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Summary

Questionable research practices have generated considerable recent interest throughout and be-
yond the scientific community. We subsume such practices involving secret data snooping that influ-
ences subsequent statistical inference under the term MESSing (manipulating evidence subject to
snooping) and discuss, illustrate and quantify the possibly dramatic effects of several forms of
MESSing using an empirical and a simple theoretical example. The empirical example uses num-
bers from the most popular German lottery, which seem to suggest that 13 is an unlucky number.
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1 Introduction

We propose the generic term MESSing (manipulating evidence subject to snooping) to sub-
sume practices that involve conducting statistical inference after data analysis of some form has
already been carried out and influenced the researchers’decisions, but is not acknowledged. In
recent years, a number of such questionable research practices related to statistical inference sit-
uated somewhere in the grey zone between exploratory data analysis and fraud have attracted
the attention of the academic literature in many fields such as medicine, psychology or econom-
ics (see, e.g. Ioannidis, 2005; Simmons et al., 2011; and Brodeur et al., 2016). Often these prac-
tices seem innocent, are not used with bad intentions and are deeply rooted in the research
culture. But they invalidate inference and may consequently lead to wrong results and distorted
literatures. Further, due to the lack of transparency related to these practices, their extent and
exact consequences are very hard to assess. Their detrimental effects like, for
example, impeding the replicability of research, slowing down scientific progress or damaging
the credibility of science have been discussed and some steps have been taken to curb them in
recent years (see, e.g. Wasserstein et al., 2019 or Christensen et al., 2019). Still, they seem to be
in widespread use. Our paper aims to contribute to the understanding of the issue and the prob-
lems arising from it. We illustrate our overarching definition of MESSing with two cases, which
demonstrate the possibly dramatic effects of seemingly innocent or small manipulations on the
validity of statistical inference and showcase different forms of MESSing. We also review and
connect the literature on questionable research practices of that kind. The first example studies
German lottery numbers, where at first glance surprisingly the number 13 is drawn significantly
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less often than expected under uniformity. Second, we discuss as a simple theoretical example
different strategies when testing for normality, where MESSing may consist of maximising or
just as well of minimising evidence. We hence stress the case of MESSing where evidence is
driven to the extreme instead of just jumping over certain significance thresholds.

The next section addresses how the ‘puzzle’ of an overly significant unlucky number 13
arises, how it can be solved and how this relates to MESSing. Section 3 connects to previous
literature and goes into some details on MESSing. Section 4 contains the simple theoretical ex-
ample that illustrates and allows to quantify the effects of MESSing in different directions.
Some conclusions are offered in the final section.

2 Testing for Unlucky 13

The most popular lottery in Germany is ‘Lotto 6 out of 49’. The 6 winning numbers of one
game are determined by drawing 6 balls without replacement from a pool of 49 balls identified
by means of the first 49 natural numbers. The first game took place on 9 October 1955, and the
first ball ever drawn carried the number 13. Until 29 November 2019, a total ofN ¼ 4337games
had been played with n ¼ 6 · 4337 ¼ 26022 balls being drawn. Figure 1 displays the absolute
frequencies for each number 1 through 49.1 What does strike you at first glance? The number
13 stands out with the least favourable odds. This may come as no surprise to people that
consider 13 to be an ‘unlucky number’. As a result of fear of the number 13 (clinically: tris-
kaidekaphobia), there is no row 13 in many planes or no floor 13 in many tall buildings and
many people avoid Friday the 13th for marriage. And indeed, the number 13 was drawn only
471 times in the German lottery, while (roughly) 531 cases would have to be expected under
equal probability of all 49 numbers given 26022 draws (broken line in Figure 1). If a PhD
student presents such descriptive evidence to her or his supervisor, the supervisor might
ask: Is the deviation significant? At which level? How can we test properly? And how can
we avoid the so-called Texas sharpshooter fallacy (where the shooter paints the target after
firing a shot)?

