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• 153 chemicals of emerging concern detected in complex multi-component mixtures. 12 
• 108 possible mixture risk assessment scenarios were investigated. 13 
• Non-detects, QSARs, and experimental ecotoxicological data were integrated for risk assessment. 14 
• 8 chemicals of emerging concern were responsible for driving chronic environmental risks. 15 
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Abstract (300 words) 18 

Streams and rivers are characterised by the presence of various chemicals of emerging concern (CECs), 19 
including pesticides, pharmaceuticals, personal care products, and industrial chemicals. While these 20 
chemicals are found usually only in low (ng/L) concentrations, they might still harm aquatic life and 21 
disrupt the ecological balance of aquatic ecosystems due to their high ecotoxicological potency. 22 
Environmental risk assessments that account for the complexity of exposures are needed in order to 23 
evaluate the toxic pressure of these chemicals, which also provide suggestions for risk mitigation and 24 
management, if necessary. Currently, most studies on the co-occurrence and environmental impacts of 25 
CECs are conducted in countries of the Global North, leaving massive knowledge gaps in countries of 26 
the Global South. 27 

In this study, we implement a multi-scenario risk assessment strategy to improve the assessment of both 28 
the exposure and hazard components in the chemical risk assessment process. Our strategy incorporates 29 
a systematic consideration and weighting of CECs that were not detected, as well as an evaluation of 30 
the uncertainties associated with Quantitative Structure-Activity Relationships (QSARs) predictions for 31 
chronic ecotoxicity. Furthermore, we present a novel approach to identifying mixture risk drivers. To 32 
expand our knowledge beyond well-studied aquatic ecosystems, we applied this multi-scenario strategy 33 
to the River Aconcagua basin of Central Chile. The analysis revealed that the concentrations of CECs 34 
exceeded acceptable risk thresholds for selected organism groups and the most vulnerable taxonomic 35 
groups. Streams flowing through agricultural areas and sites near the river mouth exhibited the highest 36 
risks. Notably, the eight risk drivers among the 153 co-occurring chemicals accounted for 66-92% of 37 
the observed risks in the river basin. Six of them are pesticides and pharmaceuticals, chemical classes 38 
known for their high biological activity in specific target organisms.39 
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1. Introduction 42 

Anthropogenic chemical pollution has profound impacts on the ecological status of surface waters at a 43 
continental scale (Malaj et al., 2014), and is therefore increasingly recognised as a driving force behind 44 
biodiversity loss (Balvanera et al., 2019; Groh et al., 2022; Sigmund et al., 2023). However, especially 45 
diffuse pollution is characterised by the presence of complex multi-component mixtures (Finckh et al., 46 
2022; Kandie et al., 2020; Marshall and McCluney, 2021). These mixtures comprise a diverse array of 47 
organic chemicals, including pharmaceuticals and personal care products (PPCPs), pesticides, 48 
surfactants, industrial chemicals, and transformation products, collectively referred to as chemicals of 49 
emerging concern (CECs) (Ankley et al., 2008). CECs are recognised for their harmful effects on 50 
aquatic life, even at low environmental concentrations, affecting various organisms ranging from 51 
microbes (Drury et al., 2013) to higher vertebrates (Jobling et al., 1998), and exerting influences on 52 
genes and the genetic landscape of exposed organisms (Inostroza et al., 2018). 53 

CECs enter streams and rivers through various pathways, including direct discharges from wastewater 54 
treatment plants (WWTPs) (Hug et al., 2014), emissions from industrial facilities (Kaewlaoyoong et 55 
al., 2018), unintentional runoff from agricultural areas, and accidental spills (Reiber et al., 2021). 56 
Despite the low degradability of many CECs, their continuous release into the aquatic environment 57 
results in a phenomenon known as "pseudo-persistence" (Boxall et al., 2004; Kolpin et al., 2002), and 58 
ultimately in chronic exposures and ecological effects. Conventional WWTPs exhibit limited 59 
effectiveness in removing CECs (Eggen et al., 2014), and even advanced technologies, such as 60 
phosphorus elimination, nitrification, and denitrification, are ineffective in CEC removal (Neale et al., 61 
2017). Despite numerous studies focusing on CEC concentrations in surface waters, particularly 62 
regarding pharmaceuticals (Wilkinson et al., 2022) and pesticides (Chow et al., 2020), significant 63 
knowledge gaps persist regarding the co-occurrence and environmental risks associated with CECs, 64 
especially in developing countries. These countries often experience the highest CEC concentrations 65 
due to inadequate WWTP technologies (Wilkinson et al., 2022) and/or outdated environmental 66 
protection frameworks. 67 

Even if all chemicals are present at concentrations below their individual "safe" levels, there may still 68 
be an unacceptable risk posed by the mixture (Rudén et al., 2019). The environmental risk associated 69 
with these mixtures can be modelled using the concentration addition model (CA), which is widely 70 
recommended as an initial precautionary approach for any mixture assessment (Backhaus and Faust, 71 
2012; Kortenkamp et al., 2009; Rudén et al., 2019). CA can be applied to chemical monitoring data and 72 
allows exploring different exposure and/or hazard scenarios, in which the reliability and validity of the 73 
risk estimates can be systematically explored, for instance, the role of non-detects and Quantitative 74 
Structure-Activity Relationships (QSARs), see below. This also permits the identification of the risk-75 
driving chemicals from the considerable number of chemicals that are often found to co-occur. 76 

