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Cardiac fibroblasts constitute a major cell population in the heart. They

secrete extracellular matrix components and various other factors shaping the

microenvironment of the heart. In silico analysis of intercellular communica-

tion based on single-cell RNA sequencing revealed that fibroblasts are the

source of the majority of outgoing signals to other cell types. This observa-

tion suggests that fibroblasts play key roles in orchestrating cellular interac-

tions that maintain organ homeostasis but that can also contribute to disease

states. Here, we will review the current knowledge of fibroblast interactions

in the healthy, diseased, and aging heart. We focus on the interactions that

fibroblasts establish with other cells of the heart, specifically cardiomyocytes,

endothelial cells and immune cells, and particularly those relying on para-

crine, electrical, and exosomal communication modes.
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Cardiac fibroblasts constitute a major cell population

in the heart defined by their capacity to generate extra-

cellular matrix (ECM). This cell type is crucial for the

maintenance of the cardiac structure and the mechani-

cal properties of the heart. Although, historically, the

identification of a fibroblast population in heart has

proven challenging, because lineage-specific markers

for fibroblasts remains controversial [1], the epicardial

transcription factor 21 (Tcf21) and the platelet-derived

growth factor receptor alpha (PDGFRa) are com-

monly used to identify quiescent fibroblasts in the

heart [2,3] (Fig. 1). Despite the lack of definitive mark-

ers, fibroblasts can be in general identified by the lack

of basement membrane, presence of multiple elongated

cellular processes, extensive rough endoplasmic

reticulum, and abundant granular cytoplasmic material

[4]. It is important to note that other cells in the heart,

such as endothelial cells [5] or pericytes [6], can pro-

duce ECM and alterations observed in these cells may

lead to cell states that can phenotypically and func-

tionally overlap with fibroblasts; thus, exclusion crite-

ria need to be carefully considered to properly define

cardiac fibroblasts.

Initial studies estimated cardiac fibroblast number

between 27% and 50% of total cells in mouse and rat

ventricles, respectively [7,8]. Refinements like the opti-

mization of tissue digestion protocols or the use of dif-

ferent cardiac fibroblast-specific mouse lines have

allowed to revisit the cardiac tissue composition and

establish that fibroblasts, resident adventitial and
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interstitial, contribute to approximately 10% of all

cells [9]. Nevertheless, the study of fibroblast biology

remains crucial for the correct understanding of car-

diac health, disease, and aging.

Cardiac fibroblasts are of heterogeneous origin, aris-

ing from different sources in the heart including the

epicardium, the neural crest, and the endothelium

(Fig. 1). Nonetheless, it has been reported that this

developmental heterogeneity does not predict different

pathological responses of cardiac fibroblasts [10]. Sev-

eral reports have shown that cardiac fibroblasts origi-

nate from the epicardium, the mesothelium that covers

the heart [11,12]. In the mouse, cellular progenitors of

fibroblasts have been described to invade the myocar-

dium from the epicardium around embryonic day 13.5

[13,14] and are characterized by the expression of

Tcf21 [15], Wt1 [16], and Tbx18 [17]. It is important to

note that the epicardium can give rise to different cell

types in the heart [11,17,18] and that the heteroge-

neous gene expression levels of the above markers has

been linked to the specification into different lineages.

In particular, the expression of Tcf21 in a subset of

epicardial cells is crucial for their differentiation into

fibroblasts [14].

The neural crest is comprised of an heterogeneous

population of migratory cells that originate from the

dorsal part of the neural tube and give rise to a variety

of cell types in different organs [19], including cardiac

fibroblasts [20]. The neural crest plays a crucial role in

the development of the outflow region of the heart

[21], giving rise to valve mesenchyme. Neural crest-

derived fibroblasts, identified using the Pax3-Cre trans-

genic model [22], have been detected within the myo-

cardium, predominately in the right atrium [10].

Finally, the embryonic endothelium constitutes a

third source of cardiac fibroblasts [2] and gives rise to

10–20% of the fibroblasts resident in the heart, in par-

ticular those located in the ventricular septum and

right ventricle [10,23].

Cardiac fibroblasts are a plastic cell population cap-

able of activation and differentiation after injury to

the heart, being this ischemic, mechanical, or

Cardiac Endothelial Cells

Epicardial Cells

Neural crest
Fibroblasts Activated fibroblasts Myofibroblasts

TGFβ
POSTN
SMAD 2/3/4

TGFβ
SMA
FN
TSP-1

PDGFRα
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Fig. 1. Origin and diversity of cardiac fibroblasts. During embryonic development, cardiac fibroblasts (identified by the expression of

