and bias initialization,

random state. For the customized hyperparameters, we refer to Table S1.

1.9 Software
We processed tissue microarrays with the open source software for digital pathology

and whole slide image analysis QuPath (version 0.2.0) [1]. We wrote Python scripts

(Python version 3.7.6) [17]) in Jupyter Notebook [18]. We used modules from

the scipy package (version 1.4.1) [19] for statistical calculations and applied ML

algorithms from the scikit-learn library (version 0.22.1) [16].
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Tables

Table S1: Optimized hyperparameters of the classifiers support vector machines classifier

(SVM), neural networks (NN), and random forest (RF). We performed an exhaustive

grid search to enhance the precision of the classifiers for each individual staining, H&E,

ERG, and PIN-4.

SVM RF NN

H&E C = 1000,
γ = 0.00001,
kernel=’linear’,
probability=True

random state= 1,
max depth= 15,
n estimators= 500,
min samples split= 2,
min samples leaf= 1

hidden layer sizes= (1, 100),
learning rate=’constant’,
random state= 1,
solver=’lbfgs’

ERG C = 0.1,
γ = 0.005,
kernel=’rbf’,
probability=True

n estimators= 100,
max depth= 25

hidden layer sizes= (1, 100),
activation=’identity’,
α = 0.0001

PIN-4 C = 100,
γ = 0.0001,
kernel=’linear’,
probability=True

random state=1,
max depth= 15,
n estimators= 500,
min samples split= 2,
min samples leaf= 1

hidden layer sizes= (1, 100),
activation=’logistic’,
max iter= 1000,
random state= 1,
learning rate=’constant’,
solver=’lbfgs’,
α = 0.001
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Table S2: AUC values for three ML algorithms: SVM, RF, and NN, and three sets of

features, H&E (n=25), ERG (n=9), and PIN-4 (n=5). The features were selected by

recursive feature elimination (RFE), see section 1.6 Features sets of recursive feature

elimination. Only for PIN-4 stain, RFE significantly improved the AUC compared to

Table 2. With five features selected for stain PIN-4, SVM and NN reached favorably

high AUC values of 0.997 ± 0.009 and 0.992 ± 0.012, respectively. . The AUC scores

are for ROC curves averaged over 100 Monte Carlo cross-validations with stratification

at patient (n=48) level to avoid having cores coming from the same patient present

in both training and validation set. Two algorithm, SVM and NN, yield mean AUCs

which, within their standard deviations, are indistinguishable from a perfect score of

100%.

SVM RF NN

H&E 0.83± 0.07 0.81± 0.07 0.82± 0.07
ERG 0.90± 0.05 0.87± 0.06 0.90± 0.05
PIN-4 0.997± 0.009 0.95± 0.04 0.992± 0.012

Table S3: Sensitivity (recall) averaged of 100 Monte Carlo random splits with stratifica-

tion at patient (n=48) level. We applied three ML algorithms: SVM, RF, and NN, and

three sets of features, H&E (n=25), ERG (n=9), and PIN-4 (n=5), as in Table S2. Note

that, elevated expression of ERG has shown to occur only in a subset of approximately

50% of PCa cases [5, 6]. PIN-4 yields best sensitivity. Two algorithm, SVM and NN,

yield mean sensitivities which, within their standard deviations, are indistinguishable

from a perfect score of 100%.

SVM RF NN

H&E 0.680± 0.142 0.538± 0.137 0.746± 0.136
ERG 0.521± 0.144 0.617± 0.155 0.670± 0.124
PIN-4 0.939± 0.081 0.825± 0.108 0.961± 0.068
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Table S4: Number of malignant and benign cores stained with H&E, ERG, and PIN-4

and processed with the software QuPath. We punched 106 representative tissue cores,

38 malignant cores and 68 benign cores. Three stained cores had to be excluded from

analysis due to poor quality.

staining recognized cores malignant cores benign cores

H&E 105 38 67

ERG 105 37 68

PIN-4 105 38 67

Table S5: Abbreviation of predefined standard features in QuPath [1]. Five of the stan-

dard features are based on the intensity distribution and 13 are Haralick texture features.

Intensity-based basic features (5) Abbreviation

Mean value Mean
Standard deviation Std
Minimum value Min
Maximum value Max
Median value Median

Intensity-based Haralick features (13) Abbreviation

Angular second moment F0
Contrast F1
Correlation F2
Sum of squares F3
Inverse difference moment F4
Sum average F5
Sum variance F6
Sum entropy F7
Entropy F8
Difference variance F9
Difference entropy F10
Information measure of correlation 1 F11
Information measure of correlation 2 F12
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Figures

Figure S1: ROC curves of Monte Carlo cross-validation with 100 random splits.

The blue curve denotes the mean ROC curve and the shaded gray area high-

lights its standard deviation. NN uses five features of the staining PIN-4 that

are selected by recursive feature elimination (RFE), see section 1.6 Features sets

of recursive feature elimination. The AUC 0.992 of the mean ROC curve (mean

accuracy 98.2% ) demonstrates the power of the features of stain PIN-4 to dis-

criminate between malignant and benign tissue cores.
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(A) (B)

(C) (D)

(E)

Figure S2: Malignant cores stained with PIN-4 and with Maximal Sat-

uration below 0.953. Top left to bottom right, cores with ID/Maximum

Saturation: (A) RPX1:1A/0.808, (B) RPX1:3C/0.889, (C) RPX1:5E/0.894,

(D) RPX1:5B/0.919, and (E) RPX1:7A/0.922. The scalebar (500µm) in part

A applies to all five cores. The cores represent high grade prostate cancer (two

cores, A–B) and low grade prostate cancers (three cores, C–E) with heterogenous

AMCR expression.
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(A) (B)

(C) (D)

Figure S3: Benign cores stained with PIN-4 and with Maximum Satura-

tion above 0.953. Top left to bottom right, cores with ID/Maximum Satu-

ration: (A) RPX3:1C/0.979, (B) RPX3:2A/0.970, (C) RPX3:7A/0.967, and

(D) RPX2:8C/0.964. The scalebar (500µm) in part A applies to all four cores.