Chemicals that are included in the monitoring suite, but that are not detected occur at a concentration 77 
somewhere between zero and the chemical-analytical limit of detection. The incorporation of non-78 
detects into the risk assessment lacks systematic integration, and only a limited number of studies have 79 
examined their potential contribution to the mixture risk (Gustavsson et al., 2017a, 2017b; Rodríguez-80 
Gil et al., 2018). Most studies either simply disregard non-detects altogether or employ substitution 81 
methods, which introduce biases in the exposure estimates (Leith et al., 2010). 82 

The CA model requires the ecotoxicological characterisation of every mixture component. However, 83 
such data are often lacking for CECs. Those gaps are therefore often bridged by in silico methods such 84 
as QSARs. However, the resulting uncertainties are often not comprehensively evaluated and integrated 85 
into the risk assessment. It is important to note that QSARs for mixtures of chemicals with distinct 86 
modes of action are inherently less robust compared to predictions for a single mechanism of action 87 
(Escher and Hermens, 2002). Therefore, describing these uncertainties will identify important data gaps 88 
and their impact on the final risk estimate. 89 
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In recent decades, Chile witnessed a notable increase in agricultural production, resulting in a 90 
corresponding increase in pesticide usage (Coria and Elgueta, 2022). The Central Valley, where the 91 
River Aconcagua is located, is characterised by agricultural activities, and several studies have 92 
investigated the presence of pesticides and their transformation products in surface waters within this 93 
region (Climent et al., 2019; Giordano et al., 2011; Montory et al., 2017) (Inostroza et al., accepted - 94 
Data in Brief Journal). Although wastewater treatment facilities are widely distributed throughout the 95 
country, with a high coverage rate of 96.6% among the urban population (OECD/ECLAC, 2016), it is 96 
noteworthy that only two-thirds of urban households are connected to advanced wastewater treatment 97 
plants (secondary or tertiary treatment). Additionally, wastewater treatment coverage remains limited 98 
in rural areas (OECD/ECLAC, 2016). 99 

Monitoring studies that focus on assessing the environmental risks of organic chemicals in Chile’s 100 
aquatic environment, particularly in streams and rivers, are scarce. In comparison, coastal areas have 101 
received slightly more attention, with some studies quantifying the presence of antibiotics (Buschmann 102 
et al., 2012), endocrine-disrupting chemicals (Bertin et al., 2011), and industrial chemicals (Salamanca 103 
et al., 2019). This may reflect the broader situation in countries of the Global South, including Chile, 104 
where outdated monitoring programs and inadequate water management frameworks persist 105 
(OECD/ECLAC, 2016). 106 

This study, therefore, implements a multi-scenario mixture risk assessment for the River Aconcagua 107 
basin, located in Central Chile. It incorporates various exposure scenarios to account for non-detects 108 
and CECs with missing empirical ecotoxicological data. We propose a novel strategy for identifying 109 
and prioritising mixture risk drivers within complex environmental mixtures. 110 

2. Material and methods 111 
2.1. Case study area - River Aconcagua Basin 112 

The River Aconcagua (143 km long) is located in Central Chile and its basin drains an area of 7,338 113 
km2. The basin is characterised by a Mediterranean climate with warm, dry summers (October to March) 114 
and wet, cool winters (May to August) marked by intense and irregular rain (Amigo and Ramírez, 115 
1998). There are half a million residents in this river basin, and it supports 12% of Chile's national 116 
agriculture and 4% of its copper production, respectively (COCHILCO, 2020). Roughly 7.6% of the 117 
total river basin is devoted to agriculture, with more than 90% of the cropland (avocado and grapes) 118 
concentrated in the Lower and Putaendo sub-basins (Webb et al., 2021). Moreover, ten middle-sized 119 
WWTPs, featuring aeration ponds and activated sludge technologies, are located across the basin, 120 
serving about 405,000 residents. However, only five of them discharge directly into the main course of 121 
the River Aconcagua and the others discharge into its tributaries (Inostroza et al., accepted - Data in 122 
Brief Journal). 123 

Surface water samples were collected from nine sampling sites in October 2018 (dry season). Sampling 124 
sites were selected based on land use types (e.g., streams and/or rivers running through natural parks, 125 
agricultural areas, urban, and mixed land uses). Environmental measured concentrations of CECs in the 126 
River Aconcagua Basin along with detailed analytical methodologies are accessible through the zenodo 127 
repository (Inostroza et al., 2023) and Inostroza et al., (accepted - Data in Brief Journal), respectively. 128 
Additionally, sampling sites are reported as supplementary material in Table S1. 129 

2.2. Retrieval and curation of empirical ecotoxicological data 130 

Chronic experimental data were obtained from the US EPA ECOTOXicology Knowledgebase 131 
(ECOTOX) version “ecotox_ascii_09_15_2022” (Olker et al., 2022) for all the targeted chemicals. 132 
Only data for freshwater organisms and only for chronic exposures were retained. The data were 133 
furthermore curated by excluding records that lacked values for exposure durations, measurement 134 
endpoints, appropriate units, or a reference for the data source, as well as limit values, were excluded. 135 
To ensure uniformity, effect concentrations were normalised to µmol/L. Chronic effect data were 136 
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identified in accordance with Australian and New Zealand guidelines (Warne et al., 2018), with 137 
exposure durations of at least 1, 14, and 21 days for algae, macroinvertebrates, and fish, respectively. 138 
All remaining data were recalculated to chronic EC10-equivalents, using the extrapolation factors from 139 
(Warne et al., 2018). LC/IC/EC50 values, LOECs and MATC values were divided by 5, 2.5, and 2, 140 
respectively. An in-house dataset was used to assign a taxonomic group (i.e., algae, macroinvertebrates, 141 
and fish) to each species group based on the reported phyla in ECOTOX and all other data were 142 
discarded. For each taxonomic group, the geometric mean was calculated for each chemical. The 143 
geometric mean was chosen over the arithmetic mean as it is considered more resistant to the impact of 144 
outliers and more suitable for skewed datasets (Leith et al., 2010). 145 

