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CHAPTER 1. INTRODUCTION
1 | GENERALITIES AND MAIN RESULT
1.1 | The groups

Let M denote either Euclidean or hyperbolic n-space, N € N, and I < Isom(M) a discrete group
of isometries of M with the property that I' admits a finite sided convex fundamental polyhedron
D with finite volume.” We aim to study certain groups of permutations of the orbit Q := T'p, for
a given point p € M. The major part of this paper is concerned with the most down-to-earth case
when Q := 7", viewed as the set of tile centers of the tessellation dual to the standard tessellation
of Euclidean R" by unit cubes.

To define the notion of a piecewise I'-isometric permutation 7 : Q — Q requires a notion of
I-polyhedral pieces of Q on which 7 should be isometric, and it is reasonable to require that the
geometry of these pieces be related to the geometry of I'. Thus, together with the base point p € M
we choose a finite set H of ‘T-relevant’ closed half-spaces of M, and the resulting groups will — to
some extent — depend on this choice: We fix a (finite-sided convex) fundamental polyhedron D
and take H to be an irredundant finite set of half spaces with the property that D is the intersection
D = (e H and each member of H has its boundary spanned by a side of D.

By a convex I'-polyhedral subset P of M we mean any finite intersection of I'-translates Hy, where
y € T'and H € H. And a general I'-polyhedral subset of M is a finite union of convex ones. By
abuse of language, we call the intersection S = Q N P a (convex) I'-polyhedral piece of Q whenever
P C M is a (convex) I'-polyhedral subset.

Definition. Let S C Q be a I'-polyhedral set, and I'* < T" a subgroup. A permutation g : S - S
is said to be piecewise I'*-isometric if S can be written as a disjoint union of finitely many
I'-polyhedral pieces S = S; U S, U -+ U S, with the property that the restriction of g to each S;
is also the restriction of an isometry ¢; € I'*.

We write G- (S) for the group of all piecewise isometric I'*-permutations of S. The permutations
in Gp«(S) with finite support form a normal subgroup of Gr.(S) which we denote by sym(S);
the quotient group

Gr-(S)/sym(S)

is often particularly interesting.

In the hyperbolic case this implies that D is actually a generalized polytope; see [30, Theorem 6.4.8].
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1666 | BIERI AND SACH

Remark.

(1) Particularly nice is the situation when M comes with a regular tessellation. In that case we
take Q as the centers of mass of the tiles, and G(Q) could be viewed (and termed) as the
group of all piecewise isometric tile-rearrangements: Here, T is the group of all isometries of
M compatible with the tessellation, and H as the set of half-spaces bounded by the span of a
corank-1 face of a tile-fundamental domain.

(2) In a recent preprint [19] Farley and Huges present a promising general abstract approach
to the finiteness properties of what they call locally defined groups. In their terminology, our
piecewise isometric permutations are locally defined by isometries and hence appear as a spe-
cial case. The authors obtain unified proofs for (the positive direction of) type F,, for several
generalized Thompson groups, but they add the remark that our examples [10] appear to pose
a more substantial challenge.

In this paper we consider the group Gp-(S) in two special cases:

(a) When M = H? is the hyperbolic plane we consider triangle groups and their orientation pre-
serving subgroups I'* < T" acting on the tessellation A by the I'-translates of a hyperbolic tri-
angle D. In the special case when D is the ideal triangle (all three vertices at infinity) the
quotient G+ (Q)/sym(Q) is Richard Thompson’s groups V. In the more general case when D
has at least one vertex at infinity we can assume that one of these corresponds to the point
oo € dH? in the upper half plane model, and that all tile-vertices of A in dH? correspond to
rational numbers.

We show that in this situation the group Gp-(S) has a description in terms of the spine T
of the tessellation A, which is a bipartite tree. This description can be used to prove finiteness
properties of Gr.(Q)/sym(Q) if and only if I' contains no hyperbolic elements with rational
fixed points. We also outline how one could attack the general case.

(b) Our main concern then is the case when M = R" is Euclidean n-space, I' = Isom(Z"), and
I'* either equal to I' or its translation subgroup T < I'. We call the I'-polyhedral pieces S C 2"
the orthohedral subsets of Z", and consider the piecewise Euclidean isometry groups pei(S) =
Gr(S) and its subgroup pet(S) < pei(S), the piecewise Euclidean translation groups Gr(S) of
arbitrary orthohedral subsets S C Z".

If S is the disjoint union of h copies of N then the pet-group pet(S) = G;(S) is Houghton’s
group H,, [22]. Known for more than 38 years was also the pet-group pet(S) when S = | J, (), N2
is a disjoint union of h quadrants: This was the topic of the second author’s diploma thesis [34]
in which she proved, among other things, that pet(S) is of type F)_; (see Section 1.5 for more
information).

The fact that our groups have prominent relatives is not our only motivation: In Chapter 3
we make an effort to analyze the structure of pei(S), and this culminates at the end of Section 4
with full information on the normal subgroup lattice of pei(S). And in Chapter 4 we get con-
crete information on finiteness properties (finite presentability and high finiteness length —
see Section 1.2) of pet(S) and pei(S). Thus, here is a new playground — prominently located
in a good neighborhood — to studying the interaction between structure and finiteness prop-
erties. From the tree-hyperbolic world where the monsters live (like Thompsons’ group V),
we have gotten used to seeing many examples which are simple groups of type F,. What
we find in our Euclidean analogue is similar, but interestingly different: Instead of simplic-
ity we find the Bottleneck theorem (Theorem 4.18) which excludes hidden normal subgroups;
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and instead of F, we find, for example, that pei(Z") is of type F,._; — for the main results,
see Section 1.3.

1.2 | The finiteness length of a group

Every group is of type F,; every finitely generated group is of type F;; every finitely presented
group (equivalently: every fundamental group 7,(X) of a finite cell complex X) is of type F,;
and 7(X) is of type F,, (m > 2) if X is a finite cell complex and 7,(X) =0, for all i with
2<Li<m.

Ten years after Wall introduced these finiteness properties, Borel and Serre [12, 13] showed that
all semi-simple S-arithmetic groups have special homological features; in particular they are of
type F, (equivalently, type F,, for all m € N). And this was only the first of a number of important
infinite families of groups that turned out to be of type F, in the following decades; many of
them, just like arithmetic groups, in the center of mainstream group theory: automorphism groups
of free groups [18], Thompson’s groups [15], etc. More recent results in this direction are based
on Brown’s topological discrete Morse theory technique [14] and its powerful CAT(0)-version of
Bestvina-Brady [3].

The insight that many important groups have much further reaching finiteness properties than
finite presentability is great progress — but having ‘good’ finiteness properties is only one side
of the concept: The focus on the finiteness length function fl : Gr — N U {0, oo}, defined on all
groups G by

fUG) :=sup{m | Gisoftype F, }

takes both sides into account. Analogous algebraic length functions afl, are defined for every G-
module A, to be the supremum of all non-negative integers m with the property that A admits a
free resolution which is finitely generated in all dimensions at most m. The functions afl, have
the considerable advantage that they extend immediately to monoids G. We write afl for afl,,
where Z stands for the infinite cyclic group with the trivial G-action; by the Hurewicz theorem
we know that afl coincides with fI on all finitely presented groups (that is, whenever fI(G) > 2).
An important feature of both fI and afl, is that they are constant on commensurability classes
of groups.

In general, the finiteness length of a group is notoriously difficult to compute. Nevertheless,
to study and interpret accessible parts of the pattern that these functions carve into group the-
ory can be very fruitful. A convincing example is the following: If we fix a finitely generated
group G, then the function Hom(G, R,4,) = N U {0, oo}, which associates with each homomor-
phism y : G — Ry, the value of afl , on the submonoid y ([0, o)) C G, imposes in the finite-
dimensional R-vector space Hom(G, R,,4) the pattern exhibited by the homological Z-invariants
¥K(G; A) of [9]. On the other hand, we can also evaluate fl and afl, on the commensurability
classes of subgroups containing G’, and this yields patterns on the rational Grassmann space
of Q-linear subspaces of G/G’ ® Q (which parametrizes these classes). The core of the main
S-results of [6, 8, 9], [33] consists then of exhibiting the precise relationship between the two
patterns.

An intriguing point is that in all computable examples the finiteness length patterns have a
polyhedral flavor: they turn out to be expressible in terms of finitely many inequalities. One of
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1668 | BIERI AND SACH

the few general results here, polyhedrality of =°(G; A) when G is Abelian, was proved in [7] by
methods which were later partly re-detected in tropical geometry. But polyhedrality questions on
¥¥(G; A) for non-Abelian G and k > 0 are wide open.

1.3 | The results

Chapter 2 has two goals: it illustrates piecewise isometric permutations in the visually attractive
area of two-dimensional hyperbolic geometry, and it links our piecewise isometric permutations
to the group theory revolving around Thompson’s groups.

We mentioned already that for non-cocompact triangle groups I" we can express Gr«(Q) in
terms of the spine T of A. This exhibits G+(Q2) as a permutation group on the vertices of the
tree T. We discuss whether this action respects almost all edges and cyclic star-orderings of T
(following the terminology of [11], [28, 29], [31], this would be an action by quasi-planar-tree
automorphisms).

We find: If T has signature [0, 00, oo] then T is the dyadic tree and the action of Gp-(Q) on it
is the one that has always been used to describe the elements of Thompson‘s groups in terms of
generators (and is obviously quasi isometric). In the general case the action is always by piecewise
planar-tree isometries, and by quasi-isometries if and only if the signature is [ p, g, oo ], with at least
one of p, q infinite or odd.

Chapter 3 and 4 are about the Euclidean case — more precisely, we restrict attention to the case
when M is Euclidean and carries the standard tessellation by unit cubes, that is, I' = Isom(Z"),
and I'* is either equal to T or its translation subgroup T < I, and the goal is to make first steps
toward evaluating the finiteness length functions fl and afl on what we like to view as the
pei- and pet-clouds around Isom(Z"), respectively, Z": the groups pei(S) = G(S), respectively,
pet(S) = G1(S), as S runs through all orthohedral subsets of some ZV.

To state the main results requires the following notation: By an orthant of rank n (n € N) we
mean any subset L C ZV isometric to the standard rank-n orthant N". Each orthohedral set S C
7V is the disjoint union of finitely many orthants S = L; UL, U -+ U L.

Definition (Rank and height). By the rank of S, denoted by n = rk S, we mean the maximum
rank of the orthants L;; and the height of S, denoted by h(S), is the number of orthants of rank
rk S among the L;.

One observes that the orthohedral sets with the piecewise Euclidean-isometric maps between
them (called pei-maps) form a category. Clearly, the pei-isomorphisms are the bijective pei-
isometries; and in Section 3.4 we observe that orthohedral sets are pei-isomorphic if and only
if their rank and height agree.

Chapter 3 starts with introducing these basic concepts then turns to analyzing the group theo-
retic structure of G : = pei(S) for an arbitrary orthohedral subset S C ZV. The results are summa-
rized in some detail at the end of Section 4.1. The key here is a structure at infinity of the orthoedral
set S — analogous to the structure at infinity of the tessellated hyperbolic plane which was used
above to relate groups of piecewise hyperbolic isometries to Thompson’s groups. This structure at
infinity of S consists of

(1) arank-graded G-set I"“(S) = U, r'%(S), called the set of germs of S;
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(2) afamily of rank-k cosets (y) C ZN attached at the germs y € I'’¥(S) which we call the rank-k
tangent coset of y. (The product T¥ := Hyerk(s)<7> can be viewed as the rank-k part of the
tangent space T of S at infinity);

(3) an induced action of G on I*(S), and an induced action of G on each (y) by isometries

g 2 r) = (v9)-

The definition of germs is in Section 3.2, and their tangent cosets crop up first in Section 4.3.
Here we mention merely:

+ two orthants L,L’ ¢ ZN are commensurable if L,L’ and L n L’ have the same rank, and the
commensurability classes represented by rank-k orthants L C S are the germs y € I'*(S);

+ the tangent coset (y) of y € T%(S) is the union of all members of the commensurability class y
and thus (y) = zk;

» for any given pair (y, g) € I'¥(S) X G, an orthant L representing y can be chosen sufficiently far
out to make that the restriction of g to L is an isometry g|; : L — Lg (see Lemma 3.3). This
restriction defines the action on both I'*(S), and T.

Single elements g € G are supported on a finite set of orthants, and the maximum rank of these
orthants is the rank of g, denoted by rk(g). From this we infer that g, is the identity if and only if

rk(g) < rk(y).
Now we consider the normal series

1:G—1<G0<G1<"'<Gk<"'<Gn:G’

where the rank-k subgroup G, consist of all elements g € G of rank at most k.
Its factors G, /Gj._; exhibit clear footprints of the structure of Isom(Z") which is exhibited by
the refinement

Gr_1 < COUTH(S)) < C(TH(S)) < Gy,

where C(I'*(S)) consists of all elements g € G which fix all rank-k germs of S, and C°"4(T*(S))
consists of all ¢ € G with the property that, in addition, for all germs y € T'*(S) the isometry [
(y) — (yg) is a translation.

We prove that the quotient A; := Cord(l“k(S))/Gk_1 is free-Abelian (of rank oo for k < n);
C(TX(S)) is the direct product of symmetric groups of degree k, and G, /C(T*(S)) is the finitary
symmetric group of degree |T¥(S)| — for more details, see Theorem 4.8.

In particular, G is elementary amenable, and in the G / Cord(T*(S))-module A, we can track a
congruence- subgroup type property — see Section 4.7.

The Bottleneck theorem (Theorem 4.18) in Section 4.9 finally shows that the rank-subgroups
G are characteristic; and, up to an index 2, all normal subgroups of G can be tracked by the ones
in the quotients G, /G,_;.

In Chapter 4 we use Brown’s approach in [14] to compute the finiteness lengths of pet(S)
and a lower bound on the finiteness lengths of pei(S). Just as in Brown’s paper each fl-
result comes together with a parallel afl-result, hence our results have the same feature. We
found

Theorem A. Rank and height of an orthohedral set S determines the group pei(S) up to isomor-
phism, and we have fl(pei(S)) > h(S) — 1, in particular, fl(pei(Zz™)) = 2" — 1.
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1670 | BIERI AND SACH

For a more precise result see Section 5.1.

The exact value of fl(pei(Z")) < oo remains a challenging open problem. In the pet-case we
know more: The isomorphism class of pei(S) is not determined by rank and height of the ortho-
hedral set S. But we do have a precise result for the special case when S is a stack of h parallel
orthants of the same rank:

Theorem B. IfS is a stack of h rank-n orthants then fl(pet(S)) = h(S) — 1.
A generalization to a stack of k-skeletons of an orthant is in Theorem 7.5.

Remark. Highly complex elementary amenable groups with high finiteness length can also
be constructed in terms of permutational wreath products Ay B. Bartholdi, de Cornulier,
and Kochloukova [2] provide the technique to compute flI(A :y B) in favorable situations; and
Kropholler-Martino [26] apply this to construct a sequence of wreath powers of Houghton’s
group H,, P(m) := H,(xH,)™ with constant finiteness length fI(P(m)) = fI(H,) = n — 1 for all
m. Thus they take fI(H,,) for granted and provide a method to increase the complexity of H,,
whereas in the present work we extend Brown’s computation of fI(H,,) to new groups which are
poly-(locally Houghton-by-finite) and analyze their structure.

1.4 | Outlook

Let T be a discrete group of (Euclidean or hyperbolic) isometries with polyhedral funda-
mental domain of finite volume. By generalizing the definition of the group pei(Z") to
the groups Gp(Q) of all piecewise I'-isometric permutations of the orbit Q = I'p, we have
endowed each such group I' with the Gr-cloud of all piecewise I'-isometric permutation
groups Gp(S) where S runs through the I'-polyhedral subsets of Q. The success with eval-
uating the finiteness length function on the clouds around Isom(Z") and Z", together with
the observation that the groups around SL,(Z) are closely related to the highly respected
Thompson groups, indicates that finding more of this might be a difficult but worthwhile
program.
Particularly promising projects would be

(i) Finding the phi(Q) when Q is given by a regular tessellation of the hyperbolic plane, and
the precise relationship between the induced group on the boundary, phi(Q)/sym(Q), and
Thompson’s groups. First steps in this direction based on (a slight generalization of) Theo-
rem 2.3 are suggested in Section 2.6.

(ii) There are strong indications that fi(pei(S)) > h(S) — 1. In particular, Thomas Kilcoyne has a
proof that pei(S)/sym(S) is finitely presented if S is a stack of at least 2 quadrants. Thus,
progress in this direction seems accessible — whether pei(S)/sym(S) is better behaved
than pei(S) itself remains to be seen. For the Houghton groups this is trivially true, and
the subtle difference between QV and QV (see [31]) might indicate that this is indeed the
case.

(iii) Defining and studying a group pal(Z") of piecewise affine-linear permutations on Z", and find
the footprints of the structure of SL,(Z") in its structure.
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1.5 | Remark on the history of this paper

Houghton originally introduced his groups in [22]. Theorem B, in the Houghton group case, that
is, when S is a stack of rays, is due to Brown [14], and we follow his footsteps.

The inequality flI(pet(S)) > h(S) — 1 in the rank-2 case when S is a stack of quadrants (as well
as the equality for a certain ‘diagonal subgroup’ of pet(S)) is due to the second author and appears
in her diploma thesis (Frankfurt 1992 [34]), to which the first author contributed little more than
the definition" of the group. Her diploma thesis could have been the starting point of a promising
PhD project — but she preferred starting a true-to-life career in software development.

Back then, hunting for further generalizations of such groups was not the first author’s priority
either — they looked artificial and in those days only of use as counterexamples to questions that
nobody asked. Therefore the project went dormant for 22 years, until an increasing number of
publications on Houghton’s groups ([1], [16], [28], [35], [38], etc.) suggested that Sach’s diploma
thesis [34] should be published, translated, and generalized. We started our collaboration in 2014.

The (back then surprising) insight that our groups are not only generalized Houghton groups
but fit in a more interesting general (Euclidean or hyperbolic) geometric framework, which could
be described as the groups of tile-permutations induced by finitary rearrangements of tessellations,
was added when we put the preprint [10] (together with the original diploma thesis [34]) on the
arXiv in June 2016, and we submitted [10] to the LMS in May 2017. Sadly, our collaboration ended
in 2018 due to serious health issues. Substantial results on the group structure (Section 4) and the
hyperbolic triangle groups (Section 2) were added during the refereeing process, and the expanded
paper with the new title was accepted for publication in October 2021.

CHAPTER 2. ON THE HYPERBOLIC CASE
2 | PLANAR HYPERBOLIC EXAMPLES
2.1 | Piecewise I'"hyperbolic triangle groups

Let D be a hyperbolic triangle of finite area in the compactified (Poincaré disk model of the) hyper-
bolic plane H? U dH2. We write v; for the vertices and e; for edges of D, 1 <i < 3, and use the
convention that v; is opposite to e;. We write H; C H? for the half-plane which contains D and is
bounded by the line spanned by e;, and we put H := {H,, H,, H;} to be the irredundant finite set
of half-spaces as in the definition in Section 1.1.

Regardless of whether some of the v; are on dH?, the triangle D has a unique inscribed circle
(exhibited in the fundamental triangle in Figures 1 and 3). We will take its hyperbolic center as
the base point p € D and call it the tile center of D. Let ¢; € e; denote the touching point of the
inscribed circle on the edge ¢;. Elementary geometric arguments show that if e;, e; are the two
edges emanating from vy then there is a hyperbolic disk By centered at v which has ¢; and ¢; on
its boundary (if v, € dH? then B, is understood to be a horodisk centered at vy ).

We assume that the angle of D at v; is qi, where g; € NU {oo} with ql + ql
1 2

the hyperbolic reflections o; over the edges e; define a particularly nice tessellation on H? and
generate the isometry group T. The triple [q;, ¢, g5] is the signature of the triangle group T'. H? is

now endowed with a simplicial I'-complex A. Here are some elementary facts:

+ L < 1. Then
q3

T Influenced by Greenberg’s courage to define SL,(Z)-geometry [21] — which is similar to but different from ours.
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1672 BIERI AND SACH

FIGURE 1 The signature [3,4, co] case

(1) if P c H? is T-polyhedral, so is the closure of its complement;

(2) each edge e of A spans a hyperbolic line h[e] in the 1-skeleton Al;

(3) ahyperbolicline h C Al is tessellated by infinitely many finite edges if and only if & is a hyper-
bolic axis (the axis of a hyperbolic element g € T).

We put Q = I'p and are interested in the group G() = phi(Q) of all piecewise I-isometric per-
mutations, and in subgroups Gr-(Q) < G(Q), when I'* < T is a specified subgroup of I'. H? is now
equipped with three I'-orbits I'B; of disks centered at the tile-vertices gv;; these disks touch each
other, and their mutual touching points coincide with the points gt;. The hyperbolic segments
connecting the tile centers of edge-neighboring tiles cross vertically at the points gt; through the
edge ge; of A and constitute the edges of the dual tessellation A* of A. The dual tile with center
gu; € H? is a convex 2g;-gon around the inscribed disk ¢B; (in the case when gv i € OH? this is the
area bounded by a doubly infinite sequence of finite dual edges tangent to the horodisk ¢gB; with
center gu;).