PDGFRa, TCF21 [2,3]) arise from cardiac endothelial cells, the epicardium, and the neural crest [2,11,12,19]. Upon stimulation by

inflammatory or profibrotic cytokines (e.g., TGFb), cardiac fibroblasts transit to an activated state, which can be identified using marker

genes and regulators such as TGFb, POSTN, SMAD 2/3/4 [24,25,27–29], and can further differentiate to myofibroblasts that show a strong

contractile and matrix-secretory phenotype [30].
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inflammatory (Fig. 1). Activation results in increased

ECM deposition and leads to fibrosis. Lineage tracing,

and later single-cell RNA sequencing have revealed

that activated fibroblasts expresses high levels of Peri-

ostin (Postn) [24,25]. Furthermore, targeted ablation

of Periostin in activated fibroblasts resulted in reduced

fibrosis, although it induced localized cardiomyocyte

hypertrophy [25]. Activated fibroblasts express several

matrix metalloproteases (MMPs) that degrade the

ECM and mediate the activation of TGFb, thus pav-

ing the way for pathological fibrosis. The cytokine

TGFb, the best characterized fibrogenic growth factor,

plays a crucial role in fibroblast activation [26]. It

induces the phosphorylation of SMAD2 and SMAD3,

which subsequently translocate to the nucleus together

with SMAD4 to promote the expression of fibroblasts

activation-specific target genes [27–29].
After activation, cardiac fibroblasts additionally

transdifferentiate into myofibroblasts in a step-wise

way with intermediate phenotypes [30]. The appear-

ance of myofibroblasts is a hallmark of the cardiac

fibrotic response [31]. Myofibroblasts are characterized

by the expression of alpha smooth muscle actin

(aSMA) in stress fibers and are able to exert contrac-

tile force [25,32]. Furthermore, myofibroblasts change

their ECM profile expressing molecules like Fibronec-

tin (FN) [33] or Thrombospondin-1 (TSP-1) [27]. This

transdifferentiation can work in both directions, as

myofibroblasts can differentiate back to quiescent

fibroblasts once the fibrotic scar has been stabilized

[34]. After injury, myofibroblasts migrate to the site of

injury in response to the secretion of different growth

factors and hormones, such as TGFb [35], PDGF [36],

Angiotensin II [37], Aldosterone [38,39] or Endothelin-

1 [40], and others, where they orchestrate pathological

remodeling [32,41].

Several nonfibroblast cells have been reported to

give rise to activated fibroblasts or myofibroblasts

upon cardiac injury. Bone marrow-derived cells,

perivascular cells or endothelial cells have all been

reported to be the primary source of newly activated

fibroblasts and myofibroblasts in the heart after injury.

However, these findings remain controversial as recent

reports using highly refined genetic markers have not

confirmed these results (reviewed in [42]). Nonetheless,

single-cell RNA sequencing has recently shown that

endothelial cells transiently acquire mesenchymal

fibroblast-like features after myocardial infarct [43].

Fibroblasts have a high capacity to modulate and

affect the environment that surrounds them. Below, we

will explore the interaction of fibroblasts with the

other cells in the heart.

Communication between fibroblasts
and cardiomyocytes

Cardiomyocytes are the cardiac-specific contractile

units, accounting for 65% to 80% of the volume of

the adult mammalian heart [44,45]. In the healthy

heart, cardiomyocytes are organized in layers of

aligned cells in a complex anisotropic structure, with

distinct mechanical and biochemical interactions guid-

ing cardiomyocyte organization and homeostasis [46–
48]. The communication between cardiomyocytes and

other cardiac cell types, especially cardiac fibroblasts,

plays a crucial role in regulating cardiomyocyte func-

tion in particularly upon acute or chronic stress condi-

tions. Interestingly, transcriptomic profiling has

revealed more similarities between cardiac fibroblasts

and cardiomyocytes than between other cell types [49].

Furthermore, specific age- and disease-dependent sig-

natures occur with a similar kinetic in cardiac fibrob-

lasts and cardiomyocytes, suggesting an interrelated

stress response and possibly close communication

between these two cell types [50]. The interactions

between cardiac fibroblasts and cardiomyocytes

involve paracrine signaling [51] (Fig. 2A), mechanical

stimuli [52] (Fig. 2B), electrotonic coupling via gap

junctions [48,53] (Fig. 2C), and exosome-mediated

crosstalk [54] (Fig. 2D).

Fibroblast-cardiomyocyte cell communication in

the diseased heart

Cytokines, hormones, and growth factors

Paracrine signaling was investigated as a common

route of communication between cardiac fibroblasts

and cardiomyocytes in the heart, allowing for indirect

crosstalk without direct cell to cell contacts [55,56].