Intense dark brown stain leads to high values of Maximum Saturation. For

RPX3:1C (core A), the staining artefact (dark spot in top left part of core

A) leads to its high value of Maximum Saturation.
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Figure S4: TMA slide, RPX2, established at the Institute of Pathology, Univer-

sity Hospital Frankfurt. The tissue block with 45 cores, each 2 mm in diameter,

is stained with H&E. The array of cores has four rows, A-E, and nine columns,

1-9. Three cores, 1C, 1D, and 1C, from brain tissue are included for visual quality

control.
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Figure S5: Exemplary cores with three stains: (A) ERG, (B) H&E , and

(C) PIN-4.
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(A)

(B) (C)

Figure S6: (A): Malignant core (ID: RPX1:7B) stained with PIN-4 and with

the largest value of Maximum Saturation (1.0). A rectangle marks a zoom–

in region. (B): Zoom into the marked region. In the upper right part, a red

outline indicates position and shape of a gland. The gland is surrounded by

brownish basal cells. The brownish basal cells appear darker than cells with a

pure reddish cytoplasmic signal for AMACR; a red circle in the left bottom

part indicates a region with dominant reddish signal. (C): Saturation of the

marked region. For rgb-values, Red, Green, Blue, of a pixel the Saturation, s,

is determined by s = 1 − min(Red,Green,Blue)/max(Red,Green,Blue). The

basal cells with brownish membranous signal (inside the outline of the gland)

have a lower Saturation than cells with dominant reddish cytoplasmic signal for

AMCAR (inside the circle, left bottom). The cells inside the outline of the gland

vanished for the range of Saturation 0.91 ≥ s ≥ 1, data not shown. The presence

of a pixel with high Saturation indicates a pure reddish cytoplasmic signal for

AMCAR without brownish signal for basal cells and may explain why Maximum

Saturation was the best single indicator for malignancy, see text.
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M., Bankov, K., Koch, I., Chun, F.K.-H., Köllermann, J., Wild, P.J., Vogl, T.J.: Comparison of machine

learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric

MRI using clinical assessment categories and radiomic features. European Radiology, 1–13 (2020)

3. Varma, M., Jasani, B.: Diagnostic utility of immunohistochemistry in morphologically difficult prostate cancer:

review of current literature. Histopathology 47(1), 1–16 (2005)

4. Bostwick, D.G., Qian, J.: High-grade prostatic intraepithelial neoplasia. Modern Pathology 17(3), 360–379

(2004)

5. Scheble, V.J., Braun, M., Beroukhim, R., Mermel, C.H., Ruiz, C., Wilbertz, T., Stiedl, A.-C., Petersen, K.,

Reischl, M., Kuefer, R., Schilling, D., Fend, F., Kristiansen, G., Meyerson, M., Rubin, M.A., Bubendorf, L.,

Perner, S.: ERG rearrangement is specific to prostate cancer and does not occur in any other common tumor.

Modern Pathology 23(8), 1061–1067 (2010)

6. Perner, S., Rupp, N.J., Braun, M., Rubin, M.A., Moch, H., Dietel, M., Wernert, N., Jung, K., Stephan, C.,

Kristiansen, G.: Loss of SLC45A3 protein (prostein) expression in prostate cancer is associated with

SLC45A3-ERG gene rearrangement and an unfavorable clinical course. International Journal of Cancer 132(4),

807–812 (2013)

7. Ayala, G., Frolov, A., Chatterjee, D., He, D., Hilsenbeck, S., Ittmann, M.: Expression of ERG protein in

prostate cancer: variability and biological correlates. Endocrine-Related Cancer 22(3), 277 (2015)

8. Ruifrok, A.C., Johnston, D.A.: Quantification of histochemical staining by color deconvolution. Analytical and

quantitative cytology and histology 23(4), 291–299 (2001)

9. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector

machines. Machine learning 46(1), 389–422 (2002)

10. Cheung, Y.K., Klotz, J.H.: The Mann Whitney Wilcoxon distribution using linked lists. Statistica Sinica,

805–813 (1997)

11. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the

other. The annals of mathematical statistics, 50–60 (1947)

12. Bamber, D.: The area above the ordinal dominance graph and the area below the receiver operating

characteristic graph. Journal of mathematical psychology 12(4), 387–415 (1975)

13. Mason, S.J., Graham, N.E.: Areas beneath the relative operating characteristics (roc) and relative operating

levels (rol) curves: Statistical significance and interpretation. Quarterly Journal of the Royal Meteorological

Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography 128(584),

2145–2166 (2002)

14. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC)

curve. Radiology 143(1), 29–36 (1982)

15. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency.

Annals of Statistics, 1165–1188 (2001)

16. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,

Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.:

Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research 12, 2825–2830 (2011)

17. Van Rossum, G., Drake, F.L.: Python 3 Reference Manual. CreateSpace, Scotts Valley, CA (2009)
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