The charm of A* is that Q stands for the tiles, and the edges of A* indicate how tiles are glued
together. This opens the possibility that the I'-polyhedral pieces can be described in terms of the
1-skeleton of A*. If D is compact this remains a challenge to be addressed somewhere else.

2.2 | The case when I is a non-cocompact triangle group
The situation is simpler when D is not compact, and from now on we assume that at least

g; = oo: The point is that we have now a I'-equivariant retraction of the hyperbolic plane H?
along the hyperbolic lines emanating out of the horodisk centers gv; for g € Tand v; € dH?, and

Q'€ 2202 '0SLL69VT

J0)//sdny wouy
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FIGURE 2 Thesignature [3, o0, 00| case

terminating on the boundaries of the horodisks ¢B;. The truncated hyperbolic plane

T:=w —-| [J Ingp)}

g€T, UjE@[HIZ

obtained by excision of all open horodisks gB;, closely approximates the finite part A;, of the
complex A*. T is a tree-shaped union of bands meandering between the horodisks gB,; toward
0H?, and it contains the finite part of the dual tessellation Af. . C Tis the cell complex with vertex
set Q = I'p, all dual edges of length equal to the diameter of the inscribed circle of D, and 2-cells
semi-regular 2q;-gons around the finite disks ¢B;.

That T is tree-shaped can be seen by referring to either the retraction of H? onto T, or to the fact
that whenever a band enters an area bounded by two horodisks through its tight entrance there
is no escape on a different route through another exit.

Hlustrations. With signature [2, 3, 00], [3, 00, 00], [00, 00, 00] are exhibited in Figures 1-3. The col-
ored part of the pictures exhibits the set T (the finite disks B; in green/blue, and the rest of T
consists of little triangular red shapes, each containing exactly one point of Q). As the neighbor-
ing ones touch each other at a kissing point this red part of T actually contains and outlines the
1-skeleton of Af; .

The retraction of H? onto T (or A;"in) can be prolongated to a retraction p : H> — T onto a I'-
invariant tree T C T which we call the spine (of X). If D has a finite edge e this retraction pushes

Q'€ 2202 '0SLL69VT

J0)//sdny wouy
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FIGURE 3 The signature [o0, 00, 0] case

each triangle gD onto ge. Hence T is just the finite part of the 1-skeleton of A. It contains vertices
of degrees g, and vertices of degree g,.

If T has signature [g, oo, co] only one vertex v of D is in H? and its opposite edge e is a line. We
write h for the hyperbolic segment connecting v with the nearest point ¢ on e. Then centered at
the endpoints of each ge we have two horodisks gB;, gB) which touch each other in the point gt.
The prolongated retraction sends the whole of gD to the segment gh which is one half of an edge
of T — the second half is its reflection over the axis ge. Hence, as above, the vertex set of T is the
set of vertices of A in H?, but now the edges of T are the geodesic segments connecting vertices
with their images under reflection over the opposite sides of their tiles.

If T is of type [0, 00, co] then T = Af, and all vertices are of degree 3.

2.3 | Tessellated sectors and rooted subtrees of the spine

By a (open or closed) sector S C H? we mean a subset bounded by two rays emanating from v € H2.
The two rays are the legs and their endpoints the feet of S. Occasionally it is convenient to include
ideal sectors which have line-legs and their tip and feet in H?. S is a tessellated sector (or a sector of
A) if its tip is a vertex and its legs lie in the 1-skeleton of A and hence are tessellated by edges of A.

We call a tessellated sector S small if its legs are single edges of A and no proper subsector with
the same tip has the same property. One observes that the star of a small sector consists of two
tiles if the triangle D has exactly one vertex at infinity, and of a single tile in all other cases. In
any case two small sectors are I'-translates of each other if and only if their tips are in the same
I'-orbit.

Closely related to sectors of A are the rooted subtrees of the spine T. If v € verR is a vertex of
a subtree R C T we write deg;(v) for the degree of v as a vertexin T. If degz(v) =1thenvisa
leaf of R, and if degy(v) = deg,(v) then v is an inner vertex of R. The subforest spanned by all

Q'€ 2202 '0SLL69VT

J0)//sdny wouy

85UB0 17 SUOLLILLIOD AIES1D 3|ged!jdde sy Aq peuenof afe ssppite WO ‘8sn JO Sa|ni Joj ARiq 1 auljuQ /8|1 UO (SUOIPUOD-PUB-SLLLBIAW0D AS | 1M ALeid 1BU1UO//:SAY) SUONIPUOD pUe SWB | 841 89S *[£202/80/8T ] U0 Aelqi auluo 4|1 ‘uteyor Yeu1o!|qioselseAIuN AQ £0SZT SW(/ZTTT 0T/10p/ w02 A3 | 1m Aiq 1L



GROUPS OF PIECEWISE ISOMETRIC PERMUTATIONS | 1675

inner vertices of R is the inner part of R, denoted by R, and the set of vertices of R which are not
inner is the boundary of R in T, denoted by dR C verR. A rooted subtree R C T is a subtree whose
boundary in T consists of a single vertex r, the root of R; and if the root is a leaf of R we say that R
is a leaf-rooted subtree. The inner part of a leaf-rooted subtree is a rooted tree and best described
as a half-tree of T, that is, one of the two connected components obtained by removing the interior
of an edge of T'.

Lemma 2.1. Under the assumption that I is a hyperbolic triangle group with signature [q,, q,, ]
we have a 1-1-correspondence between the small tessellated sectors S of A and the leaf-rooted subtrees
of the spine T. This correspondence associates to S the maximal subtree of S N T and to R the minimal
subcomplex of A containing the convex closure R of R.

Proof. Elementary and left to the reader. O

2.4 | The limit sets of I'-polyhedral pieces

Let P C H? be an arbitrary I'-polyhedral subset. We consider the boundary of P in the completed
hyperbolic plane H? U dH?, and denote it by dP =: d;;,P U 0. P, where J;;,P consists of finitely
many edge paths, and 0 P is the limit-set of P and consists of finitely many segments of dH? - the
connected components of 3P with respect to the S!-topology of the disk model.

We need a slightly stronger connectivity concept: A segment [x,y] C 0 P is strongly connected,
if none of its inner points is a limit point of the complement P° := H? — P; and the maximal
strongly connected segments are the strongly connected components of 0 P. We claim that each
connected component of 0 P is ‘tessellated’ by (that is, the union with pairwise disjoint interi-
ors of) its finite set of strongly connected components. Indeed, the only reason why a connected
component might not be strongly connected is the possibility that it might contain a tip of the
complement P¢ := H? — P. As we know that I'-polyhedrality of P implies that the closure of P¢
is also I'-polyhedral (see Section 2.1), P¢ has only finitely many tips. This proves the claim; and at
the same time also the following.

Observation. If P is convex I'-polyhedral then d P is not necessarily connected, but all its con-
nected components are strongly connected.

Lemma 2.2. Let P be a convex I'-polyhedral set, C C 0P a connected component of its limit set,
and assume that C has two endpoints x,y € C, but at neither of them 0P continues with a ray in
A which is part of a hyperbolic axis. Then there is a canonical finite gallery G[C] C P, consisting of
small sectors and single tiles, which tessellates a neighborhood of C in P.

Proof. By assumption dP continues at x and y with a ray-edge or a line-edge e, e, of A. As T is
a tree, we have a canonical shortest path in Al starting in x, passing through a unique reduced
edge path w C T of length m > 0 frome, NT toe, N T, and ending at y. As T N C = @ the simple
closed path C U w is the boundary of a topological disk B.

For simplicity we first deal with the case when T is contained in the 1-skeleton of A, that is, the
triangle D has a unique vertex v, in dH?. In that case B N H? is a subcomplex of A, and we claim
that this is the gallery we are looking for.

Each of the m finite edges of w is now the edge of a uniquely defined tile with its opposite vertex
in C, and we can describe the union of these tiles as a finite set of pairwise disjoint fans F, (= finite
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gallery of tiles with the common vertex z), where z runs through a finite subset of C N Tv,. As
C is strongly connected each F, is contained in P. The closure of each connected component of
the complement B — | J, F, is a sector of A with tip in w and both legs ray-edges. Such sectors
are finite unions of small sectors with the same tip. This shows that G[C] := B n H? is the gallery
along C as asserted.

In the signature [q;, o0, oo] case the vertices of T are in A but not the edges. Nevertheless, the
argument follows the same line: Instead of considering tiles with an edge e € w we now consider
the quadrilaterals [] consisting of tile pairs sharing a line-edge of A, with the edge e € T on the
short diagonal and a vertex of [] in C. The signature [oo, 00, 0] case is even simpler. Here w
connects the centers of the tiles with vertices in the endpoints of C, and we argue by considering
the gallery of tiles covering w. [l

We will now consider arbitrary I'-polyhedral sets, that is, finite unions of convex I'-polyhedral
pieces, U := [J; P;, and we can assume that the convex polyhedral sets P; have pairwise disjoint
interiors. We find it convenient to express this by saying U is tessellated by the pieces P;, or that
the family P := (P,); is a tessellation of U. But we will avoid calling these pieces ‘tiles’ - they are
infinite unions of the original tiles.

By a refinement of P we mean a tessellation P’ of U with the property that each P’ € P’ is
contained in some P € P.

Theorem 2.3. Each tessellation P of H? by a finite set of convex T-polyhedral pieces admits a refine-
ment of the following kind: There is a tessellation P’ of H? by finitely many single tiles and small
sectors, which turns into a refinement of P when we take all pieces P’ € P’ which are small sectors
whose middle ray m is a hyperbolic axis, cut them along m in two, and replace P’ by the two frag-
ments.

Proof. The boundary 9H? is tessellated by the connected components of the limit set 3, P, with P
running through P. The points on dH? which are endpoints of these connected components are
finite in numbers, and we consider the subset X consisting of those points x which are corner
points of some P € P, in a position where a section of d_ P turns into a section of d¢;, P which
lies on a hyperbolic axis h, C Al. In order to apply Lemma 2.2 we have to get around the points
x € X. Note that X is empty unless the signature of I' has two finite entries.

Each vertex on h, is the tip of a unique small sector with its middle ray on h, and with limit
point x. These small sectors are nested and their intersection is the singleton set {x}. Since the legs
of each sector S isolate x from the complement of S we find that infinite edge paths of A can only
reach x through a ray on h,. This shows: 1) x is a limit point of only the two convex polyhedral
corner pieces at x, P}, P, € P; and 2) if the tip of such a small sector S is sufficiently close to x
thenS Cc U =PI UP_.

Thus, we have a canonical choice by taking the one small sector S, with its middle line on the
axis h,., its tip in a vertex of e, and the property that S, is maximal with respect S, N (H?> — U) = §§
Now we excise the interior of S, from the corner pieces P} and P, noting that cutting off the
corner x along a ray-edge preserves both convexity and I'-polyhedrality. Therefore, we can replace
in P the pieces P}, P} by the remaining fractions. The result is a tessellation of H? — S, . It avoids
the corner x as its boundary turns into the legs of S, before it meets the remaining finite fragment
of theraye,.

When we have removed all corners x € X in this way we have transformed the tessellation P
into a tessellation P* of H? — |,y Sy. Then we can apply Lemma 2.2 to all convex I'-polyhedral
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pieces P € P* to find, along the connected components of their limit sets d ., P, galleries consisting
of single tiles and small sectors. Together with the small sectors S, x € X they provide a tessel-
lation P’ of a neighborhood of H2. As all our tiles have a vertex at infinity, such a tessellation
must cover all tiles of A; hence P’ is the tessellation of H? claimed to exist in the assertion of the
theorem. O

Remark (The scaly spider). Retrospectively, the type of tessellation that we can always achieve is
easy to describe: We pick a finite subtree T, of the spine T (the spider’s body). Attached to the body
are (1) all rays which emanate in the 1-skeleton of A out of T, and are not a single ray-edge (the
spider’s legs); and (2) all tiles of A that contain a one-dimensional part of an edge of T (the spider’s
scales). Then the complement of the scaled body of the spider is the disjoint union of small sectors
with the spider’s legs on their middle line.

Theorem 2.3 shows that modulo finite permutations each piecewise isometric pemutation of
the set Q of all tile centers is given by isometries restricted to small tessellated sectors and halfs
of small sectors (split along a hyperbolic axis), which form a finite gallery along the dH?. Helpful
is the simple fact that describing the restriction of an isometry ¢ to a small sector S requires only
the image of the edge emanating at the root together with the information whether ¢ preserves
the orientation. Restricted to the spine, this corresponds to displacing a leaf-rooted subtree R to
another position (at a vertex with the same degree in T). To describe the half-sector moves in the
spine is more subtle: They are not quasi-autmorphisms of T; rather one has to split the rooted
subtree along its tree trunk (which lies on the hyperbolic axis) in two, and accept a copy of the
trunk in both fragments to keep them connected.

2.5 | Piecewise planar tree isometric permutations

For simplicity we will from now on restrict the focus to the case when A! contains no hyperbolic
axis, and when the acting group is the orientation preserving subgroup of I'* < I'. Then Theo-
rem 2.3 asserts that each tessellation 7 of H? by a finite set of convex I'-polyhedral pieces admits
a refinement consisting of single tiles and small sectors.

Thus, a piecewise I'*-isometric permutation g € Gr«(Q) is now given by the restriction of
isometries to finitely many tiles and sectors. As isometries respect the spine T, Lemma 2.1 tells
us how to translate this information to the corresponding tessellation of the spine T by a finite set
of edges and a subforest F of finitely many leaf-rooted subtrees R; (the maximal subtrees of SN T
as S runs through the small sectors of the gallery along dH?). As T and R; intersect the bound-
ary of small sectors only in their tips the subtrees R; tessellate T outside a finite subgraph. More
precisely: The restriction of g embeds each R; by a planar-tree isomorphism onto the trees of a
subforest F’ such that T — F and T — F’ have the same number of vertices.

In the present framework it is natural to say that g induces on the spine T a piecewise planar-
tree isometric (ppti-isometric) vertex permutation. Thus we found a homomorphism of Gp:(Q)
into the group of all a piecewise planar-tree isometric vertex permutation of T which we term
ppti(T).

Conversely: Using Lemma 2.1 one observes that each tessellation of T by finitely many leaf-
rooted subtrees and single edges can be refined to a tessellation by finitely many single edges
and leaf-rooted R; whose convex closure are (or at least contained in) small sectors S;; and each
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planar-tree isometry on R; can be represented by a metric-tree isometry on R; and then extended
to an isometry on S;. Hence G- (Q) = ppti(T).

By definition piecewise planar-tree isometric vertex permutations respect not only the pairs
of endpoints of almost all edges of T but also the cyclic ordering of the stars at almost all ver-
tices of T. Hence, g can also be referred to as a quasi-(planar-tree) automorphism of the spine T;
see [11], [28, 29], [31].

Hence we can also summarize:

Corollary 2.4. Let T'* < T be the orientation preserving subgroup of a triangle group with signature
(41,95, ). If at least one of q,or q, is odd or infinite, then the group of all piecewise I'*-isometric
permutations of the tile centers, G« (Q) coincides with the quasi-(planar-tree) automorphism group
ppti(ver(T)) of the spine T of the tessellation A.

2.6 | Connection with Thompson’s groups

Interpreting the statement of Corollary 2.4 for the triangle group I' with signature [0, 00, c0] yields
the connection with Thompson’s groups: in this case the spine T is the infinite binary (planar)
tree T, that has always been around when Thompson’s groups (and their generalizations) have
been investigated in terms of generators or as groups of piecewise linear homeomorphisms of the
Cantor set on the real line or on dH?.

Thus, we infer that for triangle groups with signature [q;, g,, 0], and at least one of q;, g, odd or
infinite, the quotients G-(Q)/sym(Q) are straightforward generalizations of Thompson’s group
V. Hence roofs in the literature (for example, [37]), showing that these generalized Thompson
groups are of type F, also apply in our situation.

However, to extend the results on G« (Q)/sym(Q) for more general T, or on the groups G«(Q)
themselves, it seems more rewarding to skip the detour to the spine T but rather try to modify tools
that were successful for Thompson’s groups: instead of tree-parameters and the partially ordered
set of rooted subtrees of T one might be able to use hyperbolic plane parameters and the partially
ordered set of small sectors (or halves of small sectors) of the tessellated hyperbolic plane to find
some understanding of G(Q2) when the 1-skeleton of A contains a hyperbolic axis — with a bit of
luck even in the case when I is a cocompact triangle group.

Instead of trying to do this one-handedly it would be interesting to know how much of that can
already be covered (or promoted) by the cloning systems of [37] or the abstraction of [19].

CHAPTER 3. THE EUCLIDEAN CASE I: THE STRUCTURE OF pei(S)
3 | ORTHOHEDRAL SETS
3.1 | Integral orthantsin ZN

In the standard N-dimensional Euclidean integral lattice Z" we consider affine-orthogonal trans-
formations

Toa 2N - ZN

Taa(X) = a+ Ax,
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where A € O(N, Z) is an integral orthogonal matrix and a € ZV. Inside Z" we have the standard
orthant of rank N, NN C 7N, and all images of its k-dimensional faces, 0 < k < N, under affine-
orthogonal transformations. More precisely: the subsets L = 7, ,(Y) C 7zN, where (Y') stands for
the monoid generated by the k-element set Y of canonical basis vectors. We call L an integral
orthant (of rank-k, and based at a € L) of ZV or just a rank-k orthant.

We write QF for the set of all rank-k orthants of ZV and Q* for the union |J, Q. Q* is par-
tially ordered by inclusion, with Q° = ZN. The subset of all orthants based at the origin 0 will
be denoted by Q7 C Q; it retracts the order preserving projection 7 : Q* — QF which associates
to each orthant L € Q* based at a € Z" its unique parallel translate 7(L) = —a + L € Q. (L) is
characterized by its canonical basis Y = {y € +X | a + Ny C L} which indicates the directions of
L; hence we call 7(L) the indicator of L. Note that Y is given by the function f: X — {0, 1, —1} with
f(x)=ee{l,-1}ifex € Y,and f(x) = 0if {x, —x} N 'Y = @ hence |Q}| = 3.

We call a subset S C ZV orthohedral if it is the union of a finite set of orthants — without
losing generality we can assume that the union is disjoint. The rank of S, denoted by rk S, is the
maximum rank of an orthant contained in S. If S is isometric to N¥ x {1,2, ..., h}, we call it a stack
of orthants of height h. The terminology agrees with the height h(S) of an arbitrary orthohedral set
S C 7N, defined as the number of orthants of maximal rank, rk S, which participate in a pairwise
disjoint finite decomposition of S = L; UL, U --- U L,, — see Section 1.1 in the introduction.

Lemma 3.1. Orthohedrality of subsets S C 7V is closed under the set-theoretic operations of taking
intersections, unions, and complements.

Proof. The main observation here is that the intersection of a finite set of half-spaces of ZN
(each defined by an upper or lower bound on one coordinate) is a disjoint union of finitely
many orthants. We prove this by induction. If two of these half-spaces, H, H’, are bounded
by parallel hyperplanes then either one of them is redundant or their intersection H N H' is
a (possibly empty) finite union of lower dimensional subspaces. In both cases we are reduced
to the intersection of fewer half-spaces. If no pair of the half spaces have parallel boundary
there are only k < N of them, and their intersection is isometric to ZN-k @ Nk and hence is a
finite union of 2V rank-N orthants. The assertion of the lemma follows now by set-theoretic
tautologies. O

Remark. As a consequence we note that the orthohedral subsets of ZV are precisely the ZV-
polyhedral subsets of the lattice ZV as defined in Section 3.1.

We write QK(S) = {L € QF|L C S} for the set of all rank-k orthants of S, Q*(S) for the disjoint
union over k, and QS(S) for the set of all orthants of S based at the origin 0. We consider the
restriction of the indicator map 7 : Q*(S) — Q. We write S, C 7N for the union of all orthants
in 7(Q*(S)) and call this the indicator image of S. Note that 7(Q*(S)) = Q;(S;), and we can view
the indicator map as a rank preserving surjection 7 : Q*(S) » Q(S,).

3.2 | Germs of orthants

Two orthants L, L’ in Q* are said to be commensurable if tk L = rk(L N L") = rk L. We write y(L)
for the commensurability class of L and call it the germ of L. The union of all members of y(L)
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is a coset of a subgroup of ZV; we denote it by (L) C ZN and call it the tangent coset of S at
y. The germs inherit from their representing orthants L the rank, relations like parallelism and
orthogonality, and also a partial ordering defined as follows: given two germs y,y’ we puty <y’
if they can be represented by orthants L, L’ € Q* with L C L’. Note that if L and L’ are arbitrary
orthants representing y and y’, respectively, then y < y’ if and only if (1) L’ contains an orthant
parallel to L and (2) L C (L').

We write T'*(S) = J, r'k(S) for the set of all germs of orthants in S and F;(S) for the set of all
germs represented by an orthant of S based at the origin 0. I'*(Z") and 1“3 (ZN) are abbreviated
as I'" and I, respectively. As I'; and Qf are canonically bijective, we will identify them when
this is convenient. Note that I'*(S) is a convex subset of I'* in the sense that if y € I'*(S) then
{y’ eT* | y' <y} CT*(S). We can interpret the indicator map as an order and rank preserving
surjection 7 : I'*(S) — Iy with 7(I'*(S)) = I[';(S;). By max I'*(S) we mean the set of all maximal
germs of S.

Exercise. Observe that t(max I'*(S)) 2 max I';(S,), but this is not, in general, an equality.

Lemma 3.2. max I'*(S) is finite for each orthohedral set S. The set of all germs of rank n = rk S is
a subset of max Gamma*(S), whose cardinality coincides with the height h(S). Hence h(S) is inde-
pendent of the particular decomposition of S.

Proof. Let S =] jL; be an arbitrary decomposition of S as a finite pairwise disjoint union of
orthants L i Each orthant L C is the disjoint union of the orthants M = LNnL s and exactly one of
them is commensurable to L. Hence y(L) = y(M;) C y(L;). This shows that each germ y € I'*(S)
is smaller than or equal to one of the y(L;). In particular, max I'*(S) is contained {y(L;) | j} and
hence finite. The orthants L; of rank n form a complete set of representatives of all orthants of
rank n. Ol

Remark. We leave it to the reader to deduce that h(S U S”) = h(S) + h(S’), if S and S’ are ortho-
hedral sets with rk(S) = rk(S") > rk(Sn S’).

3.3 | Piecewise isometric maps

Let S C ZV be an orthohedral subset. We call a map f : S — ZV piecewise-Euclidean-isometric
(abbreviated as pei-map), if S is covered by a finite set A of pairwise disjoint orthants, with the
property that the restriction of f to each orthant L € A is an isometric embedding f|;, : L — S.
The support of f € G(S), supp(f) ={a € S|ag # a}, is orthohedral, and we refer to its rank
also as the rank of f, denoted by rk(f).

Analogously, we call f a piecewise Euclidean-translation map (abbreviated as pet-map), if S is
a finite disjoint union of orthants with the property that the restriction of f to each of them is a
parallel shift.

If a bijection f : S — S’ is a pei-map (respectively, a pet-map), so is f~! and we say that S and
S’ are pei-isomorphic (respectively, a pet-isomorphic).

By the argument used in the proof of Lemma 3.2 one shows that if f is a pei-map, then each
orthant L C S contains a commensurable suborthant on which f restricts to an isometric embed-
ding. In fact, we leave it to the reader to observe the following.
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Lemma 3.3. Let f : S — ZN be an injective map on an orthohedral set S C ZN. Then f
is a pei(respectively, pet)-injection if and only if every orthant L of S contains a commensu-
rable suborthant L' C L on which f is given by an isometry (respectively, a translation) onto
fL)czN.

It follows that every injective pei-map f : S — ZV induces a rank preserving injection f, :
r“(S) —» I'*(f(S)). f. does not preserve the ordering — not even if f is a pet-map. But since it
is rank-preserving, it does induce a bijection between the germs of maximal rank of I'*(S) and
I*(f(S)), when h(f(S)) = h(S). The following observations can be left as an exercise:

Lemma 3.4. If f : S — ZN is a pet-map, then f.(y) is parallel to y for each y € T*(S). Hence
(f.(¥)) = t(y), and S; = f(S),. In other words we have the commutative diagram

[*(S)) ——=T*(f(S)),

_—

T(S) == T3(/(S),).

3.4 | Normal forms
Consider the disjoint union of orthants
S=L,UL,U..UL,

in ZN. Assuming that rk S < N we have enough space to parallel translate each L; to an orthant
Ll.’ in such a way that the Llf are still pairwise disjoint, but that each (oriented) parallelism class of
the orthants L is assembled to a stack. This describes a pet-bijection S — §" = jSj» where the
S; stand for pairwise disjoint and non-parallel stacks of orthants. We can go one step further by
observing that when the maximal orthants of a stack S; are parallel to suborthants of the stack S,
then there is a pet-bijection S; US; — S; which feeds S; into S;. Hence we can delete all stacks S;

of orthants that are parallel to a suborthant of some other S; and find

Proposition 3.5 (pet-Normal form). Each orthohedral set S is pet-isomorphic to a disjoint union of

stacks of orthants S’ = Uj S;, with the property that no maximal orthant of any S; is parallel to a

suborthant in some Sy, if k # j.

Corollary 3.6 (pei-Normal form). Each orthohedral set S is pei-isomorphic to a stack of orthants.
As rank rk S and height h(S) are pei-invariant; hence they can be read off from the pei-normal

form; and the pair (rk S, h(S)) characterizes S up to pei-isomorphism. For the corresponding pet-

result we consider the height function

hg : Ty — NU{0}, @

which assigns to each 0-based orthant L € Q = I'j the number of maximal germs y € max I'*(S)
with 7(y) = L, which is finite by Lemma 3.2. The support supp(hg) C I'; is the set of all 0-based
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orthants L with hg(L) > 0. From the Exercise in Section 3.2 we infer that max I';(S;) C supp(hg),
and that this is not, in general an equality. One observes easily that the equality

t(max I'*(S)) = max [';(S;) or equivalently: max I';(S;) = supp(hy) 2)

is anecessary condition for S to be in pet-normal form. Thus we call S quasi-normal if the equation
(2) holds. Of course, a quasi-normal orthohedral set is not necessarily in pet-normal form. But as
quasi-normality implies that 7 restricts to a surjection 7 : max I'*(S) » max I';(S;), max I'*(S) is
the pairwise disjoint union of the fibers f~1(y), which consist of hg(y) germs parallel to y. This
can be viewed as a weak germ-version of the pet-normal form.

Lemma 3.7. If f : S — ZN is a pet-injection of a quasi-normal orthohedral set S C ZN, then
f.(maxT*(S)) C max T*(f(S)).

Proof. By Lemma 3.3 f induces a rank preserving bijection
fo 1 TS) = T (f (),

and by Lemma 3.4 f(S); = S;. Lety € max I'*(S). Then we know that 7(y) is maximal in I';(S,).
Since f is a pet map, we also know that 7(f,(y)) = 7(y); hence 7(f,(y)) is maximal in I';(S;) =
[5(f(S);). We claim that f,(y) is maximal in I'*(f(S),). Indeed, if f.(y) is not in max I'*(f(S),),
then 7(f,(y)) cannot be maximal in I';(f(S),). This shows that f,(max I'*(S)) C max I'"*(f(S)),
as asserted. O

Corollary 3.8. If f : S — S’ is a pet-isomorphism between quasi-normal orthohedral sets, then
f.(max T*(S)) = max T*(S’) and hg = hg.

This shows, in particular, that the stack heights in a pet-normal form are uniquely determined
and characterize S up to pet-isomorphism.
4 | PERMUTATION GROUPS SUPPORTED ON ORTHOHEDRAL SETS
4.1 | pei- and pet-Permutation groups
Let G = pei(Z") denote the group of all pei-permutations of ZV. From now on it will be conve-
nient to follow the permutation-group tradition to have the permutation group G act on its set
Q = 7N from the right and interpret the product ¢ f of elements g, f € G as g followed by f.

The support of an element g € G is defined as the union of all orthants on which g restricts to
a non-trivial isometry:

supp(g) := U {LeQ*| g, is an isometric embedding # id }.

To say that a given subset S C ZV supports g merely means that that supp(g) C S.

Exercise. Prove that supp(g) is the minimal orthohedreal subset containing the set{a € ZV | ag #
a}l.
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As we know that the support of an element g € G is orthohedral it makes sense to put rk(g) : =
rk(supp(g)), and call this the rank of the element g.

The support of a subgroup H < G is the union of the supports of its elements.

The product of a finite number of elements g; € G is digjoint if supp(g;) N supp(g;) = @ for all
i#].

If S € 7N is orthohedral we write G(S) :={g € G | supp(g) C S} for the subgroup of G sup-
ported on S. As we know, by Lemma 3.1, that the complement of S is also orthohedral each
pei-bijection of S extends to an element of G; hence the subgroup G(S) < G is also the pei-
automorphism group of S. We write also pei(S) for G(S) when this is convenient.

As an immediate consequence of Corollary 3.6 we have

Corollary 4.1. IfS C ZV is an orthohedral subset, then pei(S) is isomorphic to pei(S’), where S’ is
a stack of orthants of rank tk S and height h(S).

The set of all pet-permutations on the orthohedral set S is the pet-subgroup pet(S) < G(S). As
an immediate consequence of Proposition 3.5 and Corollary 3.8 we find

Corollary 4.2. IfS C ZV is an orthohedral subset and S’ = | J S its pet-normal form, then pet(S)
is isomorphic to pet(S’).

Definition 4.3 (The rank groups G;). As conjugation in G = pei(Z") preserves the rank of the
elements, putting G_; :=1,and fork > 0

Gy :={9€G | tk(g) <k},

yields the normal series 1 = G_; < G, £ - £ G € -» £ Gy = G which plays the key role to
understanding the structure of G. For each orthohedral subset S € ZV, G,.(S) := G, N G(S) yields
the corresponding normal sequence for G(S).

Note that by the pei-normal form we have

pei(S) = Gus(S) = Grks< U Nr“),

1<igh(S)

for every orthohedral set S € ZV.
In this section we are aiming for insight into the group theoretic structure of pei(S), are now in
a position to outline its main results in a nutshell:

Theorem 4.4. If G = pei(S), with S an orthohedral set of rank tk S = n then the following holds:

(i) Gy /Gy_; is an extension of a free-Abelian normal subgroup (of infinite rank when 1 < k <
rk(S)) with a locally finite factor group. In particular G is elementary amenable.

(ii) The rank-groups G, are characteristicin G. Each normal subgroup N < G is contained in some
G\ and intersects G,_, in a subgroup of index at most 2. Consequently every Abelian-by-locally-
finite section of G is a section of G /alt G;_; for some k < n, and n + 1 is the minimum length
of normal series of G with Abelian-by-locally-finite factors.

(iii) G satisfies the maximal condition for normal subgroups.
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For the proofs see Theorems 4.8 and 4.18, and Corollary 4.19.

4.2 | The action of G on the germs

By Lemma 3.3 we know that given a pei-permutation ¢ € G, each germ y € I'* represented by an
orthant L contains a suborthant I’ commensurable with L on which g restricts to an isometric
embedding of L’ into Lg. Hence putting yg : = y(L' g)€ T* well defines a rank preserving action
of G on I'*. For each orthohedral subset S C ZV this action restricts to an action of G(S) on I'*(S).

Lemma 4.5. G, acts on the set T of rank-k germs by finite permutations; and for each orthohe-
dral set S, the restricted action of G,.(S) on T%(S) is highly transitive in the sense that each bijection
f : F — F' between finite subsets of T*(S) is induced by the action of some g € G,/(S).

Proof. An element g € G, can only dislocate the rank-k germs in

T*(supp(g)) C I'*,

and these are finite in number.

We claim that the bijection f extends to a permutation 7z of F U F’. To see this consider the graph
& with vertex set ver® = F U F/, and the oriented edge set edg® = {(a, f(a)) | a € F}. Then one
observes that & can be completed to a permutation graph since |[F —FUF’| = |F' = FUF’|.

Now we represent the elements of F U F’ by a set of pairwise disjoint orthants {L,|ly€FUF 1,
and we lift the graph & as follows: we choose for each y € F UF’ an isometry 7ty 1 L, = Ly,
but ensure that along each simple closed path the product of the chosen isometries is the identity.
The union of these isometries is an element of G;(S), and induces the map f. 1

4.3 | Stabilizers of rank-k germs

Next we consider the stabilizer

Cly):={g€CGlyg=y} yert 3)

We attach to y the union (y) C Z" of all orthants of ZV representing y. Thus (y) is a coset of a
coordinate subgroup of ZN and isometric to Z¥; we call it the tangent coset of S at y. The stabilizer
C(y) acts canonically on (y): Indeed, given g € C(y), we find an orthant L’ representing y with
the property that g maps L’ isometrically to L’g which is commensurable to L, and that isometry
extends canonically to an isometry of (y) onto itself. This yields a homomorphism

@, : C(y) — Isom(y). @

(y) carries additional C(y)-invariant structure: As commensurable orthants are canonically linked
by a unique parallel translation we can endow the canonical basis of the orthants representing y
with compatible orderings. Hence (y) comes endowed with a canonical C(y)-invariant set X (y) of
k pairwise orthogonal coordinate directions. C(y) acts k-transitively on X (y); and the homomor-
phism (4) factors, modulo translations, through an epimorhism onto the symmetric permutation
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group on X(y),

@, 1 C(y) » sym(X(7). ©)

By an ordered germ we mean a germ y together with an ordering on the canonical basis-directions
of (y); and we write C°"(y) for the stabilizer of the ordered germ y. By choosing an ordering of
the canonical monoid basis of Z" we can impose germ orderings simultaneously on all germs of
ZN; these orderings are preserved by all maps induced by inclusions and parallel translations, and
in this situation we say that the germs are endowed with compatible orderings. It is easy to observe

Lemma 4.6.

() Gy < CM() < C);
(i) ker(p,) = C"(y);
(it) ker(p,) ={g € G | g fixes an orthant representing y pointwise}.

Exercise. The following conditions are equivalent for an orthohedral set S:

(1) Shasagerm y with coker(goy) non-zero:

(2) Shasagerm y with coker(goy) =17,

(3) there is a number k € N with T¥(S) a singleton set;
(4) Sis pei-isomorphic to N with k > 1.

By Lemma 4.5 the stabilizers of all rank-k germs are conjugates of one another; hence their
intersection C(I'¥(S)) := N, erks) C() is a normal subgroup of G(S), and so is cord(rk(9)) :=
ﬂyeFk(S) C°™(y). We claim that this yields the following refinement of the normal series based on
ranks:

Gr_1(S) < CO(Tk(S)) < C(TX(S)) < Gi(S), (6)

for all k < rkS.

Indeed, the first two inclusions immediate from the first part of Lemma 4.6, while the remain-
ing inclusion is the following observation: Given g € G(S), any rank-(k + 1) germ y is represented
by an orthant L on which g restricts to an isometric embedding f = g |;: L — S, and f maps each
rank-k face F of L to a face Fg of Lg. Assuming g € C(I'*(S)) implies that each Fg is commensu-
rable to F hence f parallel shifts each F to Fg, and these shifts can be interpreted in the tangent
coset (y). Since f is an isometry it follows that f can only be the identity of L, when rk(g) < k.

4.4 | Dynamics of the action of G, on I'*"!

If S is an orthohedral set of rank #n then I'"™*(S) is finite. I"~1(S) is infinite and comes with a rank-1
orthohedral structure: Each rank-n orthant L C S contributes n — 1 maximal parallelism classes
of rank-(n — 1) germs represented by parallel cross-sections of L; we call these the rays of I"~1(S).
As S is orthohedral we find that the union of (n — 1)h(S) such rays is cofinite in I"~1(S). Thus
I"~1(S) has a one-dimensional piecewise isometric structure and one observes readily the induced
action of G(S) is piecewise isometric.
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Let g € C(y) for some y € T*. Let L be a rank-k orthant representing y, with the property that
g restricted to L is isometric. Then Lg is a rank-k orthant commensurable to L; we put fl,(¢g) :=
h(L — Lg) — h(Lg — L) and note that this is an integer which does not depend on the particular
choice of L. Thus, fl, : C(y) — Z is a well-defined homomorphism for ally € r'*. It measures the
balance of trading rank-(k — 1) germs toward and away from I', and we call it the corank-1 germ
flow of g € C(y) at y € T*. As the action of g |; can be monitored in the tangent coset (y) via the
homomorphism (4) we have ﬂy(g) = ﬂy(cp},(g)).

If f,(g) is positive y is a sink of g; if fl, (¢) is negative it is a source of g. Clearly, fl, (¢g) vanishes
when y ¢ I'*(supp(g)). This shows that g € G has, if any, only finitely many sources and sinks in
™%(9), Hence collecting the flow maps 1, as y runs through I'* yields the global flow homomor-
phism

@) - @,z (7)

We say that the elements of its kernel are stagnant, call ker fI the stagnant subgroup of G, , denoted
by ST, (S), and note that G;_; < STj < Gy. Next we claim that the total flow-sum function van-
ishes on C(I'%(S)), that is, we have for each k,

Y, A =0 ®)

yErk(s)

Proof. We choose, for a given g € C(I'*(S)), a finite set A of pairwise disjoint orthants repre-
senting the rank-k germs of supp(g), and with the property that g restricted to each L € A is
an isometric embedding L — S. As ¢ fixes all rank-k germs Lg is commensurable to L for each
L eA.

We claim that without loss of generality we can assume that as L runs through A, the sets L U Lg
are pairwise disjoint. Indeed, the intersections L' g N L are necessarily of rank less than k when L’
and L are different members of A; hence we find in L a commensurable suborthant K that avoids
intersecting any of the L' g with L # L’. Replacing L by such a suborthant K for all L € A justifies
the claim.

LetT := J;c L. The complements of both T and T g in supp(g) are of rank < k — 1 and since
g yields a pet-isomorphism between them we have h(supp(g) — T) = h(supp(g) — Tg). On the
other hand, the two complements have decompositions into disjoint unions

supp(9) =T = (supp(¢) —TUTg) U (Tg—T),
supp(g) —Tg = (supp(9) —TUTg) U (T —Tyg),

from which we infer that h(T — Tg) = h(Tg — T). This establishes equation (8). O

4.5 | Generationin G,

We start by introducing special elements g € G = G(ZV).

* We call g a single-orthant-isometry if supp(g) is a single-orthant L on which ¢ restricts to an
isometry of L.
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* We call ¢g an orthant-n-cycle if we are given a set of pairwise disjoint orthants, cyclically con-
nected by a sequence of n isometries

f f Sn— I
L _1’L2_2’“' 5 L, = L, with ff,-f,=1dp,

and g is the union g = |J, <i<n Ji- An orthant-2-cycle is also called an orthant-transposition.

* We call g a pei-translation from L to L' (or between L and L') if supp(g) = L U L’ is the union
of two disjoint orthants containing commensurable suborthants K C L, K’ C L’ such that g
restricted to K is the parallel shift that sends K to L and g restricted to L’ is the parallel shift
that sends L’ to K’. This implies that supp(g) has exactly two rank-k germs (a source and a sink),
fixes them, and restricts to a pei-isomorphism g |; _r: (L —K) — (L' — K"), when h(L — K) =
h(L' — K’), as is also seen from the vanishing of the total flow function, cf. (7).

* We call g a an endotranslation if it is supported on an orthant L and parallel shifts a com-
mensurable suborthant K C L to a commensurable suborthant Kg C L. This implies that
h(L — K) = h(L — K g). Note that this includes all elements g € G,_, as the special case when
G |g=idg.

One observes easily that endotranslations are stagnant, cf. (7), and that products of endo-
translations with commensurable supports are again endotranslations. Hence, the set of all
endotranslations supported on orthants with one and the same germ y € I'*(S) forms a sub-
group E; (y) with G _; < E;(y) < STy (S), for all y.

We write E; (S) for the group generated by all E; (y) with y € T%(S).

Exercise.

1. Prove that ¢ is a rank-k endotranslation if and only if g € C is supported on a rank-k orthant

L, TK(L) is the and singleton set {y(L)}, and g fixes the ordering of its boundary directions.

2. Prove that E; (L) is a normal subgroup of pei(L), and pei(L) is the semi-direct product of is the
semi-direct product of E; (L) with the subgroup Isom(L) < pei(L).

* Special pei-translations g : L — L’ are those when L — K and L' — K’ are different corank-1
faces F, F’ of L, L' and the restriction of g to F is an order preserving isometry. We call these
the unit-pei-translations from L into L’ and note that they are uniquely determined by the
face pair (F,F’) and a given ordering on the canonical basis of NV. For simplicity we will
often use ‘(unit)-tanslation’ for ‘(unit)-pei-translation’ when this is unambiguous.

Similarly, we consider the special endotranslations g : L — L with the property that K and
K and K g are the complements of two different corank-1facesF = L — K and F' = L — Kg.
We call these the unit-endotranslations, noting that they are uniquely given by the pair
(F,F’) of different faces and the isometry g|p . There are two possible canonical require-
ments that we can ask g|p p to fulfill: (1) g|p - is the orthant-transposition given by the
restriction of a reflection on L, or (2) g|pp is given by the uniquely defined order preserv-
ing isometry f : F — F’. We will always use the first option unless making the statement to
the contrary. Thus the unit-endotranslations on L are uniquely determined by their face pair
(F,F").

For later reference, we collect some elementary facts on the arithmetics of these special ele-
ments.

Lemma 4.7. (A) Orthant-transpositions and pei-translations
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@

(i)

(iii)

Ift : L - L' is an orthant-transposition and « : L — L a single-orthant-isometry then o =
art - T exhibits a as the product of two orthant-transpositions.

If 0,0 are single-orthant-reflections of L.L', respectively, then there is an orthant-
transpositiont : L — L' with oo’ = [o,7].
Every unit-pei-translation A of rank-k is the product of two orthant-transpositions A = t7’ of
rank-k. Related to this is the observation that 1> = tt* = 1, A]. The translation A itself is not
necessarily a commutator (cf. Theorem 4.10). However, if |T¥| > 3 then there is an orthant-
transposition T and a unit-pei-translation u, both of rank-k, with 1 = [u, 7].
Assume that we are given two disjoint rank-k orthants L, L', together with rank-k suborthants
KCLand K' C L. If (L—K) = h(L' —K’). Then there is a pei-translation A from L to
L’ which parallel shifts K to L and L' to K'; and 1 can be chosen as a product of unit-pei-
translations.

Moreover, each pei-translation of rank-k is equal, modulo G,_,, to a product of unit-pei-
translations of rank-k.

(B) Single-orthant-reflections and endotranslations

(iv) Assume that we are given a rank-k orthant L with two rank-k suborthants K,K' C L. If h(L —

)

K) = h(L — K') then there is an endotranslation 7 on L which parallel shifts K to K', and ) can
be chosen as a product of unit-endotranslations.

Moreover, each endotranslation of rank-k is equal, modulo G,_,, to a product of unit-
endotranslations of rank-k.
Leto,, : L — Lbethereflection of the orthant L interchanging the canonical axes x, y (orthogo-
nalto faces F,, F)) and fixing tI;ze remaining ones. Let t,, denote the parallel shift of L in direcltion
y by one unit into itself, and oxyy the corresponding reflection of Lt,. Putting 1, := oxyaxyy :
L — L yields an explicit description of the unit-endotranslation of L defined on the face pair
(Fy, F)) by the restriction of 0,.,,: We have L = Lt, U F; on Lt,, 1, is the diagonal shift by one
(diagonal) unitin directiony — x onto Lt,, = L — F\,, and on F,, itis the restriction o, |p_which
maps F, onto F,,. Then we have

g -1 2 t
nx;y = Nyx = (nxy) > [axy’ 77xy] = Dyys and 77xy77yyx = o'xyIquFy'
We observe that if t,, is induced by a unit-pei-translation 4, then 1., is the commutator 7)., =

[ny’/l] and nyIFxUFy = [ny,/l]-
Moreover, if x, y, z are three pairwise different canonical basis elements of L then

NxyNyzlzx = Oyz IFX and NxzWyxNzy = Oyz |FxUFy’ €)

and note that o, is a reflection of the face F, of L and o, | FLUF, is a canonical orthant-
transposition of the form (F, —F, NF, ,F, —F,NF,).

Proof. Assertion (i) is obvious.

(ii) Let A be a unit-translation from K to L which maps the face F of K isometrically onto the
face FA of L. Then the isometry 1|y : F — FA extends uniquely to an isometry K — L which
fixes FA pointwise, and thus defines an orthant-transposition 7 = (K, L). Correspondingly, the
restriction of 2| : F — FA? extends uniquely to an isometry K — L — FA and hence defines a
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pei-transposition 7/ = (K, L — FA). Both 7/ = (L,K)(K, L — FA) = A and the formula A% = r74 =
[z, 4] are easily seen by inspection.

If there is a third rank-k orthant M disjoint to both K and L we consider a new pei-transposition
7 :=(L,M).Then A7 is a unit-translation from K to M. 17117 = [4,7]isa unit-pei-translation from
M to L. One checks that [4, 7] is conjugate, by an appropriate choice of an orthant-3-cycle of the
form 7 = (M,L,K), to A = [A,7]”. This shows that 1 = [, (K, L)] with u = A(K-L-M),

(iii) This assertion is easy to accept by viewing unit-translations from L to L’ as the process
of cutting a rank-(k — 1) orthant off from a face of L and pushing it down onto a face of L’. By
repeating this process with changing face pairs one constructs an orthant- translation 4 from L to
L’ which parallel shifts K to L, and since arbitrary face pairings are possible we can achieve that
A parallel shifts L’ onto an arbitrary given rank-k suborthant K’ with h(L’ — K’) = h(L — K).

If A is an arbitrary pei-translation of rank-k the procedure above constructs a product 7 of unit-
pei-translations of rank-k that coincides with 1 on the one rank-k orthant on which 1 is a non-
zero isometry. 7 depends on the special procedure, but supp(A7~!) is always of rank-(k — 1). This
shows that modulo G,_;, 4 is equal to 7.

(iv) The argument for (iv) is similar to the one in (iii) above: instead of moving K’ to L by
sequence of parallel shifts along coordinate axes we have to move K’ directly to L’ by a sequence
of pushing/pulling pairs along two axis — details are left to the reader.

(v) All formulae are proved by inspection which can be left to the reader as an exercise. In the
case of formulae (9), start by showing that the restriction of 7., 7,,,7,, to (1,0,0) + L is the identity,
and so is the restriction of ,.,1,,7,, to (1,0,0) + L. O

The following classifies G, (S)/G\._,(S) for an arbitrary orthohedral set S up to extensions.

Theorem 4.8.

(i) Each transposition (y,y") of germs in TX(S) lifts to an orthant-transposition of representing
orthants in S, and the action of G;(S) on T'%(S) induces an isomorphism onto the finitary sym-
metric group,

Gi(S)/C(TX(S)) = sym(T¥(S)).

(ii) Theaction of C(T¥(S) on the canonical coordinate directions X (y) in each (y), y € T*(S) defines
an isomorphism C(I*(S) onto the finitary direct product of the symmetric permutation groups
of degree k,

crks)/coirrs) = P symX@).
yETK(S)

(iii) The homomorphism ¢ = @, ., restricted to C'(T'*(S)) induces a short exact sequence
Yy
ord -k ¢ @yﬂy
0 — CU(T™(S))/Gy_1(S) — @ Trans{(y) —— Z — 0.
yerk(s)

In particular, A¥(S) : = C°"(T%(S))/G,,_,(S) is free-Abelian of rank |T¥(S)| — 1 (which is infi-
nite for k < rk(S)). Each a € AK(S) can be represented by an element g € C°"(I'*(S)) with
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the property that supp(g) is the union of a finite set of pairwise disjoint orthants that repre-
sent the non-trivial components of p(a); and A*(S) is generated by unit-translations and unit-
endotranslations.

Proof.

(1) Asvy,y’ are different germs they can be represented by a pair of disjoint orthants, and any
orthant-transposition between those lifts the transposition of the germs. The rest of assertion
(i) is immediate from Lemmas 4.5 and 4.6.

(ii) Combining the homomorphisms (5) with y running through I'¥(S) yields a homomor-
phism ¢ = Hy [ C(TX(S)) — Hy sym(X(y)), and by Lemma 4.6 its kernel is ﬂy cord(y) =
Cor(rk(S)). If y is an arbitrary rank-k germ with #,(g) # Id then any orthant representing
y is commensurable to an orthant in supp(g). This shows that q_oy(g) has only finitely many
non-vanishing components; hence we can infer that the image of ¢ is in the finitary product.
As each permutation in sym(X(y)) can be lifted by a single-orthant-isometry, the image of ¢
is, in fact, the full finitary product.

(iii) Combining the homomorphisms (4) with y running through I'*(S) yields a homomorphism
@ of C(I'¥(S)) into the product HyIsom((y)). As above in (ii) one argues that for g of rank-k,
®(g) has only finitely many non-vanishing components; hence we can infer that the restric-
tion of ¢ to the ordered germs yields a homomorphism into the direct sum

@ CoYrkS)) - @ Trans(y). (10)
yETK(S)

By Lemma 4.6 the kernel of ¢ consists of the elements ¢ that pointwise fix in each rank-
k orthant a commensurable suborthant; that means supp(g) contains no rank-k orthant.
Hence ker(p) = G;_;(S) and ¢ induces an embedding of Cord(Fk(S))/Gk_l(S) into the
Abelian group Q%,Trans((y}).

We choose, for a given g € C°"4(T*(S)), a finite set A of pairwise disjoint orthants representing
the rank-k germs of supp(g), and with the property that g restricted to each L € A is an isometric
embedding L — S. As g fixes all rank-k germs Lg is commensurable to L for each L € A.

As we saw in the proof of equation (8) we can assume, without loss of generality, that as L runs
through A, the sets L U Lg are pairwise disjoint, and as in that proof we put T := | J; o, L. Then we
observe that h(T — Tg) — h(T g — T) is the total flow fl and deduce from equation (8) that T — Tg
and Tg — T are pei-isometric.

Thus, by the pei-normal form, there is an pei-bijection § : T¢g—T - T —Tg. Leta : T —
Tg denote the restriction of g to T and put K := a (T nTg). The composition of a with
the union idr~r, UB : Tg — T now yields a pei-permutation  : T — T which coincides on
K with the restriction of g. Thus, the composition gu~! is supported in supp(g) and fixes K
pointwise, when rk(gu~!) < k. This shows that g = u modulo G;_,(S). Hence every element
of Cord(Fk(S))/Gk_l(S) can be represented by an element g € C"4(T*(S)) with the property
that g is supported on a set of pairwise disjoint orthants L, each of which represents its index
y € T¥(supp(9)).

From here it is easy to prove that Co"4(TX(S))/G,_,(S) is represented by a product of trans-
lations. We use induction on the number [{y | ¢,(g) # 0}|: Pick a pair of germs y, y’, both
with ¢, (¢g) # 0. Then multiply g with a sequence of translation y; from L, to L}’, in coordinate
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directions such that the product u = []; y; reverses the restriction of g to a commensurable
suborthant K C L, that g parallel shifts within L,. Then gu fixes K pointwise, hence modulo
Gy_1(S), gu is equal to a an element of C°™4(T*(S)) with smaller number |{y | ®,(gu) # 0}|. The
procedure ends when the ¢, (¢) = 0 except for one germ y, and then g is mod G;._;(S) is an endo-
translation. In view of parts (v) and (vi) of Lemma 4.7, this proves (iii). O

As a consequence of Theorem 4.8 we obtain economical generation properties. The obvious
crucial fact is that if S is an orthohedral set of rank rkS = n then [["*(S)| € N, while |T*(S)| =
when k < n. The exceptional case when |[I"(S)| = 1 — or equivalently: G,, contains no rank-n
orthant-transpositions — requires special treatment. In that case all rank-n elements of G,, are
rank-n stagnant, and this is a serious restriction on the rank-(n — 1) elements that are products
of rank-n orthant-transpositions. For example, non-trivial pei-translations cannot be products of
single-orthant-reflections.

Corollary 4.9. Let S be a stack of h(S) rank-n orthants, G := G;(S) < pei(S), and Ik = rk(s),
withoO <k <néeN.

(i) If|T¥| > 2, then G, is generated by its orthant-transpositions of rank-k.

If IT¥| = 1, then k = n and G, = pei(N") is the normal subgroup generated by all single-
orthant-reflections of rank n.

(ii) If |T¥| > 2 then CO"4(T*) is generated by its pei-translations of rank-k.
If IT¥| = 1 then C°"4(T¥) is the normal subgroup generated by the endotranslations of rank-k.

(iii) If |T¥| > 5 then every product of two orthant-transpositions g = tt’, where t,7’ € Gy, can be
written as a product g = v 0,03, where each v; is either trivial or a product v; = 7;7] of two
disjoint orthant-transpositions (that is, supp(z;) N supp(fi’ )=@, foreach1 < i< 3).

Proof.

(i) We start by proving that the claim holds true modulo G;_;. By Theorem 4.8 this amounts
to lift generators of the three sections Q; := G, /C(I*), Q, := C(T'¥)/C°(T¥), and Q5 :=
C"4(T%)/G_;. Now, Q, is generated by germ transpositions, and those lift to orthant-
transpositions. Q, is generated by transpositions of face directions, and those lift to single-
orthant-reflections. Q; is generated by unit-pei-translations and unit-endotranslations.
By Lemma 4.7(iii) and (iv) we can thus infer that G, /G,_; is generated by orthant-
transpositions, single-orthant-reflections, unit-pei-translations, and unit-endotranslations.
In the exceptional case where G, = pei(N") contains neither orthant-transpositions nor pei-
translations of rank-k, G, /G,_; is thus generated by single-orthant-reflections and unit-
endotranslations. Moreover, we know from Lemma 4.7(v) that unit-endotranslations are
products of two single-orthant-reflections and that single-orthant-reflections actually suffice
to generate G, /Gy_; in that case.

The case when |I'¥| > 2 is similar: here the existence of a rank-k orthant-transposition
7 € Gy allows to apply Lemma 4.7(i) showing that all single-orthant-reflections of rank k can
now be replaced by of products of two orthant-transpositions. Hence G, /Gj_; is generated
by its rank-k orthant-transpositions in this case.

Next we prove that if |[T¥| > 2 then every rank-(k — 1) orthant-transposition (F,F’) is
a product of rank-k orthant transpositions. This is easy when F and F’ are contained in
disjoint rank-k orthants, for then they are, in fact, faces of disjoint rank-k orthants (L, L"), and
(F,F")=(L,L"Y(L —F,L' — F"). Andif F and F’ are contained in the same rank-k orthant L,
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we find a rank-(k — 1) orthant F”” supported in a rank-k orthant disjoint to L, and there-
fore (F',F")(F,F")(F',F"") = (F,F"). The corresponding weaker result in the exceptional
case |T| = 1 is obvious: If (F,F’) is an arbitrary rank-(k — 1) orthant-transposition then
we find a rank-k orthant L disjoint to F U F’, and by Lemma 4.7(v) a face-transpositions
(Fy, F)) which is a product single-orthant-reflections of rank-k. As ITk=1| = co any two rank-
[k — 1) orthant-transpositions are conjugate in pei(S) hence the normal subgroup generated
by (F,, F),) contains (F, F”).

Now assertion (i) follows by induction on k: Let H < G;, be the subgroup generated by
all rank-k orthant-transpositions (respectively, the normal subgroup generated by all rank-k
reflections). In the case k = 0, we have H = G, because G, is the finitary countable symmet-
ric group and hence generated by its transpositions. If k > 1 we have seen that the subgroup
generated by rank-k transpositions (respectively, the normal subgroup generated by all rank-
k reflections) contains all rank-(k — 1) orthant-transpositions, and by induction those gen-
erate G,_;. Thus the rank-k orthant-transpositions (respectively, single-orthant-reflections
generate both G, /G,_; and G;_;, and hence G,.

(ii) The proof along the lines of assertion (i) and can be left for the reader.

(iii) Let 7=(K,L), v =(M,N). If |T¥(S)|= o0 one finds rank-k orthants X,Y such
that K,L,X,Y and M,N,X,Y are pairwise disjoint quadruples, and (K,L)(M,N) =
(K,L)(X,Y)X,Y)(M,N) as needed. As S is a stack of orthants we infer that if k is finite
at least 5 then k =rkS and any two rank-n orthants are either disjoint or commensu-
rable. If both K and L are commensurable to M or N we find two rank-k orthants X,Y
as above, the argument above applies. In the remaining case we may assume that K is
commensurable to M but L NN = @; then we find two rank-n orthants X,Y such that
both K,L,N,X,Y and M,L,N,X,Y are pairwise disjoint quintuples, and (K,L)(M,N) =
(K, L)X, N)X,N)Y, L)Y, L)(M, N). d

Exercise. Prove that (a) The stagnant subgroup of G,
STy =ker|f1: Cc(T) » € z|,
yETK(S)
is generated by G, _, together with all single-orthant-isometries of rank-k, and also equal to the
normal subgroup generated by all single-orthant-reflections.
(b) The stagnant subgroup of Co™4(T*(S)), that is,

Ei(S) := ST, n Co4(Tk(8)),

is the normal subgroup of G, generated by all endotranslations of rank-k. As a group it is generated
by G,_; together with all endotranslations of rank-k.

4.6 | Conjugation, Abelianization, and alternation
As before, S is a stack of orthants of rank-n and G : = pei(S), and we recall that |I‘k | is finite if

and only if k = n. We say an element g € Gy, k < n, is even if g is equal to the product of an
even number of rank-k orthant-transpositions — by Lemma 4.7 this includes all single-orthant-
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isometries of rank-k; and corank-1 faces of a rank-k orthants can be written as products of two
such. We write alt G, < G|, for the subgroup consisting of all even elements and observe that alt G,
is the kernel of the rank-k parity homomorphism, parrr : G, — Z,, which sends g € G, to the
parity of the permutation that g induces on the rank-k germs I'*. Hence alt Gy, is of index 2 in
G- Moreover, by Corollary 4.9(iii) alt(G; ) is generated by products of pairs of disjoint orthant-
transpositions if |T¥(S)| > 5.

We will also need a refinement of the action of G, on T'¥(S). When g € G, sends the tangent
coset (y) to (yg) then it also induces a map g : X(y) - X(yg) between the canonical axes direc-
tions of (y) and (yg). Given an orthant L representing y on which g is isometric, and a canonical
axis-direction x € X(y), we have x orthogonal to a unique corank-1 face F of L and xg is the
canonical axis direction orthogonal to Fg. Thus G, acts on the disjoint union Y := Uyerk X(y)
by finite permutations; and we have a corresponding parity homomorphism pary« : G, — Z,.

Restricted to C(T'%) the parity map pary is easy to compute: On C°4(I'*) even the action on Y
is trivial, hence we need consider it only on

C(y*)/com(r*) = ST /E.

ST, is generated by all single-orthant-reflections, and as those are the transpositions of the sym-
metric groups sym(X(y)) an element of ST has parity 0 (or is even) if and only if it is the product
of an even number of single-orthant-reflections. This is a subgroup of index 2 in ST}, we call it
the alternating subgroup alt ST, < ST, and have the normal series

Gk—l < Ek < [STk,STk] < altSTk < STk < C(Tk) < alt Gk < Gk'

Theorem 4.10.

(i) If|IT%(S)| > 3 then the following holds:

(a) In Gy, all unit-pei-translations of rank-k are conjugate, together they generate C°"4(T'*(S)),
and (Gy)gp = Z, ® Z, (generated by an orthant-transposition and a single-orthant-
reflection).

(b) In Gy, all products o,0, of pairs of disjoint single-orthant-reflections of rank-k are conju-
gate, together they generate alt ST}, < ST}, and (C(T¥(S)),p = (ST))gp & Drr(s) Z> (gen-
erated by single-orthant-reflections).

(i) If |T*(S)| > 4 then all orthant-3-cycles p = (Ly,L,,L;) of rank-k are conjugate (more gener-
ally: If |T*(S)| > m then any two orthant-(m — 1)-cycles are conjugate) in G, and together they
generate alt Gy.

(iit) If |TX(S)| > 5 then all products t,7, of pairs of disjoint rank-k orthant-transpositions are con-

Jjugate and together they generate alt Gy.

(iv) If [TK(S)| = 2 then GCap 2 2Z, ® Z, & Z, (generated by an orthant-transposition, a single-
orthant-reflection, and a unit-pei-translation).

W) If IT5(S)| = 1 (hence Gy = pei(NK)) then (Giap = Z, ® Z, (generated by a single-orthant-
reflection, and a unit-endotranslation).

Proof. (i)(a) Let A, A’ be two rank-k unit-pei-translations from K to L, and K to L’ respectively.
If L and L' are disjoint then 1 and A’ are conjugate by an orthant-transposition (L, L’). If L and
L’ are nested (and hence commensurable) an auxiliary rank-k orthant is available to construct a
translation that sends L to L’ or vice versa, and thus a conjugation between A and A’. In the general
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case one finds inside L a rank-k suborthant which is either disjoint to or contained in L’ and
obtains the required conjugation in two steps. The general conjugation assertion is now obvious,
and that the unit-pei-translations generate all of C°"(T'¥(S)) was established in Lemma 4.7.

The action of the two parity homomorphisms yields an epimorphism paryx X parpx : G, =
Z, ® Z,, whose kernel is generated by all translations together with all products of two single-
orthant-reflections. By Lemma 4.7(i) and (ii) both are commutators.

(i)(b) The proof is analogous and easier than the one of (i)(a).

(ii) To prove this we start by observing that if p = (L, L,, L;) is an orthant-3-cycle of rank-k,

given by given by the pair of isometries L; BN L, 22, L,, then the fact that there is an auxiliary
rank-k orthant K disjoint to supp(p) provides the existence of translations 9; € Isom(K U L;), with
the property that 9,(K) is an arbitrary given commensurable suborthant of L;. We can put them
together to an element € Isom(K U J; L;). Hence we find that p is conjugate to orthant 3-cycles
p = ,L;,L;), where the L{ are arbitrary given commensurable suborthants of L;.

If g = (My, M,, M3) is an arbitrary second orthant-3-cycle we can choose the suborthants L] C
L; to be either contained in M; (if L; and M; are commensurable) or disjoint to M; (if L; and M, are
disjoint). Thus, in order to prove that p and g are commensurable we can now assume, without
loss of generality, that each L; is either contained in or disjoint to M;.

Now we complete the proof of (ii) in two steps: First we choose, for all indicesi with L, n M; = @,
an arbitrary orthant-transposition z; = (M;, L;). Conjugation with these 7; shows that we find a
conjugate of p which replaces L; by M; whenever L; is not contained in M;. In other words we
are now reduced to a case when L; C M; for all i. Repeating the first step completes the proof. It
is clear that the argument proves, in fact, the general statement for orthant-3-cycles generate all
pairs of orthant-transpositions.

(iii) The argument is exactly like that of i(a). Let 7,7, = (K, L)(M, N). We show first that 7,7,
is conjugate to (K, L)(M, N’) for each choice of N’ disjoint to K, L, M. This is done by the same
case distinction as in i(a). Then one can repeat the argument with K, L, and M. The generation
assertion is covered by Corollary 4.9(iii).

(iv) If |TK(S)| = 2 then S is the disjoint union of two rank-k orthants K, L, and we consider in
G an orthant-transposition 7 = (K, L), a unit-pei-translation 4 from K to L, and a single-orthant-
reflection o of K. We have C(T¥(S)) = C°™4(T'*(S))ST, and since the stagnant normal subgroup
ST} contains all of E;, but no non-trivial pei-translations C(I'*(S)) = gp(ST}) is the semi-direct
product of the normal ST}, with the infinite cyclic group gp(1). As G, /C(T*(S) is cyclic of order
2 generated by 7 it follows that G, /ST|, is isomorphic to the infinite dihedral group gp(4, 7), and
its Abelianization is the Klein-4-group generated by A and 7. As G, /alt Gy, is the Klein-4-group
generated by s and 7, this shows that all three elements 4, 7, o are needed to generate (G ),;; and
as A2 = [r, 1] we find the asserted result.

(v) IT¥(S)| = 1. In that case Gy = pei(L), for a single rank-k orthant L, and this is easily seen to
be the semi-direct product E; X Isom(L). The symmetric group Isom(L) acts transitively on the k-
axes and hence on the unit-endotranslations supported on L: Using the notation of Lemma 4.7(v)
we have, for example, ni;z =1),y, and can infer that [o,,, n;yl] = nzyn;yl. It follows that all endo-
translation of L coincide in the Abelianization, and by Lemma 4.7(v) their square is a commutator.

Lemma 4.7(v) also shows that Gl’c contains an orthant-transposition of rank equal to (k — 1). As
ITk=1(S)| = oo all rank-(k — 1) orthant-transpositions are conjugate and hence by Corollary 4.9
all of G;,_; is contained in G,’(. This shows that (G )y, is the Klein-4 group generated by o,.,, and

Nxy- O
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4.7 | The G, /C°%(T*)-module structure of C**4(T*(S))/G,_,

Using Theorem 4.8(iii) we can consider A¥(S) := C°"4(T*(S))/G_, as the kernel of the corank-1
germ-flow homomorphism sum in the direct sum

@ Trans(y).

yerk(s)

Thus, each a € A¥(S) is given by a finitely supported family of translations indexed by the (in gen-
eral infinite) rank-k germs, a = (f,),er«(s), and each ¢, is uniquely determined by its translation
vector in Z¥ with respect to the canonical basis of the tangent coset (7). Hence we can write t, as
a row-vector (a(y’l), s a(y,k)) € 7k, and note that the sum of its entries is the flow value ﬂy(a).

Thus, in this section we organize the elements of A¥(S) as the additive group of integral
(TX(S) x k)-matrices a = (ag, ;) with only finitely many non-zero entries that add up to 0. The
row indices are the rank-k germs y € T%(S) for a fixed number k, and they are endowed with a
compatible ordering of the canonical bases of (y). The column index 1 < i < k stands for the ith
canonical basis element in this ordering.

The quotient group Q4(S) := G, /C°4(T¥) is the (finitary permutational) wreath product
Si(B)2 sym(T%(S)), where 8 € T%(S) is a chosen base germ and Si(B) the symmetric group on the
canonical basis of (3). We interpret sym(I'*(S)) as the permutation group on the entries which
stabilizes all columns and acts diagonally by the symmetric group the set of all rank-k germs.

The flow fl,(a) € Z of a matrixa € AK(S) at y is the sum of the entries in the y-row. The total
flow fl(a) is the sum of all entries of a and by (8) we have fl(a) = 0.

Row-subgroups

A general y-row-matrix represents an element of AX(S) if and only if its row-sum is zero, and
then it is represented by an endotranslation on any y-representing orthant. We write E, < 4;(S)
for the subgroup of all y-row-matrices. The unit-endotranslation at y represent the y-row-matrices
consisting of a lone pair of entries (1, —1), by which we mean that all other entries are zero. Let
E < AK(S) denote the subgroup of A¥(S) generated by all row-subgroups, and observe that E =
ker(f1 : AK(S) — @yerk(s)z). In particular, E is a Q;(S)-submodule of AK(S), and as any finite
set of germs can be represented by pairwise disjoint orthants we have E = @yerk(s) E,.

Column-subgroups

Lei i be a natural number < k. A general finite ith-column-matrix (n, ), cr« is given by a finitely
supported map f; : TX(S) — Z, n; := f,(y) and defines the parallel shift of a finite set of pairwise
disjoint orthants L, of (y) in the direction of their ith axis onto n;L,. This defines an element of
Ak(S) if and only if the column sum zyerk n, is zero, and we write C; < Ak(S), i=1,2,..,k, for
the subgroup of all ith-column matrices. Note that every matrix a with a lone pair of unit entries
1,1 in different rows (y, y") is represented by a unit-pei-translation 1; and a is a column matrix
if and only if the two unit shifts of 1 are anti-parallel.

The diagonal subgroup D < AK(S)

The column subgroups C; are invariant under the order preserving action of sym(y*(S)) but not,
of course, under all of Q,(S) — nor is the direct sum P, ;¢ C;. Only the diagonally embedded
copy of C; into AK(S), that is, the group D < A¥(S) of all matrices with constant rows and zero
column sums is actually a Q,(S)-submodule of A¥(S).

85UB0 17 SUOLLILLIOD A IES1D) 3 |ea ! jdde sy Aq peuenof afe ssppite WO ‘8sn Jo Sa|nJ Jo) ARiq 1T 8ulUQ /8|1 UO (SUORIPUOI-PUB-SLLLBYW0D A3 | 1M AReid 1BU 1 UO//:SANY) SUORIPUOD PUe SWie | 84l 89S *[£202/80/8T ] U0 ARiqi auljuo A3|1IM ‘uLeyor YeLio!|qiosielISeAIuN Ag £0SZT SW|(/ZTTT 0T/I0p/Wwod A3 | 1M AReig 1 pul U0 D0SUIeWIPUO |//:SdNy Woly pepeojumoq '€ ‘2202 ‘0SLL69T



1696 | BIERI AND SACH

Lemma 4.11. For every Q,(S)-submodule M < AK(S) we have

(1) Ifmisamatrixin M, so is the matrix (fl,(m), ... ,fl(m)) € D which has in each of its columns
the flow-column of m.
(ii) IfTX(S) is infinite then we have for every choice of a pair (y,y’) of different germs in T¥(S), M is
generated by E, N M together with the lone-pair-of-rows matrices supported on the (y, y")-rows.
(In other words: M is generated by its endotranslations of y-orthants and its pei-translations
between y and y’).
(iii) Either M < D or there is a unique minimal natural number q with qE < M.
(iv) Either M < E or there is a unique minimal natural number p with pD < M.

Proof.

(i) Asm has only finitely many non-zero rows we find an n element 8 € Q,(S) which permutes
its columns cyclically. It follows that m + md + --- + m9%~1 is contained in M and has the
required form.

(ii) As every matrix 0 # m € M has only finitely many non-zero rows, m contains both a non-
zero row and a zero row, and QX(S) contains a transposition that interchanges the two. Thus,
M contains a lone-row-pair matrix of the form m(1 — 7) = (_a“) for every row a of m. As
QK(S) acts 2-transitively on the rows we can assume that here the entry —« stands in a
pre-chosen y-row while « has its original position. If we subtract all these lone-pair-of-rows
matrices for all non-zero rows # y from m we find the y-row matrix whose entries are the col-
umn sums of m, thatis, m’ := (Zyerk Mypsene s Zyerk ny) € M. The flow of m’ is the total
flow of m and hence zero. This shows thatm’ € E,. Thus M is generated by E,, N M together
with all lone-pair-of-rows matrices in M. As Q,(S) acts k-transitively, each lone-pair-of-rows
matrix of M is conjugate to a lone (y,y’)-pair-of-rows matrix of M.

(iii) We assume that M is not contained in D, that is, it contains a matrix a which contains a y-row
with two different entries x # y € Z. Let 7 € S;(y) be the transposition that interchanges
those two entries. Then a(1 — 7) is a matrix in E, N M with a lone pair of entries of the form
(z,—z). We consider the smallest natural number g with the property that E,, N M contains
a matrix with a lone pair of entries of the form (g, —q), and call this a minimal lone-pair-of-
entries matrix E, N M. Since Q,(S) acts highly transitively on the rows this applies to each
rank-k germ y. With familiar arguments, one observes that each row matrix of M with a
lone pair of entries is a multiple of a minimal lone-pair-of-entries row matrix; hence the
latter generate in each E, the subgroup q(E, N M) < M) and in E N M the Q;(S)-submodule
gE <M.

(iv) Now we assume that M is not contained in E. Then there is a matrix a € M with non-zero
flow-column fl(a) := (f,(a)),cr- As the sum of the entries of f1(a) is zero, its entries cannot
be constant; hence fl(a) contains a pair of non-equal entries. Therefore a contains a pair
of non-equal rows, and we find a row-transposition T which interchanges these two rows.
a(1 — 1) is then a lone-pair-of-rows matrix in M of the form (_O‘a) which has a lone pair of
non-zero entries in its flow column fl(a(1 — 7)). It follows that there is a smallest natural
number p with the property that M contains a lone-pair-of-rows matrix m = ( * ) with a
lone-pair-of-entries flow-column of the form (i;’ ) We call m a flow-minimal lone-pair-of-
rows matrix M.
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By part (i) it follows that the constant lone-pair-of-rows matrix

+ 1,..,1
+p -1,..,—1
is also a flow-minimal lone-pair-of-rows matrix in M, when pD < M. O

We are now in a position to describe all Q, (S)-submodules of AK(S).

Theorem 4.12. The Q,(S)-submodules 0 # M < A*(S) are of the following types:

* pD < M < D for some p € N, D/pD contains only finitely many Q,(S)-submodules, and if p is
minimal and T¥(S) is infinite then M = pD;

* gE < M < E for some q € N, E/qE contains only finitely many Q,(S)-submodules, and if q is
minimal and T*(S) is finite then M = ZQy(S)(E,, N M);

* pD + qE < M < AX(S) for some p,q €N, and A*(S)/pD + qE contains only finitely many
Q(S)-submodules.

Proof. Note that D is free-Abelian with a countable basis X, and Q := Q¥(S) acts on D = Z[X]
via the symmetric group sym(X). If M is contained in D it cannot be contained in E hence by
Lemma 4.11(vi) there is a unique minimal p € N with pD < M. Thus, D/pD = Z [X]. If X is
finite so is D/pD. If X is infinite and x,y € X are two different elements then (a special case of)
Lemma 4.11(ii) implies that every Q-submodule of M /pD < Z,[X] is generated by lone-pair-of-
row matrices in {tx —ty | t € Z,}, which is a finite subset of D/pD independent of M. Thus, in
both cases we find that D/pD contains only finitely many Q-submodules.

The case when M < E is similar: M cannot be in D; hence Lemma 4.11(iii) applies and asserts
that there is a unique minimal g € N with gE < M. IfT¥(S) is finite, so is E/qE. If ¥(S) is infinite
then (a special case of) Lemma 4.11 (ii) implies that for any chosen y € I'¥(S) all Q-submodules
M < E are generated by E, N M. Hence every submodule of E/gE is generated by elements in
the finite set E, /qE,. Thus, in both cases we find that D/pD contains only finitely many Q-
submodules.

If M is neither contained in D nor in E then pD + gE < M, and therefore t(D+E)< M
for t := gcd(p, q). In this situation we fix a germ y € T'*(S) and consider the y-row matrices
a .= (tt,..,t),b:=(t,—t,0,...,0), both elements of D + E < M, and the element § € Q which
cyclically permutes the entries of the y-rows. By observing that

a—b(l+9+29+39%+ - +k8) = (kt,0,..,00€t(D+E)XM

we can infer that ktAK(S) < D + E < M. Hence it remains to show that A*(S)/ktA¥(S) con-
tains only finitely many submodules. This is again obvious when I'*(S) is finite, for in that case
AK(S)/kt AK(S) is a finite Abelian group. If T*(S) is infinite Lemma 4.11(ii) asserts that for any two
different germs y,y’ € T*(S) we know that all submodules M of T¥(S) are generated by E, N M
together with all lone pairs of (y,y’)-rows in M. Modulo kt, this shows that all submodules of
AK(S)/kt A¥(S) are generated by a subset of a finite set which depends only on D and E. Hence
AK(S)/kt A¥(S) contains only finitely many submodules. [l
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The fact that AX(S) is generated by two Q,(S)-orbits — unit-pei-translations and unit-
endotranslations — shows that A(S) is a finitely generated Q, (S)-module. From Theorem 4.12
we infer that all submodules of A¥(S) are finitely generated; in other words:

Corollary 4.13. The QX(S)-module A¥(S) is Noetherian.

4.8 | The finite subgroups

Our next results will be used in Section 4.9 to classify all normal subgroups of pei(S). On the side
it also yields all finite subgroups.

Lemma 4.14. Let S be orthohedral, L C S an orthant of rank-k, and g € G,. If g has the property
that its image in Gy, /Gy,_, of finite order m then we can find a commensurable suborthant K C L
with the property that the sequence

KLKgL KPS o Lrgh15 gy =k (11)

goes through a set A of pairwise disjoint orthants representing the germsy(L)g/, j > 0, and ends with
anisometry a := gM|, 1 K - K.

We call the sequence (11) the covering orthant-orbit of the germ-orbit y(L)gp(g).

Remark. This applies also in the case when yg = y (and even when rk(g) < k): Then the assertion
is y is represented by a rank-k orthant K pointwise fixed by g¢.

Proof. By Lemma 3.3 we can assume that the restriction of ¢ to L is an isometric embedding. If Lg is
not commensurable to L then the intersection L N Lg/ is of smaller rank forall 1 < j < t =length
of the length of the g-orbit of the germ of L € I'X. Hence we find a commensurable suborthant
K C L with the property that Kg/ N K = @ for all 1 < j < t. This implies that we have a sequence
like the one asserted to exist in the lemma, except that it ends with an isometry « : K — K g onto
a commensurable orthant K ¢’. But by assumption o’ cannot be of infinite order, hence further
powers g’ will, after finitely many steps, come back to K. Taking their intersections yields the
claimed assertion. ]

The following theorem extends the lemma from a single element g to a finitely generated sub-
group H.

Theorem 4.15. Let H < Gy, be a finitely generated subgroup whose rank-(k — 1) subgroup N :=
H N Gy_, is of finite index in H. Then we find a set A of pairwise disjoint orthants representing the
germs in T*(supp(H)) with the property that H actson S’ := | J rea L by isometries (on and between
the members of A) — with the understanding this includes the assertion that N fixes S’ pointwise.

Proof. The set of rank-k germs I'*(supp(H)) is finite and permuted by H, and we can represent
the germs y € T'(S) by pairwise disjoint rank-k orthants L,. Moreover, by passing, if necessary,
to commensurable suborthants we may, for a given finite set P C H, assume that the restrictions
fl L, are isometric for all f € P and all y € T%(S). The proof of Lemma 4.14 shows that this is true
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for a single element g, and the general case follows by induction on |P|: For the inductive step we
can assume that the orthants Ly we start with already satisfy the conclusion for a proper subset of
P and then go through arguments in the proof of Lemma 4.14 for an additional element. Note also
that each n € N n P will have the feature to act trivially on S’. Now we take advantage of this by
applying it to a set P which we choose as follows: First we pick a transversal T C H of H/N which
contains the unit element of H and put X := T*!; then we consider all triple products XXX c H
and pick a finite subset Y C N which contains the set N N XXX and generates N as a monoid;
finally we put P := X U'Y and note that P generates H as a monoid. Now we observe:

* AsY C Pwehave supp(N)nL, = @ (in particular Ly=L,)forally € rk(s).

* As T*!' C P the translates L,t are orthants commensurable to L, for all t € T, and the T },,1,‘_1
are orthants commensurable to L,.

+ For each y € T*(S) we now consider the intersection

K, =)Lt

teT

This is a finite intersection of orthants commensurable to L, and hence is a suborthant con-
tained in and commensurable to L,. Thus A := {Ky | y € TK(S)} is a pairwise disjoint set of
representatives of the germs in I'k(S) on which all restrictions of elements in P are isometric
injections.

We aim to prove that the elements of P act on and/or permute the members of A by isome-
tries. For the elements in Y we know this already. To prove it for x € X = T*! we note that
for each pair (t,x) € T X X there is a unique s € T with n := t~1xs € N. From here we find,
on the one hand, L, t'x = L,,(t7'x) = L,,ns™" = L,,s" since n =€ P; and on the other hand,
yt = yxsn~' = xsn~!(xs)"'xs = yxs since xsn~'(xs)~! € N which acts trivially on the rank-k
germs. Hence L, t~'x = L, s™', and we find

K,x = (ﬂ Lytt_1> X = (VL %) = [ LS = [ Lyess ™ = Ky

teT teT teT seT

This shows that the monoid generators of H and hence H itself acts on the union S :=|J,c, L
as asserted. Thus S has the H-invariant decomposition of S as the union of S”” and its complement
S" =8 —S";and as S” covers all rank-k germs of S its complement is of rank at most (k — 1). [

Corollary 4.16. A subgroup H < G, is finite if and only if supp(H) is the union of a finite set A of
pairwise disjoint orthants | J; o, L on which H acts faithfully by means of isometries on and between
the members of A.

4.9 | The normal subgroups of pei(S)

Throughout this section S is an orthohedral set of rank rkS = n, germs T'* := I'*(S), and height
h(S) = |II"|; and G := pei(S). The most important normal subgroups of G we have met so
far are the rank subgroups, and between them the (ordered and unordered) germ stabilizers
Cord(T%) < C(T%). But in addition to those we found also the stagnant subgroups ST, < C(T')
(with Co"4(TK)ST, = C(T%), see (4)), the endotranslation subgroup E, := ST, N C°™4(T*) (see the
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Exercise at the end of Section 4.5), and the alternating subgroups alt G, (see Theorem 4.10). The
lattice of these normal subgroups is exhibited in the diagram

< corhy g
Gk—l < Ek C(Fk) < alt Gk < Gk' (12)

< altSTk < STk <

The G-module structure of AX(S) = G, /G,_, exhibited in Section 4.7 provides detailed infor-
mation on the normal subgroups between G;._; and C°. The goal is now to show that what we
have seen so far covers essentially all normal subgroups of G.

To prove this requires detailed information on the normal subgroups ¢gp;(g) of G generated by
specific elements g € G, k < n, and we start by investigating the special case when the canonical
image of g in G}, /G._, is of positive finite order m. In this case Lemma 4.14 describes the covering
orthant-orbit A of a given g-orbit of ¥, and how g acts on the union [ J A by isometries on and
between its members L € A.

Lemma 4.17. Let g € Gy, with k < n = rkS, be an element whose image in G, /G,_, is of finite
order. Then the following holds (but note that ifk = n then |T¥| is finite, and if k < n then |T*| = oo
and only assertion (V) is relevant).

(i) tk(g) = k alone implies already that gps(g) contains alt G;_;.

(ii) If g acts non-trivially on T* then gps(g) contains in addition to alt G,_, certain products of
pairs of disjoint rank-k elements of the form g9, where ¢ € G, is a single-orthant-reflection or
an endotranslation of rank-k.

(iii) If g acts non-trivially on T and |T*| > 3 then gp;(g) contains alt ST, (which includes G,_,; and
E}). In addition we have: gp;(g) contains either an orthant-3-cycles of rank-k, or the product
of a pair of disjoint orthant-transpositions. (In the second case we have |T*| > 4 and further
consequences below apply).

(iv) If g acts non-trivially on T* and |T¥| > 4 then gp;(g) contains

Cord(rk)2alt ST,

which is a subgroup of finite index in G. If g acts on T by a 3-cycle or by a single transposition
then gp(g) contains the commutator subgroup G'.
(v) If g acts non-trivially on TX and |T¥| > 5 then gp;(g) contains alt Gy.

Proof. (i) Let L € A be an orthant contained in supp(g). Then — regardless of whether Lg = L
or Lg # L — there is a rank-(k — 1) face F of L with F # Fg. We claim that one can choose
an orthant-transposition 7 = (K,K’) of rank-(k — 1) supported on suborthants of L parallel to
F and of distance 1 to each other, with the feature that 7 and t¢ are disjoint. Indeed, if Lg # L
then taking K :=F and K’ its parallel neighbor of distance 1 will do; and if Lg = L then we
can take K to be the orthant obtained by shifting F diagonally into itself by two diagonal units,
and K’ its parallel neighbor of distance 1 (which has distance > 1 from all other faces). Due to
Lemma 3.1 7 € G;.. Then the commutator [z, g] = 79 is the product of two disjoint rank-(k — 1)
orthant-transpositions and contained in gpg, (¢). As |Tk=1| = co we know from Theorem 4.10(iii)
that the conjugates of [z, g] generate alt G, _;.
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(i) By assumption I'* has a g-orbit of length at least 2, and we consider the corresponding
covering orthant-orbit A. Let L € A, K C L an arbitrary rank-k suborthant, and o a single-orthant-
reflection of K. Due to Lemma 4.6 ¢ € Gy, hence [g,0] = 90 € 9pg,(9),andKNKg = @. Thus,
9Pg, (9) contains a product of two disjoint g-conjugate single-orthant-reflections of rank-k.

We can apply this to the suborthant K¢, C K and recall from Lemma 4.7(v) thatn = ool isa
unit-endotranslation. As both 090 and ¢'v? o' arein g Pg,(9), sois their product (¢90)(a"™ Ioly) =
n9n. This shows that gp;(g) also contains products of pairs of disjoint g-conjugate (unit)-
endotranslations.

(iii) We assume that g acts non-trivially on T* and |T¥| > 3. Three cases occur:

Case 1: T¥ contains a g-orbit of length > 3. Let A be the corresponding covering orthant-orbit,
and K C L an arbitrary rank-k suborthant of some L € A. Then K, K g, K g* are pairwise disjoint.
We put 7 := (K, Kg) to be the orthant-transposition defined by the restriction g|x : K - Kg, and
observe that the commutator [g,7] = 797 = g~!g7 is contained in gp;(g) and is the orthant-3-
cycle

=2
K3 kgD ke ISK.

Case2: T¥ contains a g-orbit of length 2 (with covering orthant-orbit L SNy g RN L), and disjoint
to it is a g-invariant rank-k orthant L’ (with covering orthant-orbit L’ L ). We choose arbitrary
rank-k suborthants K C L, K’ C L', pick an orthant-transposition 7 := (K’, K), and observe that
the commutator [g,7] = 797 = g~'¢7 is contained in gp;(g) and is the orthant-3-cycle

91

T /19
K—- K — Kg— K.

Appropriate products of two orthant-3-cycles are products of pairs of disjoint orthant-
transpositions. By Theorem 4.10(i)(b) all products of pairs of disjoint orthant-transpositions are
conjugate and generate alt ST,. Hence gp;(g) contains the unique subgroup of index 2 in C(T'¥)
and all alternating finite orthant-permutations; together these generate the commutator subgroup
of G;.

Case 3: T¥ contains two g-orbit of length 2 (with corresponding covering orthant-orbits L; &R

Lig R L;, i=1, 2). We choose arbitrary rank-k suborthants K; C L,, K, C L,, pick an orthant-
transposition 7 : = (K;,K,), and observe that the commutator [g,7] = 797 = g~!¢7 is contained
in gps(g) and is the product 7,7, of two disjoint g-conjugate orthant-transpositions. By Theo-
rem 4.10(i)(b) all products of pairs of disjoint orthant-transpositions are conjugate and generate
altST.

(iv) Now we assume || > 4. By Theorem 4.10(ii) we know that all orthant-3-cycles are conju-
gate. Thus, if gp;(g) contains an orthant-3-cycle of rank-k then IT¥| > 4 implies that it contains
all of them. We claim that this implies Co"4(I'*) < ¢ D (9).

To prove this recall that every unit-pei-translation A is the product of two orthant-transpositions
A =17’ of the form (K,L)(K,L — F) (see the proof of Lemma 4.7(ii)). As an additional rank-k
orthant M disjoint to K U L is available we can write 77’ as the product 2 = (K,L)(K,L — F) =
K,L)YK,M)K,M)K,L—F)=(K,LLM)K,M,L—F) of two orthant-3-cycles, when
A € gps(g). Our claim follows since the unit-pei-translations generate cord(rky,
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By (iii) we know that gp;(g) contains also alt ST}, and together with C°rd(rk) this yields the
unique subgroup of index 2 in C(T'¥). Moreover the orthant-3-cycles generate, in the symmetric
group G /C°4(T%), the alternating subgroup of index 2. Hence gp;(g) contains a normal subgroup
of index 4; this can only be the commutator subgroup G'.

It remains to consider the case gp;(g¢) contains no orthant-3-cycle — this happens only when
IT¥| = 4 (which implies that k = n = rk(S)) and I'¥ is the union of two g-orbits of length 2. In that
case assertion (iii) still tells us that gp;(g) contains all of E;, and products 7,7, of pairs of disjoint
orthant-transpositions of rank-k.

From pairs of disjoint orthant-transpositions we can obtain the result for pairs of disjoint trans-
lations: We use our disjoint orthant-transpositions 7; = (K, L;) to construct the disjoint unit-pei-
translations 1; = (K;, L;)(K;, L; — F;), where F; stands for a rank-(k — 1)-face of ;. Then we have
M, = (K, L)(K,, L)X, L; — F;)(K,, L, — F,) which shows that 1,4, € gps(g). It follows that
all products of pairs of disjoint unit-pei-translations are in gp;(g). By multiplying two appropri-
ate such pairs we find that gp;(g¢) contains all squares of unit-pei-translations and therefore all
translations of even length, that is, Co"4(T%)? < gp;(g). Hence gp;(g) contains CO"4(T%)2alt ST}
and all products of disjoint pairs of orthant-transpositions. We leave it to the reader to prove that
this is a finite index subgroup of G, is a subgroup of finite index in G.

(v) We assume that ¢ acts non-trivially on T* and |T¥| > 5. We know by assertion (iii) that
gD (g) contains either an orthant-3-cycle or a product of two disjoint orthant-transpositions. As
(K,L,M)(L,M,N) = (K,M)(L, N) we have products of disjoint orthant-transpositions in either
case and we know, by Theorem 4.10, that they generate alt G, < G; as a normal subgroup. O

We can now prove that the index-2 pairs alt G, < Gy, are ‘bottlenecks’ for the normal subgroups
N of G, that is, either N < G, or altG;, < N. Or, equivalently:

Theorem 4.18 (Bottleneck Theorem). For every normal subgroup N < G of rank rk(N) = k we
have alt G, _; < N < Gy; (recall that G_; := 1).

Proof. The key here is proving that the assertion i) of Lemma 4.17, that is, rk(g) = k alone implies
alt G;,_; < gps(g), holds without the assumption that the image of g € Gy in G, /Gj._; be of finite
order. To prove this, we can now assume that g is of infinite order.

As T¥(supp(g)) is finite and G, /C°™(I'*) is a torsion group, some power gP is a non-trivial pei-
isometry of rank-k which fixes the germ y(L) of some rank-k orthant L. Hence g? parallel shifts t
L to an orthant LgP # L commensurable to L. Then one finds inside L rank-(k — 1) othants K C
L with the property that K, KgP,K ¢?P,K ¢3P, ... are sequences of length > 3 of pairwise disjoint
parallel orthants. As in the proof of Lemma 4.17(iii), Case 1. We find in gp;(g¢) an orthant-3-cycle
of rank-(k — 1). Since |T¥~!| = co assertion v) of Lemma 4.17 applies in rank-(k — 1) and yields
altGy_; < gpg(9)- (]

We use the Bottleneck theorem to recover the rank of elements g € G = pei(S) as a group the-
oretic property. For this we introduce the translation-rank of the elements g € G, by putting

trk(g) = Mmingg<ri( )ik | G N gp(g) # 1}

Note that trk(g) < rk(g), and trk(g) = 0if and only if ¢ is a torsion element. And if g is torsion-free
then trk(g) is the maximal ¢t € N with the property that supp(g) contains a rank-t orthant L on
which the restriction ¢ |; : L — S of some gP € gp(g) is also induced by a non-trivial translation
9 (L) - (L).
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Now we put ¢t = trk(g), choose a generator g9 of G;, N gp(g) and consider the sequence of nor-
mal subgroups N, := gp;(gP), p € N. Ast < rk(gP) for all p € N we know from the Bottleneck
theorem thataltG,_; < N, forall p € N. On the other hand, as G, / C°rd(T") is a torsion group and
g9 € G, we know some power gP of g is contained in C°"4(T"*). Since C°"(I") is a characteristic
subgroup of G it follows that N, = gp;(gP) is also contained in cord(r?).

Now we can use that C°"4(T")/G,_; is free-Abelian and hence residually finite: the subgroup
N,/G,_; is generated by the G-translates of g” /G,_,, hence for each i € N, we have N,;/G,_; =
9pc(gP' /Giy) = (Np/Gt—l)i’ when ;¢ N < Gy

Putting things together we find that the intersection of all normal subgroups N, (a quantity
that depends only on the group structure of G) satisfies, for each g € G,

alt G- < [ ] 9P6(07) < Gur(gy-1-
PEN

Since altG,_; and G,_; uniquely determine one another this shows that they are characterized in
terms of the group structure of G = pei(S).
Summarizing we have

Corollary 4.19. G = pei(S) satisfies the maximal condition for normal subgroups.

The rank-groups G, are uniquely determined by the group structure of pei(S). In particular,
the poly-(Abelian-by-locally-finite) length of G which is equal to rk S + 1, is an invariant of the
group structure.

Exercise. In [32, 36] Osin and Wesolek-Williams define fine-meshed (ordinal valued) ranks
which measure the complexity of elementary amenable groups G. Use the Bottleneck theorem
to compute these ranks for G = pei(S).

CHAPTER 4. THE EUCLIDEAN CASE II: THE FINITENESS LENGTH
5 | ALOWER BOUND FOR THE FINITENESS LENGTH OF pei(S)
In this section we will define a certain ‘diagonal’ subgroup, peig;,(S) < pei(S), and prove
Theorem 5.1. For every orthohedral set S we have

fl(pei(S)) > fl(peigin(S)) = h(S) — 1.

We follow the strategy of Brown’s proof in the influential paper [14] which covers the case when
S is a stack of rays; and we also take full advantage of the technical results and the insight provided
by the second author’s diploma thesis [34].

5.1 | The height of a pei-injection f : S - S

We start with a general observation on the set of germs, when an orthohedral set S comes with a
decomposition of a disjoint union S = A U B of two orthohedral subsets. In that case every orthant
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L C S inherits the decomposition L = (A N L) U (B N L), which shows that one of the orthants of
either A or B is commensurable to L. This shows that the germs of S have an induced disjoint
decomposition T¥(S) = T*(A) U T¥(B) for each k.

Now let S be an orthohedral set of rank rk S = n. We can represent the rank-n germs of S by
pairwise disjoint orthants L, ..., L,,, h = h(S), with the property that the restriction of f to each L,
is an isometric embedding into S. f(L;) is then commensurable to some L;, and since f is injective
it follows: f permutes the germs y(L,), ..., ¥(L,), and k(S — f(S)) < rk S.

As S — f(S) is an orthohedral set, we now obtain that the number of rank-(n — 1) germs in
S — f(S)isfinite. We call this number the height of f, denoted by h(f) = h(S — f(S)) = h(S — Sf).

Lemma 5.2.

(D) Ifg, f : S — S are two pei-injections, then h(gf) = h(g) + h(f).
(i) If A C S is an orthohedral subset whose complement A° = S — A has rank tk A° < n =rkS§,
then the height of any pei-injection f : S — S is given by h(f) = h(A N f(A)%) — h(A° N f(A)).

Proof. (i) Consider the disjoint union S = (S — S¢g) U Sg. As f isinjective Sf =(Sf — Sgf)USgf
is also a disjoint union. Hence so is

S=E-SHUSfF=(E-SHUES-SgfHuSyf,

and we find

S=S9f = =SHUES—-Sgf).

Now, f is a pei-bijection between (S — Sg) and (S — Sg)f = (Sf — Sgf); and a pei-bijection of a
an orthohedral set induces a pei-bijection on its germs. Thus the number of rank-(n — 1) germs
of (S —Sg) and (Sf — Sgf) are the same. This proves (i).

(ii) Each pei-injection f : S — S induces an injection f* : T"~1(S) — I"~1(S). We abbrevi-
ate B = A° and know from rk B < n that T"~1(B) is finite. Hence f* restricts to a bijection
f* : " Y(B) —» I 1(f(B)). On the complement we find the induced injection f* : T""1(A4) —
"=1(f(A)).

We use the abbreviation P* := I"~!(P) for P = S, A, B, and consider the disjoint union
S = [(S) = (A" = AT [ SN UB B N f(5)
=(A" - A"n fH(A") - A" n f*(B"))
U(B* —B"n f*(A") —B" n f*(B")).

By definition, h(f) = h(S* — f*(S*)). Using the fact that B* as well as A* — f*(A™) are finite, we
find

h(f) = h(A™ — A™ n f*(A")) — h(A" n f*(B"))
+h(B*) — h(B" n f*(A")) — h(B" n f*(BY)).
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Now we apply that h(B*) = h(f(B*)) and observe that

—h(A* n f*(B)) + h(B*) — h(B* n f*(B"))
= —h(A* 0 f*(B*)) + h(f(B*)) — h(B* n f*(B¥))
= h(f(B*) — h((A* n f*(B*)) U (B* N f*(B¥))) = 0.

Hence our expression for h(f) simplifies to

h(f) =h(A™ — A" n f7(A7)) — h(B" n f*(A"))
=h(A" N fH(A7)) — h(B* n f*(AY))

as asserted. O

5.2 | Monoids of pei-injections

Let S be an orthohedral set of rank n = rk S in pet-normal form. In particular S is the pairwise
disjoint union of finitely many specified stacks of orthants. By Lemma 3.2 the set of all maximal
germs of S, max I'*(S), is finite. We write M(S) for the monoid of all pei-injections S — S. It is
endowed with the height function & : M(S) — N of Section 5.1. Let M(S) be the submonoid of
all pei-endoinjections of S, which fix all maximal germs of S. M(S) is of finite index in M(S)
since max I'*(S) is finite. Just as we have observed for pei-permutations, each f € M, induces
an isometry 7(s, : (¥) — () on the tangent coset of each germ y € max I'*(S). Thus we have a
homomorphism

(5.1) K My(S) » @yemax r+(s) Isom((y)), given by
= B
y€max I'*(S)

The translation submonoid M.(S) C M,(S) consists of all f € M,(S) with the property that the
induced maps 7(; ) : (y) — (y) are translations for each y € max I'*(S). Since the translation
subgroup of Isom(({y})) is of finite index, M,.(S) has finite index in M(S). And restricting (5.1)
yields a surjective homomorphism

(5.2) M (> @ 7z =2V,
y€max I'*(S)

with N = Z, ¢ oy re(s)TK(7)-

Every orthant L contains a characteristic diagonal element u; € L: the sum of the canonical
basis of L. We write t; : L — L for the translation given by addition of u; and call this the diagonal
unit-translation of L. The general diagonal translations on L (that is, on (L)) are given by addition
of an integral multiple of u; . By the diagonal submonoid M;,(S) C M,.(S) we mean the set of all
elements f € M, (S) with the property that for each y € max I'*(S) the induced isometry 7(; ) :
(y) — (y) is a diagonal translation. Restricting (5.2) yields the homomorphism

(53) X . Mdia(S) > ®}'Emax r(s) 7 = zlmaxT*(S)|
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We write max Q*(S) for the set of all maximal orthants of the stacks of S, and consider the set
T = {t; | L € max Q*(S)} of all diagonal unit-translations of these orthants. Each ¢; € T extends
canonically to a pei-injection on f; : S — S, which is the identity on S — L. We denote it by the
same symbol ¢;, and with this interpretation T generates a free-Abelian submonoid mon(T) <
M;,(S).

Following the strategy of [14] we put

Definition 5.3. Given f, f' € M;,(S) we define f < f’ if there is some t € mon(T) with¢f = f.
Observation. M;,(S) is a directed partially ordered set.

Itis an important fact that the height function & : M(S) — N is order preserving and its restric-
tions to totally ordered subsets of M (S) are injective. We will also have to consider slices of M;, (S).
For givenr,s € Ny, r < s we put

M) = {f € Myy(S) | r < h(f) < s} and

Ml inherits the partial ordering from M;,(S) and is also a directed set.

5.3 | Maximal elements less than f in M, (S)

From now on we assume that all maximal orthants of the stacks of S have the same finite rank
n =rk S. We put A := max Q*(S). We write

M<f={a€Mdia(S)|a<f}, M<f={a€Mdia(S)|a<f}

for the ‘open, respectively, closed cones below f” and aim to understand the set of all maximal
elements of M_ . For this it will be convenient to introduce an abbreviation for the points on the
(finite) boundary of the maximal orthants L; so we set 0L := L — Lt;.

Lemma 5.4. Let b be a maximal element of M_;. Then there is a unique maximal orthant
L € A with the property that f = t;b and h(f) = h(b) + n. Furthermore b is given as the union
b=>b"ub”, whereb’ : L — (S — Sf) is a pei-injection, and b"" : (S — dL) — Sf is the restriction
(tL_lf) |(s—ar)- Conversely, ifc’ : L — (S — Sf) is an arbitrary pei-injection distinct from b’, then
the union ¢ = ¢’ Ub" is a maximal element of M_; distinct from b.

Proof. For each element b € M_ there is some ¢ € mon(T) with f = tb. ¢ has a unique reduced
expansion as a product of elements of T; let I(¢) denote the length of this expansion. As h(t;) = L =
nforeach L € Awehave h(t) = ni(t). It follows that if b is maximal, then h(t) = nandt =t; €T
for some L € A. The maximal orthant L is uniquely determined by the fact that the restriction of
f and b coincide on S — L. The restriction b” of b to (S — dL) coincides with (tL_1 ) l(s=ar)> and
has its image in Sf. The restriction b’ of b to 8L is not determined by f and L. As b and f are
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injective we know that

@ =@@L)bnN(S—-030L)b =(BL)bN((S—L)buLtb)
=@LbnNn{(S-L)fULf)
= (3L)b N Sf.

Hence b’ can be viewed as a pei-injection L — (S — Sf). If we replace b’ by another pei-
map ¢’ : L — (S — Sf), the union ¢ = ¢ U b”" will still satisfy f = t; c and h(f) = h(c) + n. This
shows that ¢ will also be maximal in M_. O

Lemma5.5. Let B C M_f be a finite set of maximal elements of M s. Then the following conditions
are equivalent:

(i) the elements of B have a common lower bound § in M_y;
(ii) for every pair (b,b") € Bx Bwith b # b’ and tb = f = t'b’ for diagonal unit-translations t, t’,
we have
(a) t #t' and
(b) b(BL) N b’'(BL") = @, where L, respectively, L' are the maximal orthants of S on which t,
respectively, t' acts non-trivially.

Proof. ()= (ii). Let § be a common lower bound of the elements of B. Then for every pair (b, b’) €
B X B there are diagonal translations d,d’ € mon(T) with d6 = b and d’6§ = b’. From th = f =
t'b’ we obtain tdé = t'd’S and conclude td = t’d’. The assumption t = ¢ would now imply d = d’
and hence b = b’.

Let L, respectively, L’ denote the maximal orthants of S on which ¢, respectively, ¢’ acts non-
trivially. As d,d’ are diagonal translations, we have d(L) C L and d’(L’) C L’. From t # t' we
know LN L' =@, and hence (8L)d n (8L’)d’ = . Since § is injective, this implies § = (8L)dS n
(8L"Yd'S = (6L)b n (8L")b’, as asserted.

(ii)= (i). For each b € B we have some diagonal unit-translation ¢, € T with t;,b = f, and we
put

(5.4) tg = [lpep tp-

By assumption (i) the maximal orthants L, on which ¢, is a diagonal unit-translation are pair-
wise disjoint. Thus |B| < h(S), and S decomposes in the disjoint union S = (| J,c L) U S’. We
define the pei-injection 6z : S — S as follows:

t,'f oneachLyt,
dp :=14b on the complements 0L, = L, — Lyt
f onS’.

Assumption (ii) guarantees that the restriction of 6 to the union

oL, = @y - Lyty) = (S — Stp)

beB beB
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is injective. And since the image of each 0L, is disjoint to f(S), we also find that the image of (S —
Stp) is disjoint to f(S), and also to f(S”) C f(S). This shows that § is a pei-injection. It remains to
prove that 6 is a common lower bound for the elements of B. By commutativity we find elements
s, € mon(T) with t585 = t;,5,05, Where

(5.5) sp = [vem—ip tx-
One observes that 5,6 and b agree on (S — St;,) = (L, — Lytp), and that tzép = f = t,b. Hence
b and 5,65 agree on S. O

Lemma 5.6. In the situation of Lemma 5.5 we have for the lower bound &5 defined in the proof:

(i) 9y is, in fact, a largest common lower bound of the elements of B;
(it) h(6p) = h(f) — h(S)n.

Proof. (i) We compare an arbitrary common lower bound y with &, the lower bound constructed
in the proof above. Thus for each b € B we are given u;, € mon(T) with u,y = b. We fix a base
element b’ € B and define the diagonal translation ¢ € mon(T) by its action on S as

LY on S’
’ u, oneachlL,.

We use the elements s;, of (5.5) and observe that

xt'y = xupy = xb' = xs,/65 = x6; forxe S’

xt'y = xupy = xb = xs,65 = x6g forx € L.

This shows that t'y = 6 , hence 55 > y.
(ii) For the translation ¢ of (5.4) we have 65 = f and can deduce that h(dz) = h(f) — h(t) =

h(f) = |Bln > h(f) — h(S)n. O

5.4 | The simplicial complex of M;,

We consider the simplicial complex |Mg;,(S)|, whose vertices are the elements of My;,(S) and
whose chains of length k,a, < a; < -+ < g, are the k-simplices. As the partial ordering on
M 4;,(S) is directed, |My;,(S)| is contractible.

In this section we aim to prove

Lemma5.7. Ifh(f) > 2 -1k S - h(S), then IM_¢l has the homotopy type of a bouquet of (h(S) — 1)-
spheres.

The first step toward proving Lemma 5.7 is to consider the covering of [M_| by the subcom-
plexes [M,| , where b runs through the maximal elements of M_ - We write N (f) for the nerve
of this covering. Lemmas 5.5 and 5.6 show that all finite intersections of such subcomplexes |M |
are again cones and hence contractible. It is a well-known fact that in this situation the space is
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homotopy equivalent to the nerve of the covering. Hence we have
|IM_ | is homotopy equivalent to the nerve N(f)

and it remains to compute the homotopy type of N(f).

The next step is to use the results of Section 5.3 to find a combinatorial model for the nerve
N(f). The vertices of N(f) are the maximal elements of M_, and hence, by Lemma 5.4, in
1-1-correspondence to the disjoint union A = (J; ., Ay, where A; stands for the set of all pei-
injections a : 0L — (S — Sf). Lemma 5.4 allows to translate the simplicial structure of N(f)
into a simplicial complex %(f) on A: the p-simplices of N(f) are the p-element sets of max-
imal elements B C M_; with a common lower bound, and the corresponding p-simplices of
Z(f) are the sequences (a;);cp, Where A’ is a p-element subset of A and a; € A; with the

property
(%) The intersections of the images a; (OL),L € A, are pairwise disjoint.

The next Lemma 5.8 on colored graphs will enable us to determine the homotopy type of Z(f).
This is a natural generalization of the second author’s (Sach’s) Lemma 4.7 [34], where it served as
amajor technical key in extending computation of fi(pet(S)) from the case when S is a stack of rays
(the Houghton group result of [14], to the case when S is a stack of quadrants. Sach’s lemma and its
proof were based on but are in parts rather different from Brown’s lemmas 5.2 or 5.3. Ken Brown,
in turn, remarks that the inductive proof of his Lemma 5.3 uses ‘a method due to K. Vogtmann
[private communication]’.

Let T = (V,E) be a combinatorial graph, given by a set V of vertices and set E of edges, where
an edge is a set consisting of two non-equal vertices. A clique of T is any subset C C V with the
property that any two vertices of C are joined by an edge of I'. The flag-complex K(T') is the simpli-
cial complex on V whose p-simplices are the cliques consisting of p + 1 vertices of V. Our main
example here is the complex Z(f), which is easily seen to be the flag-complex of its 1-skeleton
I(f).

Let h be a natural number. We say that the graph I';, = (V, E) is h-colored if its vertex set V' is
the pairwise disjoint union of & subsets V1, ..., V}, (where the index i is the color of the vertices in
V), and no edge has endpoints with the same color.

Lemma 5.8. Ifall colorsi € {1,2, ..., h} of an h-colored graph T';, = (V, E) satisfy the two proper-
ties

(1) V,; contains at least two distinct elements, and

(2) forany choice of 2(h — 1) verticesu®, ..., u*"Vin v — V' there are two vertices v, w in V; which
are adjacent to each u/; in other words, for each j € {1,2,...,2(h — 1)} there is an edge path of
length 2 in T, joining v and w via u/.

Then the flag-complex K(I';)) has the homotopy type of a bouquet of (h — 1)-spheres.
Remark. Note that (2) holds vacuously if h = 1; and if 2 > 1 then (1) actually follows from (2).
Proof. We use induction on h, starting with the observation that the statement is trivial when

h = 1. For h > 2 we assume that K(I';_,) is homotopy equivalent to a bouquet of (h — 2)-spheres,
if I';,_, is an (h — 1)-colored graph which satisfies the properties (1) and (2). We construct K(I';,)
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in several steps, similar to the method applied in Brown’s proof for Hougthon’s groups [14]. We
start with choosing a base vertex v, € V; and consider its star in K(T'},),

Ky = Stgrm)(v1).

Then we proceed with i = 1,2, ..., h by taking the union of K;_; U Vl.’ , Where Vl.’ is the set of all
vertices of V/; which are not joined with the base vertex v, by an edge. And we put

K; := full subcomplex of K(T';) generated by K; ; U V.

1

One observes that (V,U--UV;)CK; and (V;,; U---UV,)NK; =K,. In particular, K;, =
K(T'},). K; is obtained from K;_; by adjoining vertices v € V; that are not connected to the base
vertex v; by an edge; then taking the full subcomplex of K(I';,). Thus K; is obtained from K;_; by
adjoining for these vertices v the cone over

Ik(K;_;,v) := thelinkofv inK;_;.
The 1-skeleton of 1k(K;_;, v) has vertex set

W = W1U"'UWi_1UWi+1U"‘UWh with

W = set of vertices of V; which are joined with v by an edge,
forj=1,..,i—1
W 1= setof vertices of V; which are joined with v and v, by an

edge,for j=i+1,..,h.

Thus, the 1-skeleton of 1k(K;_;,v) is an (h — 1)-colored subgraph I';,_; of I';, with vertex set
W and colors {1,2,..., h} —{i}, and 1k(K;_;,v) is the flag-complex K(I';,_;). Now we consider
any 2(h — 2) vertices u!,...,u*"=2 of W — W with colors in {1,2,..., h} —{i, j} for some j €
{1,2,...,h} —{i}.

Together with the vertices v, and v, we obtain 2(h — 1) vertices u', ..., u*"=2 v, v of V — V.
By property (2) of ['j,, there exists two vertices w, w’ in V'; , which can be joined by an edge path
of length 2 via uk for each k € {1,2,...,2(h — 2)}, and additionally via Uy, U. In particular, w and
w’ can be joined by an edge with v; and v, and so they are vertices of W . Hence T'j,_, satisfies
the two properties of the lemma, and in view of the inductive hypothesis, 1k(K;_;, v) is homotopy
equivalent to a bouquet of (h — 2)-spheres.

From here we can use the same arguments as in the proof of [14, in Lemma 5.3]: Starting with the
contractible complex K, K; is obtained from K, by adjoining for each vertex v € V| a cone over
1k(K,), v). Using the homotopy type of 1k(K,,, v), we can deduce that K; is homotopy equivalent
to a bouquet of (h — 1)-spheres. For the next steps in the construction of K;, we know that K;
is obtained from K;_; by adjoining for each vertex v € V| a cone over 1k(K;_, v). In view of the
homotopy type of Ik(X;_,, v), we see that, up to homotopy, the passage from K;_; to K; consists of
the adjunction of (h — 1)-cells to a bouquet of (h — 1)-spheres. O

We will now apply Lemma 5.8 to the 1-skeleton I'(f) of Z(f). By definition its vertex set is the
disjoint union A = |J;c, A;, and we regard the various A; as the coloring of I'(f). The edges of
T are the pairs of such pei-injections {a;, ai/} with disjoint images. Thus I'(f) is an h(S)-colored
graph T'(f)ys) in the sense above, and in order to establish Lemma 5.7 it remains to prove the
following.
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Lemma 5.9. Ifh(f) = 2 -tk S - h(S), then T'(f)s) satisfies the assumptions of Lemma 5.8.

Proof. Letn := S and h := h(S). By the remark following Lemma 5.8 we can assume & > 1 and
have to prove (2). For this we fix L € A and consider a set of 2(h — 1) elements F C A — A; . We
have to show that there are two elements a, b € A; with the property that for each ¢ € F the image
im(c) = c(0L(c)) is disjoint to both a(6L) and b(AL). In other words: there are two pei-injections

a,b 8L - (S—Sf)— (Uim(c)).

ceF

To show this it suffices to compare the height function — that is, the number of rank-(n — 1)
germs — of domain and target. Clearly, h(a(6L))) = h(dL) = n, and the same applies to every
vertex of A. Hence h(| . im(c)) < 2(h — 1)n. By assumption h(S — Sf) > 2hn, and so the target
orthohedral set has height at least 2hin — 2(h — 1)n = 2n, which is more than the height h(6L) = n
of the domain. In this situation one observes easily that there are arbitrarily many different pei-
injections in A; whose image is disjoint to | . im(c). This proves the lemma. 1

Remark. 1f we replace M_ by the subset M, , := {a € My;,(S) | ¥ < h(a) and a < f}, the asser-
tion of Lemma 5.7 is true, provided f satisfies the additional condition h(f) > r + h(S). In this case
we know by Lemma 5.6 that h(5g) > r, where J5 stands for the largest lower bound of a finite set
B of maximal elements of M, . Thus &y is an element of M, ; and the proof of Lemma 5.6 works
the same way for the reduced simplicial complex |M, |.

5.5 | Stabilizers and cocompact skeletons of M(S)

The group G(S) of all pei-permutations acts on M(S) from the right, and as h(g) = 0 for all
g € G(S) the height function h : M(S) - N is invariant under this action. Correspondingly,
G4(S) 1= G(S) N M4(S) acts on M, (S), where # stands for O, tr, or dia. We will also restrict atten-
tion to the various G (S)-invariant subsets MK’S](S) ={f € M,(S) | r < h(f) < s} for prescribed
numbers r < 5in N,. And also, mutatis mutandis, for the corresponding pet-groups pet,(S), note
that pet,(S) = pet,.(S).

We start with the following simple observation:

Lemma 5.10. Two elements f, f’ € M(S) are in the same pei(S)-orbit if and only if (S — Sf) and
(S — Sf") are pei-isomorphic.

Proof. Asboth Sf and S’ are pei-isomorphic to S there is always a pei-isomorphism ¢’ : Sf —
Sf’. Assuming there is also a pei-isomorphism ¢" : (S — Sf) — (S — Sf’) implies that the union
g=g'Ug"” is a pei-permutation of S with fg = f’. Conversely, fg = f" implies (S —Sf’) =
(Sg—Sfg)=(S—Sf)g, hence (S — Sf’) is pei-isomorphic to (S — Sf). O

Since orthohedral sets of the same rank and height are pei-isomorphic by Corollary 3.6, it fol-
lows that pei(S) acts transitively on the set of all pei-injections of a given rk(S — Sf) and height
k. The very same can be said for the action of G4 (S) on M(S).
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LetA = (ay < a; < -+ < ag_; < ;) be a k-simplex of [M(S)|. By definition there are elements
t1,ty, ..., t; € mon(T), with a; = t;q, for all i; they are uniquely defined and form a k-simplex A’ =
(id < t; < - < t,_; < t;) € |mon(T)|. Moreover, putting o(A) := (A, a,) defines a bijection

o |[M(S)| — |mon(T)| x M(S).

The action of pei(S) on [M(S)| is given by (a; < a; < -+ < ai)g = (apg < a19 < =+ < Q19 <
a,g). We can leave it to the reader to observe that this action induces, via o, on [mon(T)| X M(S)
the G(S)-action given by simple right action on M(S).

The simple structure of the G4 (S)-action on |[M(S)| has two immediate consequences:

Corollary 5.11.

(i) The stabilizer of a k-simplex of |M . (S)| coincides with the stabilizer of its minimal vertex f and
is isomorphic to G4(S — Sf).
(ii) Forevery numbersr < sin N U {0} the simplicial complex of

MU(S) = {f € My(S) | r < h(f) < 5}
is cocompact under the G 4(S)-action.

Proof.

(i) One observes thatright action of g € G4(S) on M4 (S) fixes an element f € M4 (S) ifand only
if ¢ restricted to Sf is the identity. In other words, the stabilizer of the vertex f € M,(S) is
isomorphic to G.(S — Sf).

(ii) We use the interpretation of a simplex A =(a; <a; < - <a_; < a) € |[M(S)| in
[mon(T)| X M(S). Since G4(S) acts transitively on the set of all pei-injections in M (S) of
a given rk(S — Sf) and height k, the bound on h(a,) allows only finitely many G (S)-orbits
on the second component M(S). The bound on h(q;) fori = 1,..., k allows only finitely many
simplices in the first component |mon(T)|. O

5.6 | The conclusion
Here we put things together to prove Theorem 5.1, that is, fI(G(S)) > fI(Gg;,(S)) = h(S) — 1.

Proof. We will first show, by induction on n =S, that fI(G4;,(S)) = h(S) — 1. If n =1, then
the group G,(S) is the Houghton group on h(S) rays and has finite index in G(S). In that
case the assertion is due to Brown [14]. Now we assume n > 1. Here we use MI"s| = {f
My, (S) | r < h(f)< s}, r,s € N. Since f € MI"$l is a diagonal pei-injection, the height of
f is a multiple of n. So we fix the lower bound r = nk,, k, € N, and consider the filtration of
M := M">l in terms of MK := Mkl with k — co. Then we follow the argument of Brown
[14].

* First we note that M is a directed partially ordered set and hence |M| is contractible.
* |[M*+1| is obtained from |[M¥| by adjoining cones over the subcomplexes | M <y foreach f with
h(f) = k + 1. By Lemma 5.7 and the Remark at the end of Section 5.4, we know that the sub-
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complexes |[M_ ¢| have the homotopy type of a bouquet of (h(S) — 1)-spheres for k sufficiently
large. This shows that the embedding |[M¥| C [M**!| is homotopically trivial in all dimensions
less than h(S).

* By Corollary 5.11 we know that the | M¥| have cocompact skeleta.

* The stabilizers, stabgs(f), of the vertices f € M — in fact of all simplices — are of the form
G(S — Sf). Astk(S — Sf) < rk S the inductive hypothesis applies. The assumption that M con-
tains only injections f with h(f) > r implies now, that fi(stabgs)(f)) > r — 1 for each f € M.

We can choose r arbitrarily; if we choose r > h(S) + 1 the main results of [14] apply and it fol-
lows that f1(G4;,(S)) = h(S) — 1. This completes the inductive step.

In order to prove that fI(G(S)) > fI(G4;,(S)) we note that fI(G(S)) = fI(G(S)), since G(S) is
of finite index in G(S). Then we observe that Gg;,(S) is a normal subgroup of G.(S) with Q =
G (S)/Gy4;(S) finitely generated Abelian. As fI(Q) = oo this implies fI(G,(S)) = fI(G4,(S)). [

6 | A LOWER BOUND FOR THE FINITENESS LENGTH OF pet(S) FOR
A STACK OF ORTHANTS

In this section we will show
Theorem 6.1. IfS is a stack of orthants then fl(pet(S)) > h(S) — 1.

The steps to prove this lower bound of fl(pet(S)) are similar to those in Section 5 for the
corresponding pei-result. We will use a certain poset of injective pet-maps f : S — S to form
a simplicial complex, and we will choose a diagonal subgroup of pet(S) for the action on the
complex. However, the part concerning the finiteness length of the stabilizers of f is more
difficult here, because the set (S — Sf) is generally not pet-isomorphic to a stack of orthants
with lower rank (there are different parallelism classes of rank-(n — 1) germs in S if rkS =
n). So even if the stabilizers are isomorphic to pet(S — Sf), there is no base for an induction
argument.

In order to set up an inductive proof we need a version of Theorem 6.1, which makes the asser-
tion not only for stacks of orthants but also for stacks S of parallel copies of a ‘rank-n-skeleton’ of
an orthant. In combination with special injective pet-maps f (the ‘super-diagonal’ maps), such a
stack S leads to a set (S — S f), which has the structure of a stack of rank-(n — 1)-skeletons.

6.1 | Stack of skeletons of an orthant

Let X be the canonical basis of the standard orthant NN. Every orthant L is of the form
a+ EBerNy, where Y is a subset of X. L carries the structure of a simplex whose faces, indexed
by the subsets Z C Y, are the suborthants L, = a + &,.,Nz C L. We refer to L, as a rank-k-face
of Lif |Z| = k. By the rank-k-skeleton of L, denoted by LX), we mean the union of all rank-k-faces
of L. Thus the skeleta of L form an ascending chain of orthohedral set

{a} = L1Ocit®Wc..crt®c..crtkh .
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Let L™ be the rank-n-skeleton of a rank-r orthant L = a + @®,cy Ny. Then L™ is the union of

h(L™) = (;) pairwise non-parallel rank-n orthants.

Now we consider a stack S of parallel copies of the rank-n-skeleton L™ of an rank-r orthant —
in other words, S = R is the rank-n-skeleton of a stack R of rank-r orthants. We call each copy
of L™ in such a stack S a component of S, and we write c(S) for the number of components of S.
Note that h(S) = c(S)(:l). The next proposition shows a lower bound for fl(pet(S)), and the case
n = r yields the assertion of Theorem 6.1.

Proposition 6.2. If S is a stack of rank-n-skeletons of an orthant then fl(pet(S)) > c(S) — 1.

For later purpose in this section we consider the subset $ C S of all regular points of S, which
is defined as follows: If S is an orthant, then $ is the image t5(S) of S under the diagonal unit-
translation; and if S is a stack of rank-n-skeletons of an orthant, a point p € S is regular if S
contains a maximal suborthant of rank equal to S, which contains p as a regular point. The com-
plement, denoted by sing(S) = S — S, is the set of all singular points of S. In the case when S is
a stack of orthants, we will also use the geometrically more suggestive notation 4S for sing(S).
If S = R™ is the n-skeleton of a stack of rank-r orthants L, then sing(S) = R and $ has the
canonical decomposition as the disjoint union of the regular points of the maximal orthants of
S. By a component of § we mean C N S, the intersection of $ with a component C of S. Note that
c(S) = ().

Lemma 6.3. For the sets S and S the following holds:

(i) Sand S are pet-isomorphic. Hence pet(S) is isomorphic to pet(S);
(ii) h(sing(S")) = h(sing(S))(r — n + 1), where r is the rank of the stack R with S = R,

Proof.

(i) S is the disjoint union of S and (S — S). As each maximal orthant of (S — S) is parallel to a
subortant of $, the assertion follows from the pet-normal form.

(ii) Since § = R™ — R("=1), sing(§) is the disjoint union of h(R™) . n rank-(n — 1) orthants.
So h(sing($)) = h(R™)n. For the height of S and sing(S) we have h(S) = h(R™) = c(S)(:l)

and h(sing(S)) = h(R"D) = C(S)(nil)' As (;)n = (nil)(r —n+1), we get h(RM)n =

hR"DY(r —n +1). O

6.2 | Reduction to the diagonal subgroup

From now on we assume that S is a stack of rank-n-skeletons of an orthant. Since S and $ are pet-
isomorphic, it suffices to establish Proposition 6.2 for the set S, which is more suitable for some
parts of the proof. As noted above $ is canonically in pet-normal form. In particular, every maximal
germ of S (or ) is represented by a unique maximal orthant of $. Thus we can conceptually
simplify matters by replacing the set of all maximal germs, max I'*(S) = max I'*(S), by the set of
the canonical representatives max Q*(8), the set of all maximal orthants of S.

Let My;,(S) denote the monoid of all diagonal pei-injections of § introduced in Section 5.2.
Mdia(So) is a submonoid of Mtr(ﬁ), the translation submonoid of M(S). Its elements f have the
property that they induce, for each L € max Q*(S), a diagonal translation T(s,p) * (L) = (L). Now
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we consider the submonoid Msgfa(.sn) CM dia(S:) consisting of all diagonal pet-injections f : S-S
which satisfy the additional super-diagonality condition:

(6.1) When two maximal orthants L, L’o f S are contained in the same component of S, then the
diagonal translations 7(; ;) and 7(; ;) have the same translation length.

The restriction of the homomorphism (5.2) of Section 5.2 to Mf;ta(ﬁ) can thus be interpreted as
a map

. . aqbet (& _ c(S)
(6.2) A M (S) > @ 7 =27,
CceComp($)

which associates to each super-diagonal pet-injection f the translation length A(f,C) on each
component C of S.

The group of all invertible elements of Mf;ta(g) is the super-diagonal pet-group petsdia(Sa).

Let be pet,,($) the group of all invertible elements of M,.(S). It is a subgroup of pet(S), which
has finite index in pet(S). Analogous to (5.2) in Section 5.2 is a homomorphism

(6.3) x : pet (S) » @ Tran((L)), givenbyx(g) = @ 7(g,L)

Lemax Q*(S) Lemax Q*(S)

which associates to each pet-injection g € pettr(ﬁ) the translation length 7(g, L) on each maximal
orthant L of max Q*($). We observe that a permutation g € pet, (S) is in pety;,(S), if and only if
the translations 7, ;) are diagonal for each L and its translation length constant as L runs through
the maximal orthants of a component C of S.

Given a component C of S, we consider the set A(C) := max Q*(C) of all h(C) = ( ; ) rank-n
orthants of C. For each orthant L € A(C), we write Y(L) for its canonical basis. The translation
T(y) + (L) = (L) has the canonical decomposition into the direct sum of translations ngy’ I in the
directions y € Y (L), and we write (g, L) € Z for the corresponding translation lengths.

Therefore, for g € pet(.§‘) to be super-diagonal, means that the numbers IV(g,L) € Z coincide
for all pairs in P(C) :={(y,L) |y € L € A(C)} — and this is so for all components C. Hence,

associating to ¢ the sequence

(P -1"(9.L))

(i(©),0)’

with i(C) running through all pairs ((y, L), (y', L")) € P(C), and C through the components of S,
exhibits the super-diagonal pet-group pet,y;, ($) as the kernel of a homomorphism of pet,,(S) into a
finitely generated Abelian group. It is well known that in this situation fl(pet,.(S)) > fl(pety,(S)).
Since pettr(.So') has finite index in pet(.§'), we have ﬂ(pet(bg)) =f l(pettr(so‘)), hence

Fl(pet($)) > f1(pety,(S)).