2.3. Quantitative Structure Activity Relationships (QSARs) 146 

Limiting the assessment to those chemicals for which chronic experimental data are available results in 147 
an underestimation of the mixture risk. Various academic researchers as well as regulatory authorities 148 
such as the European Chemicals Agency (ECHA) and the US EPA encourage the use of quantitative 149 
structure-activity relationships (QSARs) in order to estimate ecotoxicological properties in silico. 150 
QSARs were employed to predict the chronic toxicity for algae, macroinvertebrates and fish, for all 151 
chemicals detected at least once. Two QSAR platforms, the VEGA HUB (version 1.1.5 48, (Benfenati 152 
et al., 2013)) and the Ecological Structure Activity Relationships (ECOSAR) Class Program (version 153 
2.2) were utilised for this purpose. Chemicals were identified via their CAS numbers, and the 154 
corresponding SMILES (Simplified molecular-input line-entry system) were then used as a chemical 155 
identifier for the QSAR calculations. If multiple predictions were provided by the software, its 156 
geometric mean was used for the mixture risk assessment. The predicted toxicities were transformed to 157 
µmol/L. 158 

2.4. Mixture risk assessment 159 

A mixture risk assessment can be either performed separately for each of the three taxonomic groups 160 
(algae, macroinvertebrates, fish) or by accounting for the most sensitive taxonomic group (MST) for 161 
each chemical. The MST approach is conceptually similar to first calculating a Predicted No Effect 162 
Concentration (PNEC, European Chemicals Agency, 2016) or Environmental Quality Standard 163 
(QSfw,eco European Commission, 2018) without applying any assessment factor and then applying 164 
Concentration Addition to these values (Gustavsson et al., 2017a). 165 

The environmental mixture assessment was conducted using CA, for details see (Gustavsson et al., 166 
2017a; Rudén et al., 2019; Spilsbury et al., 2020). The mixture risk for a particular taxonomic group 167 
(algae, macroinvertebrates, fish), expressed as its risk quotient (RQSTU), is defined as follows: 168 

RQ!"# =$
𝑀𝐸𝐶$%&'()*
𝐸𝐶10$%&'()*

+

%,-

=	$𝑅𝑄%

+

%,-

=$
𝑀𝐸𝐶%
𝐸𝐶10%

+

%,-

 (1) 

where MECi is the measured environmental concentration of chemical i and EC10i denotes the 169 
corresponding geometric mean of chronic effect concentrations (EC10-equivalent) of chemical i for a 170 
particular taxonomic group (algae, macroinvertebrates or fish). The ratio MECi/EC10i provides a 171 
dimensionless measure of the toxicity contribution of chemical i. This approach estimates the mixture 172 
risk quotient separately for each taxonomic group. 173 

The ecological risk posed by the mixture of CECs was evaluated on a more integrating ecological level 174 
through the application of the concept of the most sensitive taxonomic group (MST) (Backhaus and 175 
Faust, 2012; Gustavsson et al., 2017a), in which the mixture risk quotient is defined as: 176 

RQ.!" =	$
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This method corresponds to the summation of fractions of Predicted No Effect Concentrations (PNECs) 177 
without using any assessment factors (Backhaus and Faust, 2012; Gustavsson et al., 2017a). In line with 178 
the strategy outlined for the environmental risk assessment of industrial chemicals under REACH, we 179 
applied the MST approach by combining the data from three taxonomic groups (European Commission, 180 
2011). 181 

For the assessment of risks for each individual taxonomic group as well as the MST, we employed a 182 
final assessment factor of 10, again in line with the European guidelines for industrial chemicals, in 183 
order to account for the extrapolation from the laboratory to the field situation and to account for the 184 
lack of biodiversity considerations in the assessment (European Commission, 2011). 185 

For all these calculations, ecotoxicity data for all detected chemicals are required. Empirical data gaps 186 
were bridged by QSARs (see above. However, as QSAR-estimates had a comparatively low accuracy 187 
(see results), we included specific scenarios in which we assumed that the QSAR estimates were off by 188 
two orders of magnitude (Table 1, see results for a justification on why two orders of magnitude were 189 
used as the likely margin of error). All in all, nine different hazard scenarios were included in the 190 
assessment (Table 1). 191 

Three exposure scenarios were defined, depending on how non-detects were accounted for: 192 

i. Exposure-Scenario 1: non-detects were set to zero, representing the scenario with the lowest 193 
risk that is still compatible with the analytical data. 194 

ii. Exposure-Scenario 2: non-detects were set to their method detection limits (MDLs), 195 
representing the scenario with the highest risk that is still compatible with the analytical data. 196 

iii. Exposure-Scenario 3: missing concentration values were estimated using Kaplan-Meier 197 
modelling (Gustavsson et al., 2017a; Helsel, 2010), providing the most accurate basis for the 198 
risk assessment but not allowing to identify individual risk drivers. 199 

We identified two categories of mixture risk drivers: absolute and relative risk drivers. An absolute risk 200 
driver is defined as a compound that contributes to the mixture risk with an RQ of at least 0.02 (i.e., 201 
20% of the acceptable mixture RQ of 0.1), at least at one site. A relative risk driver is a compound 202 
which contributes 20% or more of the final RQ-sum, at least at one site (Table 2). Given the 203 
considerable uncertainty introduced by bridging data gaps with QSAR estimates (see above), we termed 204 
compounds that are not identified as risk drivers but could become one if the QSAR value 205 
underestimates the compound’s toxicity by at least 2 orders of magnitude as potential mixture risk 206 
drivers (Table 2). Actual risk drivers are compounds that should be prioritised for risk mitigation, while 207 
potential risk drivers are compounds flagged for ecotoxicological testing. 208 