Several paracrine signaling pathways impact both, car-

diac fibroblasts activation to myofibroblast triggering

fibrosis, and cardiomyocyte function. Angiotensin II

(Ang II) and the cytokine TGFb were among the first

paracrine effector identified in the context of cardiac

fibrosis. cardiac fibroblasts are a major source of the

hormone Ang II [57], which has an important role in

ventricular remodeling after cardiac injury [58,59]. Ang

II also has more direct arrhythmogenic actions by

inducing cardiomyocyte swelling [60], which is known

to impair the gap junction permeability in adult rat

ventricular cardiomyocytes [61]. Inhibition of Ang II

generation or downstream interference with the Ang II

receptors prevents cardiac hypertrophy and interstitial

fibrosis and normalizes intercellular communication

under disease states [62,63]. TGFb is induced under
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Cytokines, hormones and growth factors
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Fig. 2. Fibroblast–cardiomyocyte crosstalk in diseased and aged heart. (A) Crosstalk by paracrine signals and cytokines. Upon TGFb-

stimulation cardiac fibroblasts differentiate to myofibroblasts, which release paracrine factors such as TGFb, AngII, and IL6 that induce

cardiomyocyte hypertrophy and cardiac fibrosis [51,57,67,68]. Fibroblast-derived factors might also be cardiac protective, as IL33 is

attenuating hypertrophy in cardiomyocytes [71]. Cardiomyocytes can also signal back to fibroblasts by releasing LIF, CT-1, and calcitonin,

which stimulates fibroblast proliferation and matrix protein production [75–77]. (B) Crosstalk via extracellular matrix components. Upon

injury, cardiac fibroblasts increase the secretion of matrix components, such as collagens, proteoglycans, and other glycoproteins. The

increase in matrix components grants cardiac stability but also makes the extracellular environment more rigid, which alters cardiomyocyte

integrin-signaling and mechanosensing [85]. (C) Crosstalk via electric coupling. Cardiomyocytes are electrically coupled via gap junctions

(Connexin 43, Cx43) that reside within the intercalated disks [91,92]. Under ischemic conditions, Cx43 might translocate from the

intercalated disks at the polar ends of the cell to the lateral surfaces, therefore increasing the likelihood of cardiomyocyte to fibroblast/

myofibroblast coupling associated with the risk of arrhythmia [93]. (D) Exosome-mediated communication. Fibroblasts can release miR-21-

3p-laden exosomes. Cardiomyocytes take up such exosomes and through the action of miR-21-3p AngII is released thereby leading to

cardiomyocyte hypertrophy and fibrosis [99]. Cardiomyocytes can signal back to fibroblasts and exert both fibrotic and protective effects. By

releasing miR-208-carrying exosomes, cardiomyocytes can stimulate the fibroblast-to-myofibroblast transition [101]. In turn, miR-29b and

miR-455-laden exosomes may attenuate fibrosis [103].
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diseased conditions in fibroblasts and other cardiac cell

types and acts as the main driver for myofibroblast

activation [64,65]. TGFb-dependent activation of car-

diac fibroblasts to myofibroblasts induces cardiac

fibrosis, cardiomyocyte hypertrophy while reducing

action potentials and conductivity in neighboring car-

diomyocytes [51].

Moreover, pro-inflammatory cytokines, especially

interleukin-6 (IL-6), are important mediators in the

communication process. IL-6 is a pleiotropic cytokine

that has distinct biological functions in the heart [66],

with crucial contributions to aging- and disease-

dependent processes including cardiomyocyte hypertro-

phy and fibrosis [67,68]. Enhanced secretion of IL-6 by

cardiac fibroblasts effects multiple crosstalk pathways

by inducing myofibroblast proliferation and differenti-

ation, cardiomyocyte apoptosis, and angiogenesis of

endothelial cells [69]. Recently, Kumar et al. reported

that the hypoxia-induced mitogenic factor (HIMF)

acts as an upstream regulator of IL-6 in cardiomyocyte

to cardiac fibroblast paracrine crosstalk [70].

Other fibroblast-derived cytokines may also elicit

beneficial effects. Thus, interleukin 33 (IL-33), which is

produced by fibroblasts inhibits cardiomyocyte hyper-

trophy and fibrosis after pressure overload, suggesting

that IL-33 may function as a paracrine signal pro-

duced by fibroblasts to modulate cardiomyocyte

responses to hypertrophic stimuli [71]. Nevertheless,

multiple other cardiac cell types can contribute to the

secretion of the paracrine factors as discussed above in

a complex network of heterocellular crosstalk.

Wnt signaling plays a major role in cardiac fibrob-

last–cardiomyocyte crosstalk. Inhibition of Wnt signal-

ing globally after myocardial infarction in vivo reduced

fibrosis, ameliorated cardiomyocyte recovery, and

improved cardiac function [72,73]. However,

cardiomyocyte-specific blockade of Wnt signaling

induced a contradictory response, by increasing fibro-

sis and impairing cardiomyocyte recovery after

myocardial infarction [74]. Taken together, these

observations demonstrate that Wnt signaling is a

major regulator of cardiac fibroblast–cardiomyocyte

communication, with distinct responses in global ver-

sus cardiomyocyte-specific inhibition.

In addition, cytokines and hormones can also be

produced by cardiomyocytes and signal to fibroblasts.

For example, leukemia inhibitory factor (LIF) and

cardiotrophin-1 (CT-1) can regulate fibroblast prolifer-

ation and cardiomyocyte hypertrophy likely amplifying

the injury response. LIF induces hypertrophy in car-

diomyocytes while inhibiting myofibroblast activation

and collagen deposition in vitro [75]. CT-1 enhances

cardiomyocyte hypertrophy but promotes fibroblast

proliferation [76]. In addition, atrial cardiomyocytes

produce the hormone calcitonin that induces neighbor-

ing collagen-producing cardiac fibroblasts to stimulate

proliferation and further secretion of ECM proteins

[77]. Interestingly, this study demonstrated that human

patients with atrial fibrillation showed increased levels

of myocardial calcitonin compared to healthy individu-

als, suggesting that this paracrine crosstalk mechanism

could have therapeutic implications [77].

Extracellular matrix

The mechanical properties of the cardiac tissue environ-

ment are mainly regulated by the ECM, which surrounds

individual cardiomyocytes and provides structural sup-

port for cardiomyocyte organization within the myocar-

dium [78]. With cardiac fibroblasts regulating stiffness of

the cardiac microenvironment, they also regulate the

mechanical stimuli on the neighboring cardiomyocytes.

Two distinct models can be used to describe the car-

diomyocyte mechanosensing machinery: The localized

model suggests stretch signals near the plasma mem-

brane, whereas the decentralized model considers force

generation at the cell surface, which is then transmitted

to other parts of the cell [79]. In addition to structural

support, physical ECM–cardiomyocyte interactions have

been shown to provide a strong mechanical link from the

intracellular contractile apparatus to the surrounding

ECM, an interaction established by the dystrophin glyco-

protein complex [80]. The transmembrane protein dystro-

glycan connects the cytoskeleton of the cardiomyocytes

to the ECM, contributing to cardiac homeostasis [81].

Apart from electrical conductivity, various studies

demonstrated that culturing cardiac fibroblasts or car-

diomyocytes on stiffer substrates results in increased

expression of cell-cell contact proteins. Pulsatile stretch

induces an upregulation of adhesion proteins, such as N-

cadherin, in both cardiac fibroblasts and cardiomyocytes

[82,83].

Fibroblast-derived extracellular matrix proteins may

also control cardiomyocyte responses to injury result-

ing in reparative or regenerative processes [84]. Inter-

estingly, embryonic fibroblasts express a pattern of

extracellular matrix proteins that induce cardiomy-

ocyte proliferation by activating b1-integrin signaling

[85]. This activity was lost in adult heart-derived

fibroblasts, suggesting that changes in the fibroblast-

cardiomyocyte communication may contribute to the

loss of regenerative capacities in the adult heart. Fur-

thermore, in a model of pressure overload, activated

cardiac fibroblast exhibit a protective role by

preserving the ECM network, thereby blocking

inflammation and decreasing cardiomyocyte injury,
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by Smad-mediated pathway that suppresses matrix-

degrading proteins [86].

Electrical coupling

In addition to their role as main drivers of fibrotic pro-

cesses by exacerbated collagen deposition and myocardial

stiffening, cardiac fibroblast can couple through gap junc-

tions with each other and with cardiomyocyte, maintain-

ing the scar regions electrically conductive [87]. Although

activated myofibroblasts can have a positive impact on

conduction across disarranged cardiomyocyte networks

[88], computer-modeling and experimental studies demon-

strated their detrimental effects on cardiac function by

directly depolarizing cardiomyocyte, decreasing action

potential conduction and promoting ectopic electrical

activity [89,90]. Gap junctions are the main mechanism of

electrotonic coupling in the heart, with connexin 43

(Cx43) being the most prominent gap junction protein

expressed in both cardiomyocytes and cardiac fibroblasts

[91,92]. During ischemic conditions, cardiomyocytes

undergo structural remodeling, with Cx43 translocating

from the intercalated disks at the polar ends of the cell to

the lateral surfaces, therefore increasing the likelihood of

cardiomyocyte to myofibroblast coupling associated with

the risk of arrhythmia [93]. Increased expression of Cx43

in cardiac fibroblasts after cardiac injury was associated

with augmented coupling with neighboring cardiomy-

ocytes [94]. In contrast, cardiomyocytes from injured

hearts had reduced Cx43 levels, which has been shown to

result in slowed conduction velocity and thereby con-

tributing to the risk for arrhythmias [95]. This study was

supported by ex vivo experiments where isolated myofi-

broblasts from infarcted hearts cocultured with cardiomy-

ocytes decreased the conduction velocities and duration

of the action potential [55]. The differential regulation of

Cx43 expression in cardiac fibroblasts and cardiomy-

ocytes was proposed to be mediated via the activation of

b-adrenergic receptors upon cardiac injury, which results

in reduced Cx43 expression in cardiomyocytes, but

increased expression in fibroblasts [96]. Such interaction

can be studied in heterocellular cardiac tissue models

allowing to quantify electric interactions between fibrob-

lasts and cardiomyocytes in vitro by cell type-specific

optogenetic manipulation of membrane potential [97].

Funken et al. demonstrated that under basal conditions,

fibroblast membrane potential alterations had minor

effects on cardiomyocytes. However, after TGFb1 stimu-

lation and differentiation of fibroblasts toward

myofibroblasts, fibroblast-specific depolarization or

hyperpolarization directly modulated cardiomyocyte

membrane potential and accelerated or blocked sponta-

neous beating, respectively. Together, multiple studies

have demonstrated the role of electrical coupling of acti-

vated myofibroblasts and cardiomyocyte in aging and

disease [98], but the extent of cardiac fibroblast–car-
diomyocyte interactions in the healthy heart and the role

they play in the maintenance of electrophysiological con-

duction remains to be elucidated.

Exosomes

Finally, exosomes are well recognized to play essential

roles in mediating intercellular crosstalk. They transport

molecules that regulate the physiological and pathophysi-

ological processes of the recipient cells [54]. Analysis of

the exosome content of cardiac fibroblast by RNA

sequencing showed a high abundance of the 3´-p passen-

ger ‘star’ strand of the profibrotic microRNA miR-21 in

exosomes of Ang II-treated cardiac fibroblast. miR-21-3p

containing exosomes were shown to be taken up by car-

diomyocytes via a endocytosis-dependent manner and

augments cardiomyocyte miR-21-3p expression, which

reduces the expression of cardiomyocyte-specific struc-

tural proteins, potentially contributing to cardiomyocyte

hypertrophy [99]. Additionally, other reports confirmed

exosome-mediated interaction and show that cardiac

fibroblast-derived exosomes augment Ang II production

in cardiomyocytes resulting in the induction of cardiac

pathological hypertrophy [100]. On the other hand,

cardiomyocyte-derived exosomes also can control the

function of cardiac fibroblast, as demonstrated by the

induction of fibrosis and myofibroblast activation via

cardiomyocyte-derived, miR-208 loaded exosomes [101].

However, cardiomyocyte-derived exosomes may also

exhibit anti-fibrogenic roles by attenuating fibrosis and

activating angiogenesis via Hsp20 [102], miR-29b, and

miR-455 [103]. Further studies are needed to identify the

specific mechanisms of crosstalk between cardiac fibrob-

lasts and cardiomyocytes via miRNA-loaded exosomes,

especially in homeostasis versus disease conditions [54].

Fibroblast–cardiomyocyte communication in the

aged heart

Fibroblasts contribute to age-associated alterations in the

heart, and cardiac fibrosis is a hallmark of the aging

heart. It is not entirely clear whether fibroblasts are the

primary triggers of aging or if they are involved sec-

ondary to senescence-associated changes in the cardiac

microenvironment. Fibroblasts are activated during aging

and showed the most profound change in gene expression

as compared to other cell types of the aging mouse heart

[104]. Aged fibroblasts are characterized by changed

expression patterns of inflammatory, extracellular matrix

organization angiogenesis, and osteogenic genes [104].
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This affects the microenvironment and possibly may con-

tribute to increased substrate stiffness. Since increased

substrate stiffness triggers contractile dysfunction associ-

ated with telomere shortening one may speculate that

changes in the extracellular matrix environment by aged

heart fibroblasts may support a phenotype of accelerated

aging [105]. Moreover, studies demonstrated that aging

of the heart is accompanied by disturbed expression pat-

terns and distribution of Cx43, with age-dependent

decrease of Cx43 [106], which may be linked to increased

risk for arrhythmic events [107].

Communication between fibroblasts
and endothelial cells

Fibroblasts are closely interacting with endothelial

cells in the heart [108]. Endothelial cells form the inner

surface of the cardiac chambers and line the entire

macro- and microcirculatory system that supplies the

heart with blood. The vasculature thereby ensures tis-

sue oxygenation and supply of nutrients. In addition,

endothelial cell-derived paracrine signals, so-called ‘an-

giocrine mediators’, contribute to the vascular niche,

which control organ homeostasis, repair, and regenera-

tion in various organs such as liver, lung, and bones

[109]. However, less is known whether and how such

angiocrine mediators control cardiac disease and aging

and to what extend cardiac fibroblasts are involved in

maintaining or disturbing the vascular niche.

By controlling the extracellular matrix and by pro-

viding growth factors, fibroblasts play a critical role in

the growth and stabilization of capillaries. Most

prominently, fibroblast-derived growth factors (FGF)

are well-known pro-angiogenic factors. While the

effect of other mesenchymal cells, such as mesenchy-

mal stromal cells, have been extensively studied and

various studies demonstrated that they can be used as

cell therapeutic strategy to provide pro-angiogenic fac-

tors, matrix proteins, and exosomes [110–112], the

specific interactions of intrinsic cardiac fibroblasts

with endothelial cells in the tissue has not been

deeply explored. Interestingly, in silico prediction of

cellular communication based on single-nuclei-RNA-

sequencing data sets of healthy hearts revealed that

endothelial cells show a high number of incoming sig-

nals arising from fibroblasts both in the healthy as

well as in the diseased and aging heart [104].

Fibroblast-endothelial cell communication in the

diseased heart

Particularly after myocardial injury or stress, myofi-

broblasts are the most ligand providing cell type to

signal to endothelial cells [113]. Especially, a distinct

type of activated fibroblasts that expressed Wnt inhibi-

tory factors (WntX-fibroblast) was detected in the bor-

der zone at day 3 postinfarction and was proposed to

interfere with cardiac endothelial cells. This ‘WntX-

fibroblast’ population expressed paracrine factors, such

as Wif1, Timp3, Ptn, Mdk, Apoe, Fbln1, Igf1, and

Rspo3, which were corresponding to endothelial-

expressed receptors [113]. All these factors are known

to regulate angiogenesis [114–117], which suggests a

potential role of the subpopulation of WntX-

fibroblasts in regulating the revascularization of the

border zone upon infarction. While most of the

expressed genes are pro-angiogenic, some inhibit vessel

growth and may also have a negative impact on the

heart. For example, Wif1 inhibits tumor angiogenesis

via interfering with Wnt and Vegf pathways [118,119]

(Fig. 3A). Especially, after myocardial infarction Wif1

expression was found to be induced in cardiomyocytes,

but not in fibroblasts or endothelial cells and its dele-

tion was reported to further induce abnormal chamber

remodeling upon myocardial infarction in mice [120].

By contrast, cardiomyocytes-specific Wif1 induction

rather caused dilated cardiomyopathy in vivo [121],

indicating the need of a well-balanced Wif1 expression

to positively contribute to cardiac repair. However, to

what extent the newly identified WntX-fibroblast pop-

ulation plays a role in cardiac remodeling, is still

debatable. In advanced postinfarct cardiac remodeling,

myofibroblasts further contribute to the fibroblast-

endothelial crosstalk by expressing matrix proteins like

Postn, Fn1, and Col8a1 (Fig. 3A). These factors can

interact on endothelial cell expressed receptors and

might thereby regulate endothelial cell adhesion and

angiogenesis [113]. Of note, such bioinformatical

approaches ignore anatomical and spatial information,

hence immunofluorescence detections were used to

confirm the close proximity between Pdgfra+ fibrob-

lasts and CD31+ endothelial cells [113]. Despite the

histological proximity, robust experimental approaches

proofing that the specific fibroblast subpopulations

and fibroblast-derived factors control endothelial cell

phenotypes and functions are still lacking. However,

first in vitro approaches revealed that fibroblast not

only secrete paracrine factors, but also release

microRNA-loaded exosomes to communicate with

endothelial cells. In a profibrotic setting, it was shown

that mouse cardiac endothelial cell function is

impaired when cultured with exosomes that were iso-

lated from TGFb-pretreated fibroblasts [122]. These

findings are of potential interest since the up-take of

fibroblast-derived miR in endothelial cells might

change their phenotype toward mesenchymal cells.
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Fibroblast–endothelial cell communication in the

aged heart

Similar to pathophysiological states, cardiac aging is

also associated with fibroblast activation and fibrosis

[123], as well as vascular remodeling [124]. Aged heart-

derived endothelial cells were found to switch their

basement membrane from a laminin b2 to a laminin

b1 rich matrix in both cardiac aging and disease.

In vitro studies show that this change in matrix pro-

teins has an autocrine influence on endothelial cells

and control cell adhesion, autophagy, and inflamma-

tion [125]. Since laminins are also critical regulators of

fibroblasts (at least in the lung), one may consider also

an interaction with laminin b1 and b2 on fibroblasts.

Advanced age and cardiac disease are additionally

associated with an increased expression of endothelial-

derived pro-inflammatory factors, such as ET-1 [126],

Angiotensin II [127], TGFb, TNFa and IL-6 [128]

(Fig. 3B). These factors can create a profibrotic envi-

ronment, stimulating fibroblast activation and hence

vascular fibrosis, although fibroblasts show an age-

related decline in their response to growth factors such

as TGFb and EGF [129,130] (Fig. 3B).

Recent studies confirm bioinformatic predictions,

suggesting that fibroblasts signal back to endothelial

cells in the aging heart: aged heart fibroblast express

angiogenesis-controlling genes including Serpin E1

(also known as plasminogen activator inhibitor-1

(PAI-1)) (Fig. 3B). Supernatant of fibroblasts isolated

from aged hearts, which were enriched in Serpin E1,

impaired endothelial cells in vitro [104]. Since Serpin

E1 was identified to be a senescence-associated secre-

tory factor [131,132], a potential role for senescent

fibroblasts in mediating endothelial impairment in the

aging heart should be additionally considered in this

context. However, one should note that fibroblast

senescence may also beneficially affect injury response

in the young mouse heart since it limits the expansion

of profibrotic fibroblasts [133]. In addition, in neonatal

mice, fibroblast senescence was reported to rather sup-

port heart regeneration upon myocardial infarction, as

fibroblast proliferation and thereby fibrosis were

reduced [134]. Therefore, targeting fibroblast senes-

cence as therapeutic strategy may be considered with

caution.

Communication between fibroblasts
and immune cells

Under homeostatic conditions, nonmyocytes in the

heart mostly exhibit quiescent phenotypes, but during

exposure to stress by aging or disease, a variety of cell

types change their phenotype and contribute to remod-

eling processes. Here, various distinct immune cell

types, such as T lymphocytes, monocytes, and macro-

phages, infiltrate into the myocardium and have

diverse spatially and temporally regulated functions

Diseased heart

Activated fibroblasts
(WntX-Fibroblast

Population)

Myofibroblasts

Cardiac endothelial cells

Wif, Fbln1
Timp3, Igf1
Ptn, Apoe
Mdk, Rspo3

Col8a1
Postn
Fn1

Regulation of
angiogensis and
cell adhesion

Aged heart

Cardiac endothelial cells

Fibroblasts

TGFβ, AngII
ET-1, IL-6
TNFα

Activated fibroblasts

Serpin E1

Inhibition of
AngiogensisFibroblast Activation

(A) (B)

Fig. 3. Fibroblast-endothelial cell crosstalk in diseased and aged heart. (A) In the diseased heart, a Wnt-expressing subpopulation of

activated fibroblasts (WntX-Fibroblast) releases paracrine factors, such as Wif1, Timp3, Ptn, Mdk, Apoe, Fbln1, Igf1, and Rspo3, that control

angiogenesis [113]. In addition, myofibroblasts release matrix proteins that further promote angiogenesis and endothelial cell adhesion [113].

(B) In the aging heart, endothelial cells secrete pro-inflammatory and profibrotic factors (ET-1, angiotensin II, TGFb, TNFa, and IL-6) that

provide a stimulatory environment for fibroblast activation [126–128]. Cardiac fibroblasts also signal back to endothelial cells. By secreting

Serpin E1, they control angiogenesis in the aging heart [104].
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[135,136]. Recently published single-cell RNA-

sequencing data of the human heart demonstrated that

immune cells constitute between 5% and 10% of all

cardiac cell types, revealing various immune cell states

with distinct clusters [44]. In the same study, bioinfor-

matically predicted cell-cell interactions identified

specific crosstalk patterns between cardiac fibroblasts

and immune cells. Here, monocyte-derived and

antigen-producing macrophages were predicted to

crosstalk with cardiac fibroblasts via CD74-MIF, an

interaction contributing to fibrosis if inhibited [137]

(Fig. 4A). Additionally, a recently published bioinfor-

matic cell-cell communication study of the heart

showed that cardiac M1 macrophages and myofibrob-

lasts exhibited a large number of outgoing communica-

tion signals [113]. Other cardiac fibroblasts–immune

cell interactions demonstrated that upon cardiac injury

myofibroblasts secrete the factor GM-CSF instructing

resident macrophages to recruit other inflammatory

cells and triggering myocardial inflammation [138,139]

(Fig. 4B). Moreover, cardiac fibroblasts modulate

inflammatory processes at various levels by interfering

with chemotaxis, infiltration, and migration of inflam-

matory cells. In recently conducted studies, cardiac

fibroblasts have been demonstrated to be directly

involved in responding to damage by pattern recogni-

tion receptors (PRRs), which in turn causes a feed-

forward inflammatory response via NF-jB, MAPK8,

and p38 stress signaling pathways triggering the release

of pro-inflammatory cytokines [140,141] (Fig. 4B).

Additionally, the crosstalk between cardiac fibrob-

lasts and immune cells was shown to occur in bidirec-

tional fashion, with cardiac infiltrating Ly6Chi

macrophages mediating the overexpression of profi-

brotic genes, stimulating cardiac fibroblast prolifera-

tion and collagen production [142] (Fig. 4C).

Macrophages also communicate via the release of exo-

somes containing miRNAs, specifically miR-155,

which regulates inflammation and cardiac injury upon

myocardial infarction by transfer of miR-155 to car-

diac fibroblasts via macrophage derived exosomes

[143]. Another miRNA, miR-21, has recently been

shown to modulate macrophage–cardiac fibroblast

crosstalk by regulating cardiac macrophages in their

paracrine, profibrotic secretome toward cardiac fibrob-

lasts, controlling cardiac remodeling, and function

[144]. Recent studies highlight the different roles of

tissue-resident macrophages versus circulating bone

marrow-derived monocytes. Dick et al. [145] reported

that within six months, 80% of the resident CCR2+
macrophages and about 25% of the CCR2-MHC-IIhi

macrophages were replaced by cells derived from circu-

lating monocytes, whereas CCR2-MHC-IIlo showed

little replacement. It would be interesting to explore

how these different populations interact with fibroblast

after cardiac injury.

Moreover, neutrophils are among the first immune

cells infiltrating into the damaged myocardium. Acti-

vated neutrophils release oxygen species (ROS) gener-

ated via the NADPH oxidase, exerting profibrotic

processes in the myocardial environment [146,147]

(Fig. 4C). Although it is challenging to exclude con-

founding effects of ROS released by other cardiac cell

types, it has been shown that NADPH oxidase 2

(Nox2)-deficient mice show an attenuated fibrotic

response under pressure overload, also confirmed by

reduction of collagen and MMP-2 production [148].

Neutrophils also communicate via the release of gran-

ules containing myeloperoxidase, MMP, elastase,

cathepsins, and others. These granules can degrade

connective tissue released by activated cardiac fibrob-

lasts during fibrosis [149]. Several other immune cells,

for example, eosinophils, modulate cardiac function

upon injury. After myocardial infarction, eosinophil

counts within the heart are increased in the infarct

region, and they exhibit an important cardioprotective

function in protecting cardiomyocytes from apoptosis

and blocking cardiac fibrosis by inhibiting TGF-b-
induced cardiac fibroblast activation [150] (Fig. 4C).

The trafficking of eosinophils to the heart was also

investigated in myocarditis, showing that high levels of

eotaxin (CCL11) in fibroblasts attracts eosinophils,

which expressing the eotaxin receptor CCR3 [151].

Here, fibroblasts are the main source of CCL11 in the

heart, underlining the central role of cardiac fibrob-

lasts in regulating cardiac inflammation via paracrine

signaling [151]. Together, these studies demonstrate a

close bidirectional crosstalk between immune cells infil-

tration and myofibroblast activation.

Summary and outlook

While fibroblasts have been historically mainly viewed

as collagen-producing cells that induce cardiac fibrosis,

technological improvements allowing for a detailed

analysis of cell types and subsets of cells are giving

novel insights into the crosstalk between the cells in

the heart. In response to injury, stress or aging, fibrob-

lasts become activated and change the microenviron-

ment around them by secreting ECM, cytokines,

growth factors, and other mediators of intercellular

communication such as exosomes. These changes in

the environment critically contribute to cardiovascular

disease and dysfunction. Learning more about these

communication pathways, but more specifically investi-

gating subsets and states of fibroblasts, may lead to
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(A)

Fibroblasts
CD74-MIF

Macrophages
Monocytes

Anti-Fibrotic

(B)

Myofibroblasts

Protective interaction Cardiac injury

GM-CSF

M1 macrophages
Recruiting 

inflammatory cells

NF-κB , MAPK8
p38

Fibroblasts

(C)

Fibroblasts

Myofibroblasts

Ly6Chigh Macrophages

Cardiac injury

Neutrophils

Pro-Fibrotic
Factors

Proliferation
Fibrosis

Collagens

ROS

Matrix-degrading
Granules Eosinophils

TGFβ

Fig. 4. Fibroblast–immune cell crosstalk in diseased and aged heart. (A) Protective interaction. Monocyte-derived macrophages release

CD74-MIF and thereby attenuate fibroblast activation [137]. (B) In the diseased heart, myofibroblasts secrete GM-CSF, which stimulates

macrophages to recruit inflammatory cells [138,139]. In addition, NF-jB, MAPK8, and p38 activation induce fibroblasts to recruit further

inflammatory cells [140,141]. (C) Ly6Chigh macrophages release profibrotic factors that activate cardiac fibroblasts and drive their conversion

into myofibroblasts [142]. Neutrophil-derived ROS and eosinophil-derived TGFb further activate fibroblast-to-myofibroblast differentiation

[146,147]. Neutrophils can also act in an antifibrotic manner by releasing granules that contain matrix metalloproteases to degrade excessive

collagen deposits [149].
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the identification of novel possible interventional

strategies to combat cardiovascular disease. Searching

for secreted factors, for example, by using secretome

mouse models allowing cell type-specific tracking of

released proteins [152], may also lead to the identifica-

tion of circulating biomarkers of fibroblast activation

for identification of patients at risk of worsening car-

diac function and chronic fibroblast activation.
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