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Abstract

Anticipating future events is a key computational task for neuronal networks. Experimental evidence
suggests that reliable temporal sequences in neural activity play a functional role in the association and
anticipation of events in time. However, how neurons can differentiate and anticipate multiple spike
sequences remains largely unknown. We implement a learning rule based on predictive processing, where
neurons exclusively fire for the initial, unpredictable inputs in a spiking sequence, leading to an efficient
representation with reduced post-synaptic firing. Combining this mechanism with inhibitory feedback
leads to sparse firing in the network, enabling neurons to selectively anticipate different sequences in the
input. We demonstrate that intermediate levels of inhibition are optimal to decorrelate neuronal activity
and to enable the prediction of future inputs. Notably, each sequence is independently encoded in the
sparse, anticipatory firing of the network. Overall, our results demonstrate that the interplay of self-
supervised predictive learning rules and inhibitory feedback enables fast and efficient classification of
different input sequences.

Introduction

The prediction of future events is a key mechanism for the organization of behaviour [1], and is arguably
supported by anticipatory neuronal firing observed in various brain regions [2, 3, 4, 5, 6]. In order to fire 2

ahead of predictable events, neurons must learn to credit synapses that carry information about future inputs,
and downregulated the ones that are predictable. However, this prediction process is difficult when different 4

spiking patterns influence the activity of the same neuronal populations. For instance, synaptic inputs carrying
relevant information for predicting one stimulus may also be predictable by other synaptic inputs during another 6

stimulus. To address this issue, neurons must accomplish two tasks: (a) learn predictive relationships in the
input spikes patterns, and adjust synaptic weights accordingly; (b) discriminate different components of input 8

statistics and participate in the prediction of specific input patterns. Currently, it remains unclear how neurons
can show anticipatory firing that is specific to the particular temporal relationships in the input. 10

Theoretical works indicate that spike-timing-dependent plasticity (STDP) leads, in some cases, to a reduc-
tion in the post-synaptic spike latency when spike patterns are systematically repeated [7, 8]. Thereby, neurons 12

can fire ahead of future sensory stimuli and can give rise to predictions at the network level [9], suggesting a
mechanism for anticipatory firing in the brain [2]. Another recent work addressed the problem directly, hy- 14

pothesizing that neurons adjust their synaptic weights proportionally to the predictability of pre-synaptic inputs
[10]. This plasticity mechanism enables neurons to anticipate and signal future events and unifies several STDP 16

phenomena from the perspective of predictive processes. However, this mechanism alone cannot generate antic-
ipatory firing when the temporal relationships between spikes are ambiguous, e.g. when the same input predicts 18

other inputs in one spike sequence but is fully predictable during another sequence. Introducing competition
among neurons offers a solution to this issue, as it allows neurons to become selective for specific sequences. 20

Winner-take-all-like models capture the fundamental principle of competition, where single neurons encode
specific inputs while other neurons remain silent [11]. A possible competitive mechanism is a recurrent inhibi- 22

tion, which exerts inhibitory control over neurons receiving the same input [12, 13]. Previous studies suggest
that local inhibitory interactions, observed in the neocortex [14] and hippocampus [15], are essential for decor- 24

related neuronal firing and independent representation of input components [16]. However, how the interplay
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between inhibitory mechanisms and local learning rules can support the prediction of future inputs is still not26

well understood.
In this work, we propose that the combination of a predictive learning rule (PLR) as in [10] with a com-28

petitive mechanism at the network level (inhibitory feedback; IF) can lead to selective anticipation of input
patterns. We demonstrate that neurons in the network suppress the firing of the entire network while adjusting30

their synaptic weights to anticipate predictable inputs. This inhibitory mechanism allows neurons to become
selective for specific sequences in the input patterns and to show anticipatory firing for those sequences. More-32

over, the identity of different input sequences can be read out from a few early spikes in the network activity,
enabling fast and energy-efficient anticipation of future events.34