2.5. Data analysis 209 

The statistical analyses and data visualization were performed using R version 4.2.2 (R Core Team, 210 
2021). To assess the normality assumption, the Shapiro-Wilk Normality Test was utilised, and if the 211 
data deviated from a normal distribution, non-parametric testing was employed. The comparison of 212 
quantified environmental concentrations across chemical classes and sampling sites was conducted 213 
using the Kruskal-Wallis test (KW) and Dunn´s test, which was implemented in the R-package 214 
{dunn.test}(Dinno, 2017), respectively. The Kaplan-Meier adjustment was incorporated in the analysis 215 
using the R-package {NADA} (Helsel, 2005). All data curation and data analysis scripts are available 216 
on Github (https://github.com/ThomasBackhausLab/Mixture_assessment_analysis). 217 

3. Results  218 
3.1. Occurrence of CEC mixtures in the River Aconcagua Basin 219 

Detailed tables with detected and quantified CECs, concentrations, and their respective chemical 220 
identifiers are published in a separate data paper (Inostroza et al., accepted - Data in Brief Journal) and 221 
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are available via zenodo (Inostroza et al., 2023). The data reveal the widespread occurrence of CECs in 222 
the surface waters of the River Aconcagua basin. From the 861 organic chemicals included in the 223 
analysis, 153 chemicals, including PPCPs, pesticides, and industrial chemicals were detected and 224 
quantified at least at one site. The industrial chemicals triacetonamine (intermediate and potential 225 
degradation product of plastic additives (UV stabilizers)) and benzyl dimethyl ketal (UV 226 
photosensitizer) as well as the disinfectant didecyldimethylammonium (DDA) were detected at all sites 227 
(Figure S1). The number of detected and quantified chemicals varied across sampling sites. We detected 228 
and quantified between 46 and 80 chemicals in tributary streams, between 39 and 71 in the main river 229 
course, and only between 18 and 28 at the reference sampling sites. The high number of CECs in 230 
tributary streams is likely due to intensive agriculture and the influence of WWTP discharges near the 231 
sampling sites. The low number of CECs found at RS1, RS2, and RS3 sites is a result of the lower 232 
urbanisation in the region and supports the use of these sites as “reference sites”. 233 

The highest measured environmental concentrations were recorded in the main river course (35,625 234 
ng/L) followed by tributaries (6,038 ng/L), and reference sites (655 ng/L). The highest CEC 235 
concentrations (top 20%) are plotted in Figure 1. The artificial sweetener sucralose reached the highest 236 
concentrations in the main river course (538-35,625 ng/L) and tributary streams (1,688-6,038 ng/L), 237 
most likely as a consequence of its discharge from the WWTPs spread along the river basin. 238 
Benzothiazole, a vulcanisation accelerator but also used as a UV stabiliser and pesticide, was found in 239 
almost similar concentrations in the reference sites (501-655 ng/L) and tributaries (452-496 ng/L), while 240 
the main river course was slightly less exposed (37-345 ng/L). 241 

3.2. Ecotoxicological assessment 242 

Chronic data for all three main taxonomic groups (algae, macroinvertebrates, and fish) were retrieved 243 
for only 34 chemicals (22% of the quantified chemicals) and only for those chemicals the most sensitive 244 
taxonomic group can be identified. For a few additional chemicals, we could retrieve partial datasets 245 
from the ECOTOX database (Olker et al., 2022), with either data only for algae and macroinvertebrates 246 
(7 chemicals), algae and fish (2 chemicals), or macroinvertebrates and fish (2 chemicals). In the end, 247 
we are facing the dilemma that chemical-analytical sensitivity and capacity allow screening for 248 
hundreds of chemicals of which only a small fraction can be assessed for their risks due to a lack of 249 
ecotoxicological data. 250 

In order to evaluate the performance of the QSAR models, we compared the QSAR-estimates to the 251 
available experimental chronic data (Figure 2). Unfortunately, all QSAR models show a relatively poor 252 
performance (Spearman's Rho ≤ 0.5) and only ECOSAR predictions are significantly correlated with 253 
the experimental data (p-value < 0.05) (Figure 2). ECOSAR outperforms VEGA for all three taxonomic 254 
groups, showing consistently higher Spearman’s correlation coefficients. Overall, 81% and 85% of the 255 
ECOSAR and VEGA predictions, respectively, deviate less than two orders of magnitude from the 256 
experimental data. On this basis, we defined nine hazard scenarios for the mixture risk assessment, each 257 
with a different strategy to bridge the gaps in the empirical data (Table 1). 258 

3.3. Mixture risk assessment 259 

In total, we calculated 108 mixture risk scenarios (3 exposure scenarios ́  9 hazard scenarios ́  4 mixture 260 
evaluations (one for each of the three taxonomic groups plus the MST evaluation)), which were applied 261 
to each of the 9 sampling sites included in this study (Figure 3). The resulting 972 mixture evaluations 262 
are presented in the supporting information (Table S2). We used a value of 0.1 for the RQSTU and RQMST 263 
sum as the acceptability criterion, which corresponds to applying an assessment factor of 10 to the data, 264 
in line with the European Chemical Agency (2016) and the European Commission (2018). 265 