FIGURE 1. Frequency distribution of N ¼ 4337 games, that is, from n ¼ 6 · N ¼ 26022 numbers (German Lotto 6 out of
49); broken line: expected frequency under equal probability, solid line: frequency of number 13
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To execute a test of uniformity, we are interested in the counts of each of the 49 numbers
from a sample of size n ¼ N · 6 . Let the counts of these numbers be denoted by Sm; m ¼
1; 2; …; 49. Let pm be the probability of getting the ball numbered by m when drawing a Lotto
number. First, we are interested in testing the null hypothesis

H0 :pm ¼ 1

49
for one specific m ∈ f1; 2; …; 49g:

Consider the classical binomial test statistic constructed under the i.i.d. assumption,

Ziid
m :¼

Sm � n

49
σiid

with σ2iid :¼
nð49 � 1Þ

492
: (1)

Due to the dependence between the six draws of one game, it does not follow a standard nor-
mal law asymptotically. However, as we show in the appendix, only the variance decreases due
to the negative dependence. Define (as special case of equation (A1) in the appendix) the
variance

σ2lot :¼
49 � 6

49 � 1
σ2iid; (2)

and limiting standard normality is retained under H0 (see (A2) in the appendix for a discussion
of the general case beyond the German lottery):

Zlot
m :¼

Sm � n

49
σlot

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49 � 1

49 � 6

r
Ziid
m →

d
Z; (3)

whereZ follows a standard normal distribution,Z ∼ Nð0; 1Þ, and ‘→d ’denotes convergence in

distribution as the sample size n diverges.
Now we are equipped to return to the data with a sample of size n ¼ 6 · 4337 ¼ 26022. We

wish to test p13 ¼ 1=49 against the one-sided alternative:

H0 : p13 ¼
1

49
vs: H1 : p13 <

1

49
:

The test statistic accounting for the implied dependence of the German lottery due to draw-
ing without replacement from equation (3) results in Zlot

13 ¼ �2:7822 with the highly signif-
icant (one-sided) p-value of 0.00270 relying on the normal approximation. Is the German
lottery flawed? Is 13 truely an unlucky number? What is going wrong? What causes this test
result is of course MESSing. This nonsensical significance arises because we first looked at
the data in Figure 1, observed the remarkable deviation of S13 ¼ 471 from 26022=49 ¼
531:06 and then tested for the specific hypothesis p13 ¼ 1=49. A real MESSy might try to
tell a convincing story why H1: p13< 1/49 is a plausible alternative a priori, which indeed
found highly significant support by the data. Such a MESS had been blamed already by
Wallis (1942, p. 229): ‘An investigator who after inspecting the data decides what to test
or how to make the test can, by virtue of the fact that any sample has unique characteristics,
disprove any hypothesis.’
The number 13 was picked for testing because m ¼ 13 leads to the strongest left-sided vio-

lation of the null in favour of pm< 1/49. We are able to quantify the effect of this MESS assum-
ing that the Lotto numbers follow a uniform distribution. What we did amounts to testing with
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minm¼1;…; 49Sm, and not surprisingly, the minimum deviates significantly from the overall mean.
Let

Zmin :¼
min

m ¼ 1; …; 49
Sm � n

49
σlot

:

We denote the limit in distribution of Zmin for n→ ∞ asZmin. The density ofZmin is depicted in
Figure 2 alongside a standard normal density, that is, the density of the asymptotic distribution
of Zlot

m under the null. The density ofZmin was obtained by simulations; details are described in
the appendix.2 Due to MESSing, the distribution dramatically changes its shape, leading to very
small p-values. FromZmin, we can also calculate the size distortions: the rejection probabilities
under the null hypothesis, that is, the type I errors for the three significance levels 0.01, 0.05 and
0.1 are (with zα denoting the α-quantile of Z ∼ Nð0; 1Þ):

PðZmin ≤ z0:01Þ ¼ 0:3879; PðZmin ≤ z0:05Þ ¼ 0:9376and PðZmin ≤ z0:1Þ ¼ 0:9984:

Of course we have a method that is robust to MESSing in our example. A proper way to test
the null hypothesis of uniformity has to take into account each number m∈ {1,… , 49}, which
amounts to the goodness-of-fit test by Pearson (1900) for the joint hypothesis:

H0 :p1 ¼ p2 ¼ ::: ¼ p49 ¼
1

49
: (4)

Again the dependence of the six draws within one game due to drawing without replacement
invalidates the classical approach: the test statistic

χ2iid :¼ ∑
49

m¼1

Sm � n
49

� �2
n

49

(5)

FIGURE 2. Density of Zmin (obtained by simulations) compared with a standard normal density
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does not converge in distribution to a χ2(48) random variable. And again, only a scaling factor
(known from equation (2)) is required to recover the limiting chi-squared distribution under the
null:

χ2lot :¼
49 � 1

49 � 6
χ2iid →

d
χ2ð48Þ: (6)

This limit arises as a special case of more general results by Joe (1993, p. 183) for Pearson’s
tests for uniformity of k-tuples, k∈ {1, 2,… ,K} in the lottery K out of M; see also Genest
et al. (2002) or the earlier closely related results from the survey sampling literature by Rao
& Scott (1981). The data behind Figure 1 provide χ2iid ¼ 55:10 and χ2lot ¼ 61:51. The p-value
of χ2lot when comparing with the χ2(48) distribution is 9.11%. The p-value is of course much
higher than when testing against p13< 1/49, and the German lottery data do not violate the uni-
form distribution hypothesis (4) at a 9% significance level.
The firm operating the lottery may not be happy with a p-value of 9.11%, which is below the

10% hurdle that many researchers maintain for a semblance of significance. To leave no doubt
about the uniform distribution, the Lotto operator might wish to produce weaker evidence, that
is a larger p-value. This can easily be achieved by changing the sample. Notwithstanding the
name ‘6 out of 49’, in 3615 out of 4337 games, an additional number was drawn, which
changed the price money,3 amounting in fact to 7 numbers drawn from 49 without replacement.
The additional numbers form a new sample of size n ¼ 3615, because in N ¼ 3615 games just
one ball is drawn. The frequencies of this new sample are depicted in Figure 3. Note that the
observations in this sample of additional numbers are independent. Hence, the null hypothe-
sis (4) can be tested with Pearson’s conventional statistic. It yields χ2iid ¼ 48:64 with a p-value
of 44.7% being beyond any reasonable significance level. If the rationale is not only to produce
a p-value above 5% but really to minimise the evidence against uniformity, that is, to be as far
away from significance as possible in terms of the p-value, the lottery firm may come up with
some arguments to restrict the attention to the sample of additional numbers only. This might
be seemingly justified by the fact that this sample of size n ¼ 3615 is independent such that
the conventional χ2iid from (5) may be used for testing.

FIGURE 3. Frequency distribution of the additional numbers from 3615 games
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Let us summarise the three outcomes of this section: (1) moderate or weak significance of χ2lot
from the dependent sample behind Figure 1 (p-value of 9.11%), (2) very high significance (p-
value of 0.27%) of Zlot

13 computed from this sample and (3) clear insignificance by any conven-
tion of χ2iid from the sample of additional numbers (p-value of 44.70%). This illustrates the ef-
fects of MESSing and how MESSies may proceed in practice. In (1), we refrain from cheating
but still obtain significance at the 10% level. In (2), we manipulate the hypothesis or choice of
test subject to snooping to maximise the evidence against the null. In (3), we are not happy with
merely jumping over some (in)significance threshold, but wish to drive evidence in terms of p-
values to the extremes, that is, to minimise the evidence against the null. Here, MESSing comes
up with some flimsy excuse why to move to the new sample of additional numbers only.

3 Manipulating Evidence Subject to Snooping

By coining the term, we want to stress that it is crucial to distinguish MESSing from explor-
atory data analysis and data mining on the one hand and outright fraud on the other hand. The
term ‘data mining’ has undergone a considerable change in meaning. Lovell (1983) used it to
describe the process of ‘experimentation’ until t-statistics turn significant, sometimes called data
grubbing or dredging or fishing to defame the applied practice of others; see also White (2000,
p. 1098): ‘Although data mining has recently acquired positive connotations as a means of
extracting valuable relationships from masses of data, the negative connotations arising from
the ease with which naive practitioners may mistake the spurious for the substantive are more
familiar to econometricians and statisticians.’ However, nowadays, data mining receives a lot
of attention as a smart toolkit for computational data analysis intersecting with machine learning
and engineering techniques like artificial intelligence in order to unveil hidden association or
patterns in big data sets; see, for example, Hastie et al. (2009) for an appreciation. Thus, the
term data mining is today often interpreted as a form of exploratory data analysis for big data
(see Hand, 1998). Exploratory data analysis is crucial for virtually any statistical analysis,
and in other applications, the data set is often not large enough to split the sample for explor-
atory analysis and inference; thus, data snooping is ‘endemic’ not only in time series analysis
(see White, 2000). MESSing is the dark side of the perfectly sensible and necessary practices
of exploratory data analysis, data mining or snooping; it applies when they may become harm-
ful, namely, when they are not acknowledged. On the other hand, even though not acknowledg-
ing data snooping is clearly a manipulation, it should be distinguished from outright fraud like,
for example, fabrication of data.

We now discuss some forms of MESSing and related issues in detail: one way to MESS is
HARKing (Hypothesizing After the Results are Known) defined by Kerr (1998, p. 197) as
‘[…] presenting post hoc hypotheses in a research report as if they were, in fact, a priori hypoth-
eses’. Generally, statistical tests are invalidated when one postulates hypotheses or test statistics
subject to data snooping and uses the same data to test them, because ‘agreement between a
sample and a hypothesis based on that sample is purely tautological and proves nothing but ac-
curacy in reading and restating the data of the sample’; see Wallis (1942, p. 229). The tradi-
tional approach of statistical testing had been designed for what Hand (1998, p. 112) called
primary data analysis: ‘[…] the data are collected with a particular question or set of questions
in mind.’ This is the reason why subfields like sampling theory and experimental or survey de-
sign are central to statistical theory and practice. Hand (1998) distinguished secondary data
analysis defined as ‘[…] the process of secondary analysis of large databases aimed at finding
unsuspected relationships which are of interest or value to the database owners’. Kerr (1998)
and Rubin (2017) demonstrated that data mining, or secondary data analysis, invalidates
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hypothesis testing: a hypothesis that has been postulated only after explorative data inspection
must not be tested with the same data. This is why Hollenbeck & Wright (2017) distinguished
between THARKing (transparently HARKing) and SHARKing (secretly HARKing). They
classified SHARKing as an unethical practice. Clearly, not all researchers share this view, and
SHARKing may be a widespread ‘questionable research practice’ as investigated by John
et al. (2012) in an anonymous survey of more than 2000 academic psychologists. John
et al. (2012, table 1) observed that 35% affirmed of ‘reporting an unexpected finding as having
been predicted from the start’, which is in the spirit of SHARKing of course.
A further popular form of MESSing is what has been called p-hacking recently; see

Simonsohn et al. (2014, p. 534): dredging the data until the p-value is small enough to reject;
see also Simmons et al. (2011). That way one may produce ‘spectacular results’ and catch at-
tention of a wider public. But also in the smaller scientific community, there are strong incen-
tives to produce ‘false positive’ results, due to the so-called publication bias. Sterling (1959,
p. 30) already stated that: ‘There is some evidence that in fields where statistical tests of signif-
icance are commonly used, research which yields nonsignificant results is not published. Such
research being unknown to other investigators may be repeated independently until eventually
by chance a significant result occurs–an “error of the first kind”–and is published’; see also Ster-
ling et al. (1995). In times where researchers are under increasing pressure to publish success-
fully, HARKing and p-hacking may be all the more tempting because ‘negative results’
(nonrejection of hypotheses) are hard to publish. A number of studies have tried to quantify
the amount of p-hacking in a certain discipline or literature by collecting p-values or values
of test statistics from a large number of papers and analysing their empirical distributions:
Gerber & Malhotra (2008a) and Gerber & Malhotra (2008b) observe large jumps after the clas-
sical significance thresholds in the empirical distribution of Z-statistics from papers from polit-
ical science and sociology and interpret this as evidence for the prevalence of p-hacking in these
disciplines. Brodeur et al. (2016) and Brodeur et al. (2020) consider papers from economics and
find a trough in the distribution of Z-statistics corresponding to p-values between 10% and 25%,
interpret this as evidence for p-hacking and try to draw conclusions regarding the amount of p-
hacking in economics. Focussing on a single study or a small number of studies instead of on an
aggregate, replication is a further, but very costly, way to analyse the reliability of studies and to
possibly find evidence for the use of questionable research practices (see, e.g. Christensen
et al., 2019, chapter 9).
Sometimes, however, the incentives may be the other way around as well: a researcher may

be happy not to reject a null hypothesis. Consider specification testing of certain assumptions
behind a model we wish to apply. If, for example, we want to perform a simple analysis of
variance (ANOVA), the underlying assumptions are normality of the data and variance homo-
geneity. A conscientious statistician would check these assumptions before applying the
ANOVA F-test, and he or she might be tempted to weaken evidence against the underlying
assumptions to jump over the chosen significance level. Such a behaviour has been called re-
verse p-hacking by Chuard et al. (2019). Reverse p-hacking might also be observed in re-
search influenced by industries, which are interested in weakening evidence of negative
effects of their products on health, for example, of cigarette smoking on lung cancer (see,
e.g. White & Bero, 2010).
There may be several reasons why researchers do not only want to reach p-values just below

(or above) classical significance levels as in the case of (reverse-)p-hacking but to really mini-
mise (or maximise) p-values. For example, smaller p-values often are perceived as lending more
credibility and importance to results without even looking at the respective effect sizes (see, e.g.
Wasserstein & Lazar, 2016) or being far away from significance levels could lead to being
above suspicion of p-hacking.
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To avoid the negative effects of SHARKing or p-hacking or of MESSing in general, Was-
serstein & Lazar (2016, p. 132) demanded more transparency from scientific authors: ‘Re-
searchers should disclose the number of hypotheses explored during the study, all data
collection decisions, all statistical analyses conducted, and all p-values computed.’ Nelson
et al. (2018) also put forward disclosure as one of the two main remedies against p-hacking.
As the other they mention preregistration of research plans, where researchers specify the main
statistical analyses they intend to do before they collect their data. This is certainly one of the
most effective measures against questionable research practices. For experimental studies, pre-
registration is widely used in medicine and has recently become popular in psychology and
economics as well (see, e.g. Christensen et al., 2019, chapter 6). However, preregistration is
not really credible for analyses of existing data and thus unfortunately can hardly serve as a
solution there.

On top of requirements for authors, Simmons et al. (2011, p. 1363) added guidelines for re-
viewers and recommended not to push the authors to provide highly significant results. Simi-
larly, Sterling et al. (1995, p. 111) encouraged journal editors to accept or reject empirical
studies irrespective of their outcomes and to make decision rather in light of the importance
of the research question and the adequacy of the employed methods and data. In 2015, the ed-
itors of Basic and Applied Social Psychology (BASP) went one step further and virtually
banned ‘p-values, t-values, F-values, statements about “significant” differences or lack thereof,
and so on’ from this journal; see the Editorial by Trafimow &Marks (2015, p. 1). Unfortunately,
a ban of signifiance rituals opens different routes to questionable research practices. In particu-
lar, Fricker Jr. et al. (2019, p. 374) found when assessing all papers published in BASP in 2016
‘[…] multiple instances of authors overstating conclusions beyond what the data would support
if statistical significance had been considered’.

Sometimes other statistical methods are suggested to replace or complement p-values as a
means of mitigating questionable research practices. Nelson et al. (2018) criticise this and pro-
vide a short summary and references on this debate. In particular, Simonsohn (2014) demon-
strates that Bayesian methods are no remedy against MESSing. A natural replacement or
complement for p-values in general are confidence intervals as they provide more information,
especially an assessment of estimation uncertainty (see, e.g. Romer, 2020 or Coulson
et al., 2010, and the literature review therein). Note that confidence intervals may of course also
be subject to manipulation and are included in our definition of MESSing presented at the be-
ginning of the article, which is not about testing specifically but about statistical inference in
general. For example, a researcher may want to present very precise estimation results and thus
secretly choose the specification of a regression model, which leads to the narrowest confidence
intervals on the parameter of interest. When it comes to mitigating questionable research prac-
tices, confidence intervals may nevertheless help in that they could contribute to moving away
from the narrow focus on the dichotomous testing decision and thus de-emphasise statistical
significance and reduce the incentives for MESSing (see, e.g. Imbens, 2021). However, as this
focus on testing and significance thresholds is deeply rooted in research culture and statistical
education in many disciplines, often researchers will probably just use the confidence interval
to check if the hypothesised parameter value falls inside the confidence interval, in which case
it would of course make no difference if p-values from two-sided tests or confidence intervals
were reported.

We close this section by mentioning two related issues, post model selection inference and
multiple testing, and stressing the importance of statistical education in mitigating questionable
research practices. In practice, the model behind the observations is typically not known and
hence selected from the sample. Note that this differs from HARKing. Let us consider an exam-
ple. In a regression context, you may wish to test the null hypothesis that x affects y with a
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coefficient equal to 1, β ¼ 1 say. While this hypothesis is a priori, you may not know how many
and which covariates z1 through zm to include to render a regression model ensuring valid infer-
ence about β ¼ 1. Typically, the specification of the model is data driven. But even if the model
selection step is consistent, it may affect and invalidate subsequent inference; see, for example,
Leeb & Pötscher (2005); valid post-selection inference (PoSI) has been pioneered by Berk
et al. (2013). To check whether the final model meets the assumptions required for valid infer-
ence, one may heed the advice by Hendry (1980, p. 430): ‘The three golden rules of economet-
rics are test, test and test’, although followed by a footnote saying ‘Notwithstanding the
difficulties involved in calculating and controlling type I and II errors’. In principle, carefully
choosing and testing the model behind inference is well intentioned and not linked to p-hacking
or MESSing. But standard model selection methods and multiple testing in this context more
generally invalidate p-values. And hence, there may in practice be a smooth transition from
model selection to MESSing: in the regression example, it is hard to rule out that the final spec-
ification was chosen such to produce a certain p-value when testing β ¼ 1. Further, when mul-
tiple testing is not corrected for, it is a serious problem that invalidates inference (see, e.
g. Farcomeni, 2008), but when some or all of the insignificant tests are not even reported, it
turns into MESSing. Against this background, we consider it as problematic that strategies of
model selection and specification search are covered in many textbooks without discussing that
they invalidate subsequent inference.4 We take Moore et al. (2014) as an influential example.
Moore et al. (2014, sect. 11.2) include a multiple regression case study involving several steps:
plot data, test hypotheses, check residuals and test more hypotheses. Indeed, Moore et al. (2014,
p. 1079) highlight (with italics in the original): ‘Multiple regression is a complicated procedure.
If we do not do the necessary preliminary work, we are in serious danger of producing useless
or misleading results.’ Of course, HARKing, p-hacking and other forms of data manipulation
are not taught in textbooks, but as we have just argued, the transitions from such model selec-
tion strategies may be smooth. Thus, we believe that it is crucial that statistical education clearly
draws a distinction between exploratory and confirmatory data analyses. Further, in our opinion,
questionable research practices like HARKing or p-hacking and related issues like inference af-
ter model selection and multiple testing and the detrimental consequences that they all may have
on the validity of statistical inference should be discussed in statistics courses from the introduc-
tory level on.

4 Small Manipulations, Big Effects

We propose a simple theoretical example that illustrates MESSing in both directions, that
is, strengthening as well as weakening evidence subject to snooping and that makes clear that
one is in a sense the mirror image of the other. We then use it to show how large the detrimental
effects of these practices can be in terms of size and power distortions even in this simplistic
setup.
Consider three researchers interested in assessing Gaussianity of daily stock returns. The first

researcher hopes to find a significant deviation from Gaussianity to increase chances for publi-
cation of his article on non-normal return distributions. The second researcher is funded by the
financial industry and may have no interest in higher capital requirements due to the increased
risk implied by, for example, fat tails of the return distribution and thus is looking for insignif-
icant results. The third researcher is just interested in scientific progress. All researchers use the
same data set with n daily stock returns x1, x2,… , xn. We assume for simplicity that the returns
are independent and consider three common and closely related tests of the null of Gaussianity
based on the skewness of normal random variables being 0, γ1 ¼ 0, and the kurtosis being 3,
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γ2 ¼ 3 . The tests essentially assess the deviations of the empirical analogues of these
standardised moments, γ̂1 and γ̂2, from 0 and 3, where

γ̂k ¼
1

n
∑ n
i¼1ðxi � xÞk þ 2

dk þ 2 ; k ¼ 1; 2 with d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1
ðxi � xÞ2

s
:

The first two tests use only one of the two moments, see also Shapiro et al. (1968), while the
third omnibus test uses both, see Bowman & Shenton (1975, p. 243). The latter procedure is
often called Jarque–Bera test after Jarque & Bera (1980). For the skewness and kurtosis tests,
we use the standardised squares,

Γ2
1 ¼ n

γ̂21
6
and Γ2

2 ¼ n
ðγ̂2 � 3Þ2

24
;

respectively, which asymptotically follow a χ2(1)-distribution under the null, and the
Jarque–Bera test uses the sum of the squares, JB ¼ Γ2

1 þ Γ2
2, which follows a χ2(2)-distribution

asymptotically under Gaussianity.
The third researcher uses the full information, that is, the JB statistic, to test at level α and

thus rejects the null if JB > χ21 � αð2Þ . The first researcher, striving to maximise evidence,
checks first and secretly which sample moment violates the null most and then picks the skew-
ness or kurtosis test accordingly, that is, determines Γ2

max :¼ maxk¼1;2ðΓ2
kÞ and rejects if Γ2

max >

χ21 � αð1Þ. The second researcher, striving to minimise evidence, checks first which sample mo-
ment violates the null least and then picks the test in his favour, that is, determines Γ2

min : ¼
mink¼1;2ðΓ2

kÞ and rejects if Γ2
min > χ21 � αð1Þ.

The MESSing executed by the first and second researchers distorts the properties of the tests,
which we quantify now. To calculate the sizes of Γ2

min and Γ2
max tests, we assume for simplicity

that we have a rather large sample such that the underlying three tests have an actual size equal
to the nominal size α (under normality):

PðΓ2
2 > χ21 � αð1ÞÞ ¼ PðΓ2

1 > χ21 � αð1ÞÞ ¼ PðJB > χ21 � αð2ÞÞ ¼ α:

Let R(k) be the event that test k yields a significant result, that is, PðRðkÞÞ ¼ PðΓ2
k >

χ21 � αð1ÞÞ ¼ α, k ¼ 1; 2. It then holds (because these events are independent under Gaussianity)
that

PðΓ2
max > χ21 � αð1ÞÞ ¼ PðRð1Þ∪Rð2ÞÞ

¼ PðRð1ÞÞþPðRð2ÞÞ � PðRð1ÞÞPðRð2ÞÞ
¼ 2α � α2;

PðΓ2
min > χ21 � αð1ÞÞ ¼ PðRð1Þ∩Rð2ÞÞ

¼ PðRð1ÞÞPðRð2ÞÞ ¼ α2:

Table 1. Simulated sizes and powers of the normality tests for a level of α ¼ 0:05, a sample size of 1000 and a t(10)-
distribution under the alternative

Test statistic Γ2
1 Γ2

2 JB Γ2
max Γ2

min

Size 0.0495 0.0460 0.0485 0.0910 0.0046
Power 0.2782 0.9560 0.9405 0.9594 0.2747
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For the nominal size of α ¼ 5%, the actual sizes of Γ2
max and Γ

2
min are 9.75% and 0.25%, respec-

tively; see also Table 1 for finite sample evidence. Thus, MESSing through choosing a test in
favour of the researchers’ targets can almost double the size or let it almost disappear, and weak-
ening evidence subject to snooping is as harmful as strengthening.
To illustrate the effect on power, we assume that the null is wrong in the direction of a

fat-tailed alternative, namely, a t-distribution with 10 degrees of freedom, t(10). We use a sig-
nificance level of α ¼ 0:05 and a sample size of 1000 when simulating sizes and powers
summarised in Table 1; for details, see the appendix. The t(10)-distribution is symmetric and
leptokurtic (γ1 ¼ 0 and γ2 ¼ 4). As the deviation from normality is with respect to the fourth
moment only, the kurtosis test has a very high power and the skewness test has a low power,
PðRð2ÞÞ ¼ 0:9560 and PðRð1ÞÞ ¼ 0:2782, while the JB-test has a power of PðJB > χ21 � αð2ÞÞ ¼
0:9405. Consequently, weakening evidence by essentially picking the skewness test is very ef-
fective here, PðΓ2

min > χ21 � αð1ÞÞ ¼ 0:2747. Strengthening evidence leads to a slight increase
of the already high power of the JB-test used by the honest researcher, PðΓ2

max > χ21 � αð1ÞÞ ¼
0:9594.
In this example, we allow for only one researcher degree of freedom, namely, the choice of

the test statistic. Still in this simple case, Table 1 demonstrates that MESSing in both directions
may already have drastic consequences, both under the null and alternative hypotheses. As re-
searchers usually have many degrees of freedom (see Simmons et al., 2011), the example hints
at how serious the consequences of MESSing may be.

5 Concluding Remarks

Data mining is a useful and essential tool to cope with the challenges of growing capacities to
store and process massive amounts of data. This is not what this paper is about. We rather wish
to stress a potential downside of data snooping in connection with statistical inference. Our em-
pirical exercise with data from the German lottery and the theoretical example on testing for
normality reinforce how misleading statistical hypothesis testing subsequent to data snooping
can be and in how many different forms MESSes (manipulations of evidence subject to
snooping) may come along. We also review the literature on questionable research practices,
discussing several forms of MESSing and measures that have been put forward to discourage
or prevent their use.
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Notes

1The data were downloaded from https://www.lotto.de/lotto-6aus49/statistik/
ziehungshaeufigkeit on 29 November 2019.

2Note that standard results from order statistics do not apply here because S1 through S49 are
dependent. In general, it is a nontrivial problem to obtain distributional results for minima or
maxima; see, for example, Nadarajah & Kotz (2008) for the case of two correlated Gaussian
random variables. Thus, we use simulations here.
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3On 17 June 1956, the drawing of the 7th additional number was introduced, and abolished
on 4 May 2013.

4We are grateful to an anonymous referee for pointing this out.
5R Core Team (2020). R: A language and environment for statistical computing. R Founda-

tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
6https://stat.ethz.ch/R-manual/R-devel/library/stats/html/bandwidth.html.
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Appendix A: Limiting Normality Under Dependence The general case of Lotto K out of
M consists of K balls drawn without replacement in one game from an urn of M balls. Let L1,
… , LK, LK + 1,… , L2 ·K, L2 ·K + 1,… , LN ·K be the consecutive numbers drawn in N games. To
execute a test of uniformity from N games, we are interested in the counts of the M numbers
from the sample of size n ¼ N · K . Let the counts of these numbers be denoted by Sm; m ¼
1; 2; …; M , and consider the Bernoulli random variables

Xm; i ¼
1 if Li ¼ m

0 if Li ≠ m

�
; i ¼ 1…; N · K ¼ n;

which indicate if the i-th ball drawn shows the number m or not. These are the ingredients to
determine the total counts Sm ¼ ∑ n

i¼1Xm; i. Under the null hypothesis of uniformity, PðXm; i ¼
1Þ ¼ 1=M for all m∈ {1, 2,… ,M}, and Xm; i ∼ Be 1=Mð Þ with E½Sm� ¼ n=M . However, due
to the dependence between the Bernoulli random variables Xm, i within one game caused by
drawing without replacement, Sm does not follow a binomal distribution.
There is a simple way around the problem of the Bernoulli variates Xm, i not being indepen-

dent and consequently their sum Sm not being binomially distributed: one only requires a differ-
ent standardisation to obtain a standard normal limit. Define for the j-th game the Bernoulli
random variables indicating if the number m shows up in this game of K draws:

Ym; j ¼ ∑
Kj

k¼Kð j � 1Þþ1
Xm; k ; j ¼ 1; …; N :

These variables are independent Bernoulli variates, Ym; j ∼ Be K=Mð Þ, and by construction, they
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determine the total counts: Sm ¼ ∑N
j¼1Ym; j. Therefore, Sm obeys the following binomial distri-

bution: Sm ∼ Bi N ; K=Mð Þ. The binomial test statistic hence becomes

Zlot
m : ¼

Sm � K · N

M
σlot

with σ2lot :¼
KNðM � KÞ

M 2 ; (A1)

and by a classic central limit theorem, it holds under the null hypothesis that

Zlot
m →

d
Z ∼ Nð0; 1Þ ; m ¼ 1; …; M : (A2)

Appendix B: Monte Carlo Experiments Here, we provide details on the simulations used
throughout the paper. All codes, which are written in R,5 as well as the Lotto data are made
available with this paper.

For the plot of the density in Figure 2 and to calculate the size distortions of the test, which
uses standard normal critical values for the test statisticZlot

m , we approximated the distribution of
Zmin under uniformity of Lotto numbers by simulations. We simulated 104 times a sample of
6 · 104 Lotto numbers and determined the empirical distribution of the test statistics Zmin .
The density, which is drawn in the picture, is a kernel density estimate, where the Gaussian ker-
nel was used and Silverman’s rule of thumb for bandwidth selection [see the documentation of
the R Stats package (version 4.1.0)6].

For Table 1, we simulated 106 samples each of size n ¼ 103 from a standard normal distribu-
tion under the null and from a t-distribution with 10 degrees of freedom under the alternative
and executed the tests described in Section 4. The table contains the frequencies of rejection
when testing at the 5% level.
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