Results

Inhibitory feedback enables selective anticipation of spike sequences in neural networks
The present work builds further on a predictive learning rule from a previous work [10] (see Methods for

a detailed description of the learning rule). The learning rule potentiates synaptic weights associated with36

predictive spikes, that is, inputs that anticipate other pre-synaptic inputs, while it suppressed inputs that are
anticipated by other pre-synaptic spikes. For example, we explored the scenario where a neuron endowed38

with the predictive learning rule received a temporal sequence composed of N pre-synaptic neurons firing
sequentially with fixed delays (Figure 1a). In this case, the pre-synaptic inputs occurring earlier in the sequence40

should be potentiated as they anticipate the subsequent inputs. We trained the neuron by repeating the input
sequence for 750 epochs. As anticipated, during training, the neuron progressively potentiated the inputs42

occurring earlier in the sequence. Eventually, it assigned the highest credit to the first inputs in the sequence
and fired upon their occurrence (Figure 1b). Notably, our results remained consistent regardless of the size of44

the pre-synaptic population (Figure S1).
According to the predictive learning rule described above [10], synaptic weights undergo potentiation or46

depotentiation based on the predictability of the pre-synaptic inputs. However, in cortical networks, neurons
may receive many different input sequences. As a result, one would expect that neurons do not selectively fire48

at the beginning of one particular sequence, but rather diffusely throughout multiple sequences. This raises the
question, of how the predictive learning rule can be integrated with competition mechanisms to enable neuronal50

selectivity for specific spike sequences.
We simulated a case where neurons received input patterns consisting of nclass distinct sequence classes52

(Figure 1c). In each sequence, the Npresyn pre-synaptic neurons fired in sequential order with fixed delays. The
total sequence duration was 200 ms. The pre-synaptic neurons participated in each of the nclass input sequences,54

and each sequence class c ∈ {1, . . . , nclass} was characterized by a unique order of pre-synaptic input spikes.
During each training epoch, the input also included randomly drawn sequences whose firing times varied at each56

iteration, representing irrelevant input patterns (these random sequences comprised 10% of all sequences). We
compared two network configurations: In the first configuration, there were Nnn neurons, but without recur-58

rent connections (“PLRnoIF”). In the second configuration, the neurons were recurrently connected through
inhibitory feedback (“PLR+IF”) (see Methods). Specifically, each neuron provided inhibition onto all the neu-60

rons in the network, which represents a simplified implementation of the lateral global inhibition in cortical
networks [12] (see Methods). In both network configurations, the weight updates followed the predictive learn-62

ing rule [10]. Furthermore, the synaptic connections from the pre-synaptic inputs were randomly assigned at
the start of training, while the weights of the recurrent connections remained fixed.64

We exposed the neural network to the input patterns, and we examined the network activity across epochs.
In the absence of inhibitory feedback (PLRnoIF network), the neurons showed prolonged firing during the66

whole duration of each sequence (Figure 1d). The dynamics of the synaptic weights did not show any structure,
as all the pre-synaptic inputs became potentiated, which is due to the fact that many sequences were presented.68

By contrast, we observed that including inhibitory feedback (PLR+IF network) between neurons led to the
anticipation of input sequences (Figure 1e). Specifically, neurons in the PLR+IF network became selective70

to one sequence class and learned to potentiate the early inputs of that sequence (Figure 1f). Accordingly,
the neurons in the PLR+IF network fired shortly after the onset of the selected sequence (Figure 1c), and72

typically did not fire when exposed to the other input sequences (Figure S2). The percentage of neurons that
became selective to specific sequences increased across epochs (Figure 2a). By contrast, in the PLRnoIF, no74