The Kaplan-Meier-based exposure assessment (Exposure-Scenario 3) always generated risk values that 266 
were only marginally higher or lower, respectively, than those generated by Exposure-Scenarios 1 and 267 
2 (ratio of risk estimates between 1.03 and 1.06, Table 3). This shows that the chemical-analytical 268 
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sensitivity was sufficiently high and that non-detects contribute only marginally to the mixture risk. The 269 
Kaplan-Meier scenario was therefore used for the overall mixture risk assessment, while Exposure-270 
Scenario 1 was used for the identification of mixture risk drivers (which cannot be done using Kaplan-271 
Meier estimates, see above). Not surprisingly, risk estimates based on the ToxA scenario (which 272 
includes only chemicals with empirical ecotoxicological data) resulted in the lowest risk estimates 273 
(Table S2), simply because only a small fraction of the detected chemicals were included. The ToxB 274 
and ToxC scenarios (i.e., the mixture assessment based entirely on QSAR-estimates) systematically 275 
under-predict mixture risks, in comparison to the corresponding scenarios in which empirical data were 276 
preferred (ToxD and ToxG). 277 

Because ECOSAR slightly outperformed VEGA for the CECs included in this study (Figure 2), we 278 
base the actual mixture risk evaluation on the ToxG scenario (empirical data gaps filled by ECOSAR 279 
estimates), see Table 3. The lowest risk was estimated at the reference sites with RQExpo3-ToxG-MST values 280 
ranging between 0.0012 and 0.0056. Tributary streams had higher RQExpo3-ToxG-MST values, with a site 281 
ranking of T1>T3>T2 with RQExpo3-ToxG-MST values of 0.54, 0.18, and 0.067, respectively. Similarly, the 282 
main river course had high RQExpo3-ToxG-MST values, where sites ranked from R3>R1>R2 with RQExpo3-283 
ToxG-MST values of 0.69, 0.087, and 0.036, respectively (Table 3). Site R3 (located in the main river 284 
course close to the river mouth), site T1 (located in an agricultural area) and site T3 (located in an area 285 
with mixed land use) are considered to be at risk (RQExpo3-ToxG-MST ≥ 0.1). 286 

As expected, RQExpo3-ToxG-MST values always exceed the corresponding value of the individual taxonomic 287 
groups (Table 3). In all three sites where RQExpo3-ToxG-MST exceeded 0.1 at least one taxonomic group 288 
also exceeded a risk quotient of 0.1. That is, the regulatory conclusions from the assessments are 289 
identical, independent of whether the mixture risk assessment was performed for each taxonomic group 290 
or directly with a view on the whole ecosystem. Values for RQExp3-ToxG-Algae were always below the risk 291 
threshold of 0.1. We, therefore, consider photosynthetic organisms as not being put at risk by the CEC 292 
mixtures analysed in this study. RQExp3-ToxG-Macro and RQExp3-ToxG-Fish were consistently higher (Table 3). 293 

3.4. Mixture risk drivers 294 

We identified eight absolute risk drivers (Table 4). With two exceptions (galaxolide and daidzein), they 295 
all belong to groups of substances that are used because of their high biological activity in certain target 296 
organisms (pesticides and pharmaceuticals). The top 3 comprise trenbolone, daidzein, and chlorpyrifos 297 
with maximum RQ values of 0.62, 0.20, and 0.12, respectively. That is, all three compounds occurred 298 
at concentrations that exceed the maximum acceptable level, even if only the exposure to the individual 299 
chemical is taken into account (assuming the application of an assessment factor of at least 10, see 300 
above). 301 

We also determined 19 substances as potential absolute risk drivers (Table S3). Those are substances 302 
without a full set of empirical ecotoxicity data, but which could potentially be risk drivers, under the 303 
worst-case assumption that their QSAR-based hazard estimate underestimates their actual toxicity by a 304 
factor of 100 (see Figure 2 and Table 4 for the ratios between empirical data and QSAR estimates). 305 
Twelve substances did not have any empirical data on chronic toxicity, five chemicals had chronic 306 
information for one taxonomic group, and only two chemicals (i.e., fungicides boscalid and 307 
myclobutanil) have chronic information for two taxonomic groups. Especially relevant are pesticides, 308 
biocides and pharmaceuticals with a maximum RQExpo1-ToxI-MST ≥ 0.1 for which either the experimental 309 
data on the likely target organism (= the most sensitive organism group) are missing, such as 310 
chlorfenapyr (an insecticide), telmisartan (a pharmaceutical) and allethrin (an insecticide); or chemicals 311 
for which we don’t know their target organisms, such as octocrylene (a personal care product), benzyl-312 
2-naphthyl ether (an industrial chemical), or N,N-Dimethyltetradecylamine N-oxide (TDAO, a 313 
surfactant). Empirical ecotoxicological data are urgently needed for these substances. 314 
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Eight relative risk drivers were determined across the nine sites (Table S4). All of them, with two 315 
exceptions, were also categorised as actual absolute risk drivers. The two exceptions (1,3-316 
diphenylguanidine and chlorfenapyr) were also identified as potential absolute risk drivers. We also 317 
identified six chemicals as potential relative risk drivers (Table S5) of which four were also categorised 318 
as potential absolute risk drivers. 319 

The mixture risk drivers at those sites where risk cannot be excluded (RQExpo1-ToxI-MST ≥ 0.1) are shown 320 
in Figure 4 and in those with RQExpo1-ToxI-MST < 0.1 (no risk) are presented in Figure S2. All three sites 321 
at risk (i.e., T1, T3, and R3) show distinct patterns and possess different risk drivers (Figure 4). The 322 
number of absolute as well as relative risk drivers never exceeded 4. This is a typical pattern in 323 
environmentally realistic mixtures, which is sometimes called the Pareto-principle of mixture toxicity, 324 
relating to the power-law probability distribution named after the Italian engineer Vilfredo Pareto 325 
(Rudén et al., 2019 and references therein). However, the chemicals actually identified as risk drivers 326 
varied across sites, in dependence on land-use patterns and land-use intensity. 327 

4. Discussion 328 
4.1. Exposure and hazard assessment 329 

The nature of the chemicals found and the fact that we observed a clear pollution gradient from the 330 
“reference sites” to the main river and the tributaries shows the impact of human activities on the 331 
chemical status of the River Aconcagua basin. The overall CEC fingerprints did not substantially differ 332 
from those previously determined in Europe, North America, and some African countries (Carpenter 333 
and Helbling, 2018; Finckh et al., 2022; Kandie et al., 2020; Loos et al., 2013). This similarity can be 334 
attributed to the widespread and global use of these chemicals in daily life, industry, and agriculture, as 335 
well as the used of a target list based on commonly measured CECs in European aquatic environments. 336 
The CECs that we detected at the highest concentrations, sucralose and benzothiazole, are ubiquitous 337 
in surface waters around the globe, in similar concentration ranges (Finckh et al., 2022; Loos et al., 338 
2013; Yu et al., 2023). 339 

Although we have the analytical sensitivity for screening hundreds of CECs in the aquatic environment, 340 
the Achilles’ heel is the lack of ecotoxicological data for assessing CEC hazards. A similar situation 341 
has been described in previous publications, including studies that assessed WWTP effluents (Finckh 342 
et al., 2022), agricultural streams after rain events (Neale et al., 2020), and emission-based mixture risk 343 
assessments (Gustavsson et al., 2023). The use of chronic effect estimates derived from QSARs bridges 344 
the gap in chronic effect data, which enabled us to conduct the mixture assessment separately for each 345 
of the three taxonomic groups (algae, macroinvertebrates, fish) and MST for all the CECs included in 346 
our study. Nevertheless, our results show that the accuracy of the chronic QSAR estimates needs 347 
improvement, findings that are in agreement with previously published studies, with some exceptions 348 
in the field of endocrine disruption (Cronin, 2017). QSAR models that estimate acute ecotoxicity 349 
perform better (Melnikov et al., 2016; Zhou et al., 2021). 350 

4.2. Mixture risk assessment and risk drivers 351 

Our study presents a systematic and comprehensive strategy for the environmental risk assessment of 352 
chemical mixtures. This strategy encompasses 108 distinct mixture risk scenarios, taking into account 353 
different possibilities on how to account for the potential contribution of CECs that were not detected, 354 
different strategies to account for data gaps and different ecotoxicological perspectives (focus on 355 
individual taxonomic groups and MST). The role of non-detects has only rarely been systematically 356 
evaluated within the framework of mixture assessment, and only a limited number of studies have 357 
accounted for their potential contribution to the mixture risk (Gustavsson et al., 2017a, 2017b). 358 
Conversely, the incorporation of QSAR predictions into the mixture assessment framework is generally 359 
applied (Finckh et al., 2022; Reiber et al., 2021; von der Ohe et al., 2011), as recommended by the 360 
European Chemical Agency (European Chemicals Agency, 2021). In addition to using QSARs for 361 
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filling data gaps, we introduce a novel application of QSARs to predict potential mixture risk drivers. 362 
This approach identifies chemicals that may have adverse effects at the concentrations at which they 363 
are detected and for which therefore empirical data are urgently needed. 364 

Three of the nine sites can be considered at risk (Sum RQ ≥ 0.1 in scenario ToxG, using KM-based 365 
exposure estimates) in the River Aconcagua basin. The small number of risk drivers found at each of 366 
those sites raises the question of whether the risk is indeed an issue that is driven by mixtures, or whether 367 
this is a single-substance problem, and the analytical performance was simply good enough to detect a 368 
myriad of chemicals that happen to co-occur but that are irrelevant from a risk perspective. If risk 369 
mitigation measures would focus exclusively on those compounds that are present at unacceptable 370 
concentrations (individual RQ > 0.1) in order to reduce their individual RQ values to a maximum of 371 
0.1, the remaining RQ sums would be 0.23 (site T1), 0.18 (site T3) and 0.17 (site R3). That is, even if 372 
single-substance-oriented risk mitigation measures would be consistently implemented so that all 373 
chemicals are present at individually “safe” concentrations, all three sites would still be at risk. This 374 
leads to the conclusion that the risks encountered at the sites are a combination of a single substance 375 
problem (unacceptably high concentrations of a few individual substances), and a mixture problem 376 
(unacceptably high sum RQ values even after successful single substance risk mitigation). 377 

Component-based mixture risk assessments, such as the one implemented in this study, inherently 378 
underestimate the actual site-specific risks, given that most likely not all relevant chemicals are included 379 
in the analytical profile. For instance, the present study is based on a selection of target compounds that 380 
was developed largely from a European perspective (Beckers et al., 2018; Krauss et al., 2019), and 381 
therefore does not include all pesticides used in Chilean agriculture. The present study also focuses 382 
exclusively on environmental pollution by synthetic organic chemicals and overlooks the role of metals 383 
as risk-contributing contaminants. At the same time, the assumption of a concentration-additive 384 
behaviour of the mixture might lead to a risk overestimation, although this might be comparatively 385 
small (see discussion in Backhaus and Faust, 2012; Rudén et al., 2019). 386 

The top absolute risk drivers (RQMST ≥ 0.02, Table 4) are CECs that are known to cause harmful effects 387 
on aquatic life. Trenbolone stands out as a veterinary drug that enters river basins through livestock 388 
farming, which has been recognised as an endocrine disruptor, capable of altering hormone and steroid 389 
synthesis in fish (Ankley et al., 2008; Overturf et al., 2015). Chlorpyrifos is a chlorinated 390 
organophosphate insecticide that is well-known for its neurotoxicity to invertebrates and fish 391 
(Echeverri-Jaramillo et al., 2020; Scott and Sloman, 2004). Daidzein is a natural phytoestrogen 392 
primarily found in the Fabaceae family, including soybeans, peas, and red clover. Chlorpyrifos and 393 
daidzein have been previously identified as risk drivers in the aquatic environment (Caracciolo et al., 394 
2023; König et al., 2017). In addition, the absolute risk drivers diazinon, terbuthylazine, and 395 
clarithromycin have been also identified as major risk drivers in WWTP’s effluents (Beckers et al., 396 
2018; Finckh et al., 2022). Chlorpyrifos is a priority substance of the EU Water Framework Directive 397 
and the sunscreen octocrylene, identified as a potential absolute risk driver, is listed on the 3rd watch 398 
list under the WFD (European Commission, 2022, 2008). 399 

5. Conclusions 400 

Our study advances our understanding of environmental risks caused by the co-occurrence of CECs in 401 
freshwater systems in South America. In the River Aconcagua basin, we detected a total of 153 CECs 402 
from various chemical classes, including pesticides, pharmaceuticals, personal care products, and 403 
chemicals used in industrial processes. The overall pattern of CEC occurrence did not differ 404 
significantly from other small streams and rivers worldwide. However, we observed clear site-specific 405 
differences in concentrations and mixture composition. 406 

To comprehensively evaluate the risk associated with CEC mixtures, we introduced an integrative 407 
strategy for mixture risk assessment. This approach systematically assesses both the exposure and 408 
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hazard components of the risk assessment process. Due to the lack of experimental ecotoxicological 409 
data, we utilized QSAR modelling, as recommended by various environmental agencies, to fill data 410 
gaps. The QSAR models lacked accuracy across different taxonomic groups, and we incorporated those 411 
uncertainties into the mixture risk assessment, by defining various hazard scenarios. 412 

Based on our analysis, we identified three sites at risk in the River Aconcagua basin. These conclusions 413 
are supported by the different risk scenarios and their interlinkage. Furthermore, our findings endorse 414 
the use of the most sensitive taxonomic group (RQMST) as a comprehensive ecological risk metric for 415 
predicting the risks posed by complex environmental mixtures. This metric successfully captured the 416 
taxonomic groups that were most vulnerable to the determined exposures. 417 

Risk scenarios based solely on QSAR ecotoxicological data consistently underestimated the actual risk. 418 
Therefore, we propose the use of QSAR predictions amended with experimental ecotoxicological data 419 
as a worst-case scenario for risk estimation. QSAR models proved to be valuable for identifying 420 
chemicals that potentially contribute to the predicted risk (potential risk drivers). Additionally, we 421 
recommend evaluating the performance of available QSAR platforms, especially those offering chronic 422 
models, before integrating their predictions into the risk assessment process. 423 

We found that only a few chemicals were responsible for driving the mixture risk. However, the results 424 
show that mitigation measures focused solely on single chemicals are insufficient if water bodies are 425 
impacted by complex mixtures of chemicals. It is crucial to acknowledge that chemical pollution risks 426 
are a combination of (1) the problem of unacceptably high concentrations of comparatively few 427 
individual substances and (2) the problem caused by a complex melange of chemicals, co-occurring at 428 
seemingly low concentrations. 429 
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Figures and Tables 703 

 
Figure 1. Selected highest concentrations (top 20%) of CECs quantified in at least one sampling site 
in the River Aconcagua Basin. Main CECs classes are coloured, green represents pesticides, blue 
PPCPs, and orange industrial chemicals. MCPA = 2-methyl-4-chlorophenoxyacetic acid and Cbz-
diol = 10,11-Dihydroxycarbamazepine. 
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Figure 2. Correlations between experimental and QSAR-based chronic effect data. Upper row shows 
the results from QSARs estimated using ECOSAR, lower row shows the result from VEGA HUB. 
Solid lines represent perfect agreement between the experimental and in silico predictions and dashed 
lines denote ± two orders of magnitude deviation. Red lines represent the linear regression model. 
The non-parametric Spearman's rank correlation (R) was calculated for significance testing, with the 
resulting p-value provided in each figure. 
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Figure 3. Summary of all mixture risk scenarios applied to the data of each sampling site. Each 
assessment was performed for each taxonomic group (algae, macroinvertebrates, fish), and the most 
sensitive taxonomic group (MST). Exposure scenarios are defined based on how non-detects were 
handled (Expo1 = non-detects set to zero, Expo2 = non-detects set to the MDL, Expo3 = Kaplan-
Meier-adjustment), for details see text. The nine hazard scenarios are based on ecotoxicological data 
used for calculating the risk quotients, see Table 1. A total of 4x3x9 = 108 assessments was calculated 
for each site. 
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Figure 4. Mixture risk assessment estimates for the sites at risk (RQMST≥0.1) in the River Aconcagua 
basin. (A)(C)(E): RQMST predictions based on non-detects set to zero (Expo1) and experimental 
chronic data amended with ECOSAR values (ToxG). (B)(D)(F): RQMST predictions based on non-
detects set to zero (Expo1) and experimental chronic data amended with ECOSAR values (ToxG) 
that were multiplied by a factor of 100 (i.e., QSAR ECx estimates were divided by a factor of 100) 
(ToxI). Colours represent the source of the toxicity data. Grey bars: empirical data, orange data: 
QSAR estimates. 
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Table 1. Hazard scenarios used for environmental mixture assessment.  708 

Scenarios Definition 
ToxA Only experimental chronic toxicity data from US EPA ECOTOX Database 
ToxB Only QSAR VEGA HUB chronic predictions 
ToxC Only QSAR ECOSAR chronic predictions 
ToxD Experimental toxicity data amended with QSAR VEGA  
ToxE Experimental toxicity data amended with QSAR VEGA *100  
ToxF Experimental toxicity data amended with QSAR VEGA /100  
ToxG Experimental toxicity data amended with QSAR ECOSAR  
ToxH Experimental toxicity data amended with QSAR ECOSAR *100 
ToxI Experimental toxicity data amended with QSAR ECOSAR /100 
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Table 2. Mixture risk driver definitions. 710 

 Definition used in this study 
Absolute risk driver A compound with an RQ of at least 0.02.  
Relative risk driver A compound that contributes at least 20% to RQ-sum 
Potential absolute risk driver A compound that is not an absolute risk driver but becomes one if 

their QSAR-estimated RQ-contribution is increased by a factor of 
100. 

Potential relative risk driver A compound that is not a relative risk driver but becomes one if 
their QSAR-estimated RQ-prediction is increased by a factor of 
100. 
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Table 3. RQSTU estimates for the different exposure scenarios based on the ToxG scenario (empirical chronic data amended with ECOSAR QSAR values). In 712 
Expo 1: MECs < MDL were set to 0 (most conservative scenario), Expo 2: MECs < MDL were set to the MDL (worst case scenario), Expo 3: Kaplan-Meier 713 
estimation of mixture risk (most realistic scenario). Sites at risk were defined as RQSTU ≥ 0.1, see text. RQ values exceeding 0.1 are boldfaced. 714 

ToxG (empirical data amended with QSAR-data (ECOSAR) 
 Algae Macroinvertebrates Fish MST 

Sites Expo-1 Expo-2 Expo-3 Expo-1 Expo-2 Expo-3 Expo-1 Expo-2 Expo-3 Expo-1 Expo-2 Expo-3 
RS1 1´10-3 0.005 0.001 0.003 0.015 0.004 0.001 0.024 0.001 0.005 0.040 0.005 
RS2 3´10-4 0.004 3´10-4 0.001 0.013 0.001 5´10-4 0.024 4´10-4 0.001 0.037 0.001 
RS3 2´10-4 0.004 3´10-4 8´10-4 0.012 0.001 6´10-4 0.024 7´10-4 0.001 0.036 0.001 
T1 0.011 0.014 0.011 0.293 0.297 0.293 0.271 0.285 0.271 0.534 0.554 0.535 
T2 0.001 0.005 0.001 0.012 0.021 0.012 0.062 0.072 0.062 0.067 0.087 0.067 
T3 0.010 0.014 0.011 0.148 0.151 0.148 0.041 0.063 0.042 0.179 0.204 0.180 
R1 0.028 0.029 0.028 0.005 0.016 0.005 0.057 0.079 0.058 0.086 0.116 0.086 
R2 5´10-4 0.004 5´10-4 0.003 0.014 0.003 0.034 0.056 0.034 0.036 0.070 0.036 
R3 0.006 0.010 0.007 0.062 0.070 0.062 0.629 0.640 0.630 0.686 0.705 0.686 
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Table 4. Absolute mixture risk drivers, i.e., chemicals with an individual RQMST ≥ 0.02 in at least one site. Chemicals are listed in descending order of their 717 
RQExpo1-ToxG-MST (mean across all sites). Experimental (ECOTOX) and QSAR ECOSAR concentrations in µM. N = number of sites where the respective chemical 718 
was an absolute risk driver. 719 

Name CAS Number Class minRQ meanRQ maxRQ N RQMST- 

ToxA 
RQMST- 

ToxC 
RQMST- 

ToxG 
Algae 
ECOTOX 

Macroinv. 
ECOTOX 

Fish 
ECOTOX 

Algae 
ECOSAR 

Macroinv. 
ECOSAR 

Fish 
ECOSAR 

Trenbolone 10161-33-8 Anabolic steroid 0.045 0.330 0.615 2  0.615 0.000 0.615   0.000 16.696 5.777 79.675 
Chlorpyrifos 2921-88-2 Insecticide 0.118 0.118 0.118 1 0.118 2.057 0.118 0.248 0.001 0.012 0.240 0.000 0.025 
Daidzein 486-66-8 Phytoestrogen 0.032 0.094 0.199 3 0.199 0.000 0.199   0.003 37.523 17.450 15.898 
Galaxolide 1222-05-5 Musk fragrance 0.041 0.041 0.041 1 0.041 0.062 0.041 0.777 0.028 0.398 0.245 0.030 0.019 
Diazinon 333-41-5 Insecticide 0.022 0.041 0.061 2 0.061 0.139 0.061 9.189 0.000 0.433 0.653 0.000 0.144 
Methomyl 16752-77-5 Insecticide 0.036 0.036 0.036 1 0.036 0.001 0.036 440.749 0.018 0.183 0.940 0.393 0.882 
Terbuthylazine 5915-41-3 Herbicide 0.021 0.029 0.037 2 0.021 0.000 0.021 0.052 0.008 3.569 1.384 2.062 2.909 
Clarithromycin 81103-11-9 Antibiotic 0.026 0.026 0.026 1 0.026 0.000 0.026 0.000   2.650 1.453 1.266 
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