The proof of Proposition 6.2 is thus reduced to a proof of ﬂ(petsdia(§)) = ¢(S) — 1. To show this, we
follow the arguments in the proof of the corresponding pei-result: fi(peigy;,(S)) = h(S) — 1, where
S was a stack of h(S) orthants of rank n. In the present situation, where $ is the set of regular points
of the n-skeleton of the stack R of h(R) orthants, the components C of S have to take over the role
previously played by the orthants L of the stack S. Correspondingly we now have to work with the
multiplicative submonoid mon(T) C Mf;ta(ﬁ) freely generated by the set T of all super-diagonal
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unit-translations t~ : C — C as C runs through the components of S, where each t~ = [] Lea) iL
is the composition of the diagonal unit-translations ¢; defined in Section 5.2. As at the end of
Section 5.2 we use the action of mon(T) by left multiplication to endow M E;ta(So) with a partial
ordering; and we observe that this partial ordering is directed.

6.3 | Maximal elements < f in M:’;:l(.é)

To adapt notation to the one used in the corresponding pei-situation in Section 5, we write A for
the set of all components C of $, and 4C := C — Ct for each component C € A . Note that C is
the disjoint union of h(C) = (;) rank-n orthants, using the notation of Section 6.1 one for each
n-element set Z C Y. Hence h(3C) = n( ; ). We are still in the situation that all maximal orthants
of § have the same finite rank n = rkS. And given f € Mf;ta(S’) we write

M=faeM$ (S la<fl, My={aeM? S |ax<f}

sdia sdia

for the ‘open, respectively, closed cones below f’, aiming to understand the set of all maximal
elements of M_;.

Lemma 6.4. Let b be a maximal element of M_;. Then there is a unique component C of S with
the property that f = t-b, and h(f) = h(b) + n. Furthermore, b is given as the union b = b’ U b”,
where b’ 3C — (S — Sf) iﬂs a eet—injection, and b" : (S —3C) — Sf is the restriction f51f|(s°_ac)~
Conversely, if ¢’ : C — (S — Sf) is an arbitrary pet-injection distinct to b’, then the union ¢ = ¢’ U
b" is a maximal element of M distinct to b.

Proof. See argument in Lemma 5.4. O

Lemma 6.5. Let B C M_ be a finite set of maximal elements of M s . Then the following conditions
are equivalent:

(i) The elements of B have a common lower bound & in M_;.
(ii) For every pair (b,b') € BX B, with b#b' and th= f =t'b" for super-diagonal unit-
translations t, t', we have
(a) t#t, and
(b) b(3C) N b'(3C") = B, where C, respectively, C' are the components of S on which t, respec-
tively, t' acts non-trivially.

Proof. For each b € B we have a super-diagonal unit-translation t, € T with t,b = f, and we
put

(6.4) tg := [ 1o

beB

By assumption (a) the components C;, on which t; acts non-trivially, are pairwise disjoint.
Thus |B| < ¢(S), and S decomposes in the disjoint union S = (| J,c5 C;) U S’. We define the pet-
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injection 6 : S — S as follows:

t,'f oneachCyt,

6p :=1b on the complements 6C;,, = C, — Cyt),
f onS’.
To show that &5 is a common lower bound, see arguments in Lemma 5.5. O

Lemma 6.6. In the situation of Lemma 6.5 we have for the lower bound & defined in the proof:

(i) &g is, in fact, a largest common lower bound of the elements of B;
(it) h(6p) = h(f) — h(S)n.

Proof. For (i) see argument in Lemma 5.6. For (ii) we use the translation t = IT,cpt;, of (6.4)
which satisfies 165 = f and yields:

h(8p) = h(f) — h(t) = h(f) — IB| - h(tc)
= h(f) = |B| - h(C)n
2 h(f) = c(SHA(Cn = h(f) — h(S)n. [

6.4 | The simplicial complex of M :;; S

We consider the simplicial complex |M§§ita(§)|, whose vertices are the elements of Mf;ta(g) and
whose chains of length k,a, < a; < --- < g, are the k-simplices. As the partial ordering on
Mfgita(g) is directed, |M§§ita(§)| is contractible.

In this section we aim to prove

Lemma 6.7. Ifh(f) > 2 - 1k S - h(S) then |M_ ;| has the homotopy type of a bouquet of (c(S) — 1)
spheres.

The first step toward proving Lemma 6.7 is to consider the covering of [M_| by the subcom-
plexes [M,|, where b runs through the maximal elements of M_ . We write N(f) for the nerve
of this covering. Lemma 6.6(i) asserts that all finite intersections of such subcomplexes |M|
are again cones and hence contractible. It is a well-known fact that in this situation the space is
homotopy equivalent to the nerve of the covering. Hence we have

IM_ ;| is homotopy equivalent to the nerve N(f),

and it remains to compute the homotopy type of N(f).

The next step — replacing the nerve N(f) by the combinatorial complex Z(f) — follows the
arguments in Section 3: We find that the set of vertices of Z(f) is the disjoint union A = ¢, Ac,
where A stands for the set of all pet-injections a : dC — ($ — $f); and the p-simplices of Z(f)
are the sequences (ac)cep/, Where A’ is a p-element subset of A whose entries a- € A satisfy
the condition
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(6.5) The intersections of the images a-(8C),C € A’, are pairwise disjoint.

The homotopy type of Z(f) can again be computed by Lemma 5.7, which we apply to the 1-skeleton
L(f) of Z(f), viewed as a c(S)-colored graph I'(f),s)- At the end it remains to prove

Lemma 6.8. Ifh(f) > 2 -1k S - h(S) then T(f)(s) satisfies the assumptions of Lemma 5.8.

Proof. Letn :=r1kS and h := c(S). Assumption (1) is a consequence of assumption (2) except in
the trivial case h = 1.

To prove (2) we fix C € A and consider a set of 2(h—1) elements FCA— A, . We
have to show that there are two elements a,b € A- with the property that for each
deF,d:odC; — (S — Sf),im(d) = d(0C,) is disjoint to both a(0C) and b(6C). In other words:
there are two pet-injections

(6.6) a,b : 9C = (S = Sf) — (Ugep im(d)).

For this it suffices to compare the height function, that is, the number of rank-(n — 1) germs,
of domain and target. Clearly, h(a(9C)) = h(0C) = nh(C), and the same applies to every vertex of
A. Hence h(|J, e im(d)) < 2(h — 1)nh(C). By assumption h(S — Sf) > 2nh(S), and so the target
orthohedral set has height at least 2nh(S) — 2(h — 1)nh(C) = 2nh(C), which is more than at least
twice the height h(0C) = nh(C) of the domain when h(C) is positive. Moreover, by Lemma 5.10,
the set (S — S f) is pet-isomorphic to a stack of copies of AC. In this situation one observes that the
two different pet-injections required in (6.6) above certainly do exist. This proves the Lemma 6.8
and hence Lemma 6.7. O

Remark. By the same argument as in the remark at the end of Section 5.4, the assertion of
Lemma 6.7 remains to hold true if M _ ris replaced with the subset M, fi= {aeM S;ta(g‘) | h(a) >
rand a < f}and f satisfies the additional condition h(f) > r + h(S).

6.5 | Stabilizers and cocompact skeletons of |M::;(§)|

Here we consider the monoid MPY(S) of all pet-injections endowed with the height function
h : MPeY(S) — Z inherited from M(S) and the pet(S)-action induced by right multiplication. Our
main interest, however, is the super-diagonal submonoid Mfgi;(ﬁ) C MP®Y(S) acted on by the
super-diagonal pet-group petsdia(So).

Lemma 6.9.

(@) f,f' € MPY(S) are in the same pet(S)-orbit if and only if (S —Sf) and (S — Sf') are pet-
isomorphic.

(ii) Let S be a stack of copies of L, where L is a rank-r orthant. If f € ME;;(S’) with h(f) > 0, then
h(f) is a multiple of (r —n+1)( " ) and (S — Sf) is pet-isomorphic to a stack of h(H)/(,",)
copies of L""~1),

(iii) Two elements f, f' € M:;ta(ﬁ) with h(f) = h(f’) > 0 are in the same pet y;,(S)-orbit.

Proof. The proof of (i) is analogous to the proof of its pei-version wich is Lemma 5.10.
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(ii) The key here is a pet-version of Lemma 5.2(i). The set of germs I'"*~! (S decomposes into its
parallelism classes, and as these are pet(S°)—invariant, the height function h : Mfgita(ﬁ) — Z canbe
written as the sum of functions hy : M f;ta(ﬁ) — Z, with Y running through all (n — 1)-element
subsets of the canonical basis of L, that count the number of germs in I"~1($ — S f) parallel to
(Y).

We need the hy -version of Lemma 5.2(i), asserting that we have, for all rank-(n — 1) faces Y of
L,

(6.7) hy(f) = hy(AN(Af)S) — hy(A° N Af) for every orthohedral subset A C S with rk A€ < n.

The proof is a straightforward adaptation of the one in Section 5.1 and can be left to the reader.

We can refine (6.7) by exhibiting A as the disjoint union of rank-n orthants K; on which f acts
by (super-diagonal) translations. Since f is super-diagonal, the corresponding translation lengths
Ac(i) depend only on the component C(i) of S Sontaining K;. One observes that f(X;) is contained
in the uniquely defined maximal orthant of S containing K;. This has the consequence that for
i# J,K;n(K;f) =K;andKf nK;f = K| f, from which one finds

©68) Ay (f) = by (J&; 0 Ki)) = hy (K nKif)
= X KN &) = hy (RS nKf) = Y A,

Clearly, for each component C of S, sing(C) contains exactly one orthant parallel to (Y). By
Lemma 6.3(ii) this orthant is parallel to a face of exactly (r — n 4+ 1) maximal orthants K; in C, and
each of them gives rise to a summand A¢;). Hence summation over all K; contained in a single-
component C of S yields 1-(r — n + 1); and summation over all I, finally, hy(f) = A(r —n + 1),
where 4 is the sum of A, with C running through all components of S.

This shows, in particular, that ay(f) is independent of Y. As we are assuming that h(f) > 0 it
follows that 1 > Oand h(f) =1-(r—n+1)- (nil).

It follows that ($ — Sf) is pet-isomorphic to disjoint union S’ US”, where S’ is a stack of
hy(f) = A(r — n + 1) copies of L*-1) and S” a subset of rank < n — 1. As A > 0, S’ contains at least
one copy of L=V, In this situation S’ contains orthants parallel to any given maximal orthant of
S, In view of the pet-normal form of S’ U S” it follows that S’ U S is pet-isomorphic to S/, that
is, to a stack of A(r — n + 1) copies of L"),

(iii) Part (ii) shows that h(f) = h(f’) > 0 implies that S — Sf and § — Sf’ are pet-isomorphic.
Hence, by assertion (i), there is a pet-permutation g € pet(S) with f’ = fg¢. The assumption that
fand f’ are in Mf;ta(g) implies that g € pety;,(S). O

Corollary 6.10.

(i) The stabilizer of f € Mf;ta(f) in petsdia(§) is isomorphic to pet(S — Sf).
(ii) For every number r,s € NU{0}, the simplicial complex of M!Sl :={f e MS;;(S‘) | r <
h(f) < s} is cocompact under the petgy;,(S)-action.

Proof. (i) Is immediate from Lemma 6.9(i).

(ii) Lemma 6.9(iii) asserts that petgg;,(S) acts cocompactly on the vertices of a given height in
the simplicial complex |M§§ita(S)|. Just as in the proof of Corollary 5.11(ii), this yields the claimed
assertion. O
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6.6 | The conclusion

It is an elementary observation that right action of g € pet(S) on MP®(S) fixes an element f €
MPeY(S) if and only if g restricted to f(S) is the identity. In other words, the stabilizer of a ver-
tex f € MP®(S) is isomorphic to pet(S — Sf). This will be crucial for the inductive step in the
following inductive.

Proof of Proposition 6.2. In Section 6.2 we proved already that fl(pet(S)) > fl(pet.y;,(S)); hence
it suffices to show ﬂ(petsdia(ﬁ‘)) > ¢(S) — 1. We will argue by induction on n =1k S. If n =1,
then h(S) = c¢(S) - r, and the group pety;,(S) is the Houghton group on h(S) rays. By Brown
[14] this implies that ﬂ(petsdia(ﬁ)) > h(S) —1 > ¢(S) — 1. This establishes the case n =1 of the
induction.

Now we assume n > 1. By induction we can assume that fl(pet(S’)) > ¢(S") — 1 holds for every
stack S’ of copies of a rank-(n — 1)-skeleton of an orthant L. To prove the inductive step we start
with restricting attention to the subgroup petsdia(Sﬂ) acting on the super-diagonal monoid M(*?] =
{f € M*% ($) | u < h(f) < v}, u,v € N. By Lemma 6.9(ii) the h(f) is a multiple of s := (r — n +
1)(,",)- So we fix a lower bound u = sko, k, € N, and consider the filtration of M := M!*>l in
terms of M* =: MI*Sk] with k — co. Then we argue as follows.

* First, we note that M is a directed partially ordered set and hence |M| is contractible.

* |M*+1| is obtained from |M*| by adjoining cones over the subcomplexes |M < for each f with
h(f) =k + 1. By Lemma 6.7 and the remark at the end of Section 6.4, we know that the sub-
complexes |M_ | have the homotopy type of a bouquet of (c(S) — 1)-spheres for k sufficiently
large. This shows that the embedding |M, | C |M,_,| is homotopically trivial in all dimensions
< c(S).

+ By Corollary 6.10(ii) we know that each |M*| has cocompact skeleta.

* The stabilizer of the f € M under the action of petsdia(so') on M coincides with pet($ — Sf) by
Corollary 6.10(i). Lemma 6.9(ii) asserts that if h(f) > 0 then S-S f) is pet-isomorphic to a
stack of copies of the rank-(n — 1)-skeleton of an orthant. The stack height here is (S-S f)=
h(f)/ (ni 1). We can choose u arbitrarily; if we choose u = (¢(S) + 1) (n'_ 1) the inductive hypoth-

esis together with the assumption that h(f) > u yields

fiperS = $) > oS =8N =1=h(p/ (") =13 €65

forall f € M.
* The main result of [14] now establishes ﬂ(petsdia(bg)) > c(S) — 1. This completes the inductive
step. Ol

7 | THE UPPER BOUNDS OF fl(pet(S)) WHEN S C NV
7.1 | More structure at infinity

Here we assume, for simplicity, that our orthohedral sets S are contained in NN. The pei-normal
form Corollary 3.5 this is not a restriction for the pei-group pei(S), and it is a basic special case for
the pet-group pet(S):

Given an element x € X (that is, a coordinate axis), we write F}C(S) for the set of all germs of
rank-1 orthants of S parallel to Nx. We have a canonical embedding x : F}C(S) — NN-1 defined
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as follows: Each y € F}C(S) is represented by a unique maximal orthant L € Q!(S); we delete the
x-coordinate of the base point of L and put x(y) to the remaining coordinate vector. We write d,.S
for the image (I’ (S)), and we will often identify I'.(S) with 8,.S via x. 8,.S can be viewed as the
boundary of S at infinity in direction x.

Lemma 7.1. Ford,S the following hold.

(i) 8,.S is an orthohedral subset of NN =1,

(ii) Forvery rank-(k — 1) orthant L C 8, S, there is a unique rank-k orthant L' C S which is maxi-
mal with respect to the property that for each point of p € Lx~'(p) is represented by a suborthant
of L.

Proof. Easy. O

7.2 | Short exact sequences of pet-groups

From now on we assume that S =|J;S; € N™ where m is minimal and S is in pet-normal
form as defined after Proposition 3.5. Given x € X arbitrary we note that S is the disjoint union
S = S(x) U S*(x), where S(x) collects the stacks S i which contain a rank-1 orthant parallel to Nx,
and S1(x) the stacks S i which are perpendicular to x. We note that d,.S = 9,.S(x), and we have
an obvious projection 77, : S(x) » 9,.S. Moreover, there is a canonical injection o, : 9,,S — S(x)
which maps each germ y € 0,.S to the base point of the unique maximal rank-1 orthant represent-
ing y, and is right-inverse to r,. : S(x) » 0,S.

As the action of pet(S) on the Q!(S) preserves directions it induces, for each coordinate axis
x € X, an action on F}C(S) = 0,.S, and one observes that this is an action by pet-permutations.
This yields an induced homomorphism &, : pet(S) — pet(d,.S). The kernel of &, is the set of all
pet-permutations fixing all rank-1 germs parallel to x. And we note the following:

(i) o, : 3, S — S(x) induces an embedding of pet(d,.S) as a subgroup of pet(S(x)), which splits
the surjective homomorphism

9, : pet(S(x)) » pet(8,S)

induced by 7.

(ii) Every pet-permutation g € pet(S(x)) extends to a pet-permutation of S by the identity on
S+(x). This exhibits pet(S(x)) as a canonical subgroup of pet(S). Even though we do not have
pet(S) acting on S(x), we do have that the surjective homomorphism

9, : pet(S) » pet(3,S)

splits by the embedding pet(3,.S) < pet(S(x)) < pet(S).

Summarizing we have

Proposition 7.2. pet(d,.S) is a retract both of pet(S) and of pet(S(x)). In other words, we have split
exact sequences

1 - K — pet(S) - pet(6,S) » 1
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and
1 - K" = pet(S(x)) — pet(3,S) — 1.
7.3 | An upper bound of the finiteness length of pet(S)

To deduce an upper bound for the finiteness lengths of the pet-groups we need the following
elementary lemma which was overlooked in [5]; and is now folklore.

Lemma 7.3. Let G be a group. If a subgroup H < G is a retract of G then f(H) > fI(G).

Proof. The assertion fI(G) > sis equivalent to saying that on the category of G-modules the homol-
ogy functors H; (G; —) commute with direct products for all k < s. That this is inherited by retracts
follows from the fact that H, (—; —) is a functor on the appropriate category of pairs (G, A), with
G a group and A a G-module. O

If S € NV is an orthohedral set of rank rk S = n in pet-normal form, then Q;(N™) is canonically
bijective to the set P(X) of all subsets of X. Hence we can view the height function (2) of Section 3.4
as a map

hg © P(X) > NU{0},

and organize stacks of maximal orthants of S as follows: For every subset Y € X we have the
(possibly empty) stack S(Y) C S of hg(Y') orthants parallel to the orthant (Y') defined by Y.

For each (n — 1)-element subset Y C X we consider the link 1k(Y) of Y in S,, by this we
mean the set of all n-element sets Y’ C Y with the property that (Y’) C S;, noting that (Y') €
max Q(S;). Then we put S(Ik(Y)) C S to be the union of the stacks S (Y’) with Y/ running through
1k(Y). The height, h(S(k(Y))), is the sum of all stack heights hg((Y”)) as Y’ runs through 1k(Y).

Theorem 7.4. IfS C N™ is orthohedral of rank n in pet-normal form, then each indicator (n — 1)-
subset Y C X with non-empty link 1k(Y') imposes an upper bound fl(pet(S)) < h(S(lk(Y))) — 1.

Proof. 'We choose any y € Y and consider the projection 7, : S - 0,5 U {#}}, where the symbol
{@} is the image of S — S(y). Proposition 7.2 asserts that pet(d,S) is a retract of pet(S). We have
rk 6yS =rkS —1; in fact, ays is the disjoint union of stacks S(Z), with Z running through all
subsets of X avoiding y and satisfying (Z U {y}) € max Q;(S;)- Thus note that S(Z) is a stack of
rank-(n — 1) orthants with unchanged stack height h(S(2)) = hg(Z U {y}).

We can choose the next element y’ € Y — {y}, consider the projection 7Ty 1 0yS » 0,,0,S U
{#}. Upon putting 7,,() = @ for all y € Y, we can iterate the argument with all elements of Y =
{y, ..., z}, noting that only the stacks in S(Ik(Y)) survive all these projections. The composition

T

v S—»az...ayu{ﬂ}

projects the stacks of S(Ik(Y)) onto stacks of rank-1 orthants with the original stack heights.
This shows that pet(S) admits a retract isomorphic to the pet-group pet(S’) of a disjoint union of
h(S(k(Y)) rank-1 orthants. But pet(S’) contains Houghton’s group on h(S(Ik(Y))) copies of N as
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a subgroup of finite index. Hence Lemma 7.3 together with Brown’s result [14] yields fl(pet(S)) <
fl(pet(S")) = h(SUk(Y)) — 1, as asserted. O

7.4 | Application to stacks of the n-skeleton of an orthant

Let S be a stack of c(S) copies of the rank-n-skeleton K™ of a rank-r orthant K. The link of each
cardinality-(n — 1) subset Y of the cardinality-r set X contains exactly (r — n + 1) cardinality-n
subsets Y’. And S contains exactly ¢(S) orthants parallel to (Y'). Hence the height of disjoint union
of the stacks of S over the link 1k(Y) is A(S(Ik(Y)) = ¢(S)(r — n + 1). Combining Proposition 6.2
with Theorem 7.4 thus yields

Theorem 7.5. If S is the rank-n-skeleton of a stack of rank-r orthants then

c(S) —1< fl(pet(S)) <c(S)(r—n+1)—1.

Corollary 7.6. IfS is a stack of orthants then fl(pet(S)) = ¢(S) — 1.
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