sequence selectivity was developed. As a result of the sequence selectivity, the average firing activity of the
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Figure 1: Anticipation of multiple sequences in a neural network with inhibitory feedback. a) The input was composed of one
spike sequence, given by the correlated firing of N=100 pre-synaptic neurons. The N pre-synaptic neurons fired sequentially with
relative delays of 2 ms, resulting in a total sequence length of 200 ms. b) Left: Illustration of the connections between pre-synaptic
inputs and the post-synaptic neuron. Middle: Dynamics of the synaptic weights associated with each pre-synaptic input as a function
of training epochs. The synaptic weights are ordered along the y-axis from 1 to 100 following the temporal order of the sequence.
Right: Dynamics of the neuron spiking activity as a function of training epochs, as in panel b but for 100 pre-synaptic inputs. c) The
input was composed of sequences belonging to 30 different classes (nclass = 30) and of nrandom random spiking sequences. d) Top-Left:
illustration of the PLRnoIF network. Here, we illustrated 5 neurons and all the connections from the neuron in the center as an example.
The network was composed of Nnn = 10 neurons. Each neuron receives feedforward inputs and is not connected to the other neurons.
Bottom-Left: Dynamics of the synaptic weights w⃗ for a neuron in the PLnoGI network (neuron 1) in function of the training epochs,
and dynamics of the spiking activity of the same neuron.The synaptic weights are ordered along the y-axis from 1 to 100 following the
temporal order of a sequence class (class c=1). PLR+IF: Each neuron inhibits all the neurons in the network via recurrent inhibition. e)
Same as in d for the PLR+IF network. Each neuron receives feedforward inputs and is connected to the other neurons through recurrent
inhibition. d) The synaptic weight matrix of the PLR+IF network at the end of training (epoch 500). The synaptic weights are ordered
along the y-axis from 1 to 100 following the temporal order of the input spikes in sequence class c = 1. We highlighted the neuron that
developed selectivity to class c = 1 (neuron 1), thereby assigning credit to the first inputs of the specific class.

neurons in the PLR+IF network decreased substantially (Figure 2b). Importantly, the average duration of the 76

network activity decreased, as many neurons learned to fire at the beginning of distinct sequences (Figure 2c).
Additional analyses showed that the network was able to develop sequence selectivity for a vast range of weight 78

initialization (Figure S3a), for different numbers of random sequences in the input pattern (Figure S3b), and for
multiple sets of model parameters (Figure S3c). 80

Together, our results demonstrate that combining the predictive learning rule with inhibitory feedback leads
neurons to fire at the start of particular sequences in the input spike train. The increased selectivity is accom- 82

panied by the efficient encoding of input sequences.
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Figure 2: Inhibitory feedback support network selectivity and efficient firing. a) Left: Illustration of the two networks and color
code. Right: Percentage of selective neurons in the network as a function of the training epochs. A neuron in the network is labeled
as selective if it fires only for one specific class. The panel shows the percentage of selective neurons for the PLRnoIF and PLR+IF
networks, see the color code on the left. b The average number of spikes in the network activity as a function of the training epochs.
The total number of spikes is averaged across neurons in the network and across sequence classes (nclass = 30). c The average duration
of network activity as a function of the training epochs. We computed the temporal difference between the last spike and the first spike
of the network activity to estimate the total duration of the network’s activity. The duration of network activity is averaged across
neurons and across sequence classes, as in the middle plot. Each panel shows the mean and standard deviation computed over 100
different simulations, and have the same color code as in panel a.
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Figure 3: Selectivity and anticipation depend on the strength of inhibition. a) Illustration of the global inhibition. The parameter
wihn defines the strength of the recurrent connections (see Methods). b) Percentage of selective neurons as a function of the inhibition
strength. A neuron is labeled as selective if it fires only for sequences belonging to one specific class. c) The average number of spikes
in the network activity as a function of the inhibition strength. The total number of spikes is averaged across neurons in the network and
across sequence classes. d) The average duration of network activity as a function of the inhibition strength. The duration of network
activity is averaged across neurons and across sequence classes. Each panel shows the mean and standard error of the mean computed
over 1000 different simulations.

Intermediate levels of inhibition maximize network selectivity and sequence anticipation

In the previous section, we studied the effect of inhibitory feedback in a network of neurons that receives a84

feedforward input consisting of many different spike sequences. In the PL+GI network, the neurons developed
selectivity for specific spike sequences, leading to the anticipation of the selected sequences [10]. These results86

likely depend on the specific type of interaction between the neurons, in particular on the overall strength of
inhibitory feedback. Thus, our next question was how the level of inhibition influences the development of88

sequence selectivity.
We conducted simulations similar to those in the previous section and systematically varied the strength90

of inhibitory feedback (Fig 3a). We then examined the percentage of neurons selective to a single sequence
at the end of training. The percentage of selective neurons showed an inverted U-curve dependence on the92

strength of inhibition. Specifically, we observed that the highest percentage of selective neurons was obtained
for intermediate values of the inhibition strength, whereas weak or strong inhibition resulted in minimal network94

selectivity (Fig 3b). The average number of spikes and the duration of network activity decreased progressively
as the inhibition strength increased (Fig 3c). The network activity was primarily concentrated at the beginning96

of each sequence within the same range of inhibition strength (Fig 3d).
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Thus, we found that without inhibitory feedback, neurons fired for every sequence, while excessive in- 98

hibitory feedback caused the network activity to collapse. However, we observed that an intermediate level of
inhibition was optimal for achieving maximum decorrelation among neurons and enabling the anticipation of 100

predictable inputs. Our results suggest that precisely tuned inhibition is a powerful mechanism to maximize the
capacity of neural networks. 102
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Figure 4: Classification of spike sequences with the predictive learning rule. a) The system was composed of an intermediate
network (either a PLRnoIF or a PLR+IF network) with Nnn = 30 neurons and a readout layer with Nout = 10 neurons. We updated
the synaptic connections from the input to the network following the predictive learning rule, while we updated the connections from
the network to the readout layer with backpropagation-through-time (BPTT), see Methods. b) Classification accuracy of the readout
layer. The panel shows the mean and standard error of the mean computed over 100 different simulations. c) Confusion matrix at the
end of training. d) Left: The average number of spikes in the intermediate network activity as a function of the training epochs. The
total number of spikes is averaged across neurons in the network and across sequence classes (nclass = 10). Right: The average mutual
information per spike in the classification task. The mutual information is computed with the conditional probability obtained from the
confusion matrix (see Methods). All plots show the mean and standard error of the mean computed over 100 different simulations and
have the same color code as in b. e) Left) Synaptic weight matrix of the PLR+IF intermediate network after training (epoch 10000) in
one example trial. The y-axis represents the ordering of synaptic weights from 1 to 100, following the temporal order of sequence class
c = 9. The neuron n = 16 exhibits selectivity for sequence class c = 9, assigning credit to its first inputs. Center) Network activity
associated with sequence class c = 9 before training (first epoch) and after training (epoch 10000). Right) The synaptic weight matrix
of the readout layer at the end of training (epoch 10000). f) Distribution of pairwise Spearman correlation coefficients between spike
trains of the intermediate network, respectively at the beginning of training (left, epoch 0) and at the end of training (right, epoch 4000).
The correlation coefficients are computed from spike trains obtained with 100 different simulations. The color code is as in b.
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Inhibition leads to sequence classification with decorrelated and sparse network activity

We found that when combined with a predictive learning rule, inhibitory feedback promotes sparse activity
in the network, and allows individual neurons to fire only for specific sequences. This finding would suggest104

that a decoder should be able to read out the activity of the recurrent network of neurons and correctly classify
the spiking sequences.106

To address this, we considered a neural network consisting of two modules: (1) An intermediate PLRnoIF
or a PLR+IF layer, and (2) an additional readout layer, where each neuron was assigned to a specific sequence108

class in the input (Figure 4a). The weights from the intermediate layer to the readout layer were trained using
the Adam optimizer with a cross-entropy objective function on the membrane potentials of the readout neurons110

(see Methods). We exposed the network to sequences belonging to one of ten different classes and evaluated its
performance on a dataset where half of the examples did not belong to any specific sequence class (Figure 4b).112

The input was composed of sequences belonging to nclass = 10 different classes, and of nrandom random spiking
sequences. We used a training dataset with nrandom/nclass = 1 and a testing dataset with nrandom/nclass = 10.114

For the PLRnoIF network, we first observed an increase in the classification accuracy and later a decay
in performance during training (Figure 4b). This decrease in performance indicates a loss of information in116

the recurrent network about the sequence inputs. Conversely, the PLR+IF network showed a stable increase
in the classification accuracy which was greater than for the PLRnoIF network (Figure 4b-c). This increase in118

classification accuracy was accompanied by a rise in the percentage of selective cells in the network (Figure
S4a). The classification accuracy was driven by a simultaneous decrease in both the prediction error in the120

intermediate network and the readout layer’s classification error, during both the training and the testing phase
(Figure S4b). The average firing activity was two orders of magnitude lower in the PLR+IF network, such the122

average amount of information per spike was considerably higher than in the PLRnoIF case (Fig 4d).
We further illustrated how synaptic plasticity in both the intermediate network and the readout layer leads124

to fast sequence classification (Figure 4f). We found that in the PLR+IF network neurons fired in response to
the initial inputs of specific sequences, allowing for early classification of the sequence identity (Figure 4f). As126

a result, only a few early spikes from a small group of neurons were sufficient to achieve maximal classification
accuracy, resulting in a sparse connectivity matrix at the readout (4f).128

The observation that the PLR+IF network had substantially higher classification performance despite much
sparser activity suggests that the input was encoded with a much higher degree of statistical independence130

between neurons. Previous work has indeed suggested that inhibitory feedback leads to a strong reduction
in firing rate correlations among excitatory neurons [16]. We, therefore, quantified the pairwise (Spearman)132

correlations between all the neurons in the intermediate network module. Firing-rate correlations were much
stronger in the PLRnoIF network, and were close to zero in the PLR+IF network (Fig 4e). Hence, inhibitory134

feedback led to the maximization of channel capacity and efficient encoding of the sequential inputs.
In sum, these analyses show that the predictive learning rule combined with inhibitory feedback leads to136

improved classification of sequence inputs as compared to a network without inhibitory feedback. Furthermore,
predictive learning with inhibition leads to sparse coding with a high degree of information per spike and138

decorrelated firing between neurons.

Fast and efficient classification during predictive plasticity

Finally, we compared the (unsupervised) predictive learning rule with two different supervised learning140

algorithms: BPTT and BPTT with fixed inhibitory connections (BPTT+IF). In the BPTT network, all synaptic
connections in both the intermediate network module and the readout layer were trained based on a global loss142

(cross-entropy) via backpropagation-through-time [17] (Figure 5a). In the BPTT+IF network, the recurrent
network module had a fixed level of global inhibition (as in the PLR+IF network, Figure 5a).144

We found that the BPTT and the BPTT+IF networks reached a higher classification performance than
the PLR+IF network (about 10% higher) (Figure 5b), which is expected considering that both networks were146

trained using a supervised learning rule. Nevertheless, the PLR+IF network exhibited several features that were
absent in the other networks. First, the average firing activity was orders of magnitude lower in the PLR+IF148

network, and the amount of information per spike was considerably higher (Figure 5c). Second, the readout
layer consistently attained maximum accuracy at progressively earlier times in the trial (Figure 5d). In other150

words, the PLR+IF network signaled the sequence information earlier in time as compared to the network
trained with backpropagation-through-time. Third, the number of spikes required to achieve maximal accuracy152
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Figure 5: Comparison of the predictive learning rule with back-propagation-through-time algorithms. a) Illustration of the
three systems. PLR+IF: the system was composed of an intermediate PLR+IF network and a readout layer. We updated the synaptic
connections from the input to the network following the predictive learning rule, while we updated the connections from the network
to the readout layer with backpropagation-through-time. BPTT: the system was composed of an intermediate network with all-to-all
recurrent connections and a readout layer. We updated the synaptic connections from the input to the network, the recurrent connections
in the intermediate layer, and the connections from the network to the readout layer with backpropagation-through-time. BPTT+GI:
the system was composed of an intermediate network with recurrent connections as in the PLR+IF network. We updated the synaptic
connections from the input to the network and the connections from the network to the readout layer with backpropagation-through-
time. As in the PLR+IF network, the recurrent connections in the intermediate layer were kept fixed. b) Classification accuracy of the
readout layer across training. The legend indicates the different training procedures employed for the network. The panel shows the
mean and standard deviation computed over 100 different simulations. c Left: The average number of spikes in the network activity as
a function of the training epochs. The total number of spikes is averaged across neurons in the network and across sequence classes
(nclass = 10). Right: The average mutual information per spike in the classification task. The mutual information is computed with
the conditional probability obtained from the confusion matrix (see Methods). d) The average time step at which the classification
accuracy reached its maximum value. e) Left: The average number of spikes observed by the readout layer prior to reaching the
maximum accuracy. Right: The average duration of network activity. In panel c, d, and e, all plots show the mean and standard error
of the mean computed over 100 different simulations, and have the same color code as in b.

varied significantly among the different networks (Figure 5d, left). In particular, the number of spikes in the
PLR+IF network rule was about 4 orders of magnitude lower than in the other two networks. This result even 154

held true when we analyzed a network trained with BPTT that included regularization (Figure S5). Finally, the
duration of network activity was substantially lower in the PLR+IF network (Figure 5d, right). 156
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Discussion

In this study, we investigated how ensembles of neurons can selectively and efficiently encode multiple
temporal input sequences. We implemented a predictive learning rule that adjusts synaptic strengths based on158

the predictability of pre-synaptic inputs [10]. The main contribution of the present work is to combine the
predictive learning rule with recurrent inhibition in a network of neurons. We show that including recurrent160

inhibition leads to sparse firing in the network, where neurons selectively fire at the beginning of specific
sequences. The selectivity of the network was maximized with an intermediate level of inhibition. Moreover,162

recurrent inhibition led to decorrelated firing between neurons with a high degree of information per spike.
Finally, the network activity could correctly reveal the sequence identity, even with just a few early spikes when164

compared to end-to-end training. Overall, our results demonstrate that fast and energy-efficient classification
of different input components can be achieved through the interplay of self-supervised predictive learning rules166

and inhibitory feedback. The combination of these two mechanisms leads to distinct network activities, which
can be used to classify temporal patterns and anticipate their occurrence.168

The two main components of our computational model are the predictive learning rule and global inhi-
bition. Neurons endowed with this learning rule learn to fire for the initial, unpredicted inputs in a spiking170

sequence, resulting in an efficient representation with reduced post-synaptic firing. Importantly, this rule also
describes various synaptic plasticity mechanisms that are observed experimentally [10]. Indeed, the synaptic172

updates crucially depend on changes in the post-synaptic membrane potential that occur at different moments
in time, which are believed to trigger LTP and LTD in biological neurons [18, 19]. The predictive learning rule174

can thereby reproduce STDP mechanisms observed in-vitro and describe network phenomena that are usually
modeled with STDP rules [2, 4]. For example, the standard asymmetrical STDP window and symmetrical176

(Hebbian) learning windows come about as a result of predictive plasticity. The impact on synaptic plasticity of
pairing frequency [20], initial synaptic strength [21] and higher-order spike patterns (beyond pre-post pairing)178

[22, 23] are also described by the predictive plasticity rule. Importantly, this rule was derived from an optimiza-
tion problem based on predictive processes, thus suggesting that STDP is a consequence of a general learning180

rule given the particular state of the system and the stimulation protocol [24]. We refer to [10] for a detailed
analysis of the relation between the predictive plasticity rule and STDP models and experiments.182

The inclusion of global inhibition in our model is well-supported by experimental evidence, indicating
patterns of massive convergence and massive divergence from excitatory neurons to interneurons, e.g. fast-184

spiking parvalbumin-positive (PV) cells [25], without connection specificity. These interneurons span several
cortical columns and provide fast and unspecific inhibition to pyramidal neurons [26]. Our model captures the186

essence of an excitatory-inhibitory network model, where single neurons adjust their synaptic weights based
on local learning rules. At present, our model did not include recurrent excitation, which is a hallmark of188

cortical networks [27, 28, 29] but is typically absent in subcortical areas. Thus, in the present form, the model
presented here may best approximate unsupervised learning in subcortical networks. Future works should190

include recurrent excitation in the model and investigate its impact on neuronal selectivity and anticipation of
spike sequences.192

The recurrent inhibition implemented in this study resembles the mechanism known as k-Winner-Take-All
(k-WTA) with k = 1, where only one neuron emerges as the winner, and represents a specific pattern [11]. Ex-194

perimental evidence demonstrates that lateral inhibition in cortical networks enables this type of operation [30]
while also promoting decorrelation of neuronal activity [16]. In agreement with experimental and theoretical196

findings [31, 32, 16], we found that global inhibition decreases the correlation between neurons, and provides a
mechanism for independent encoding of multiple spike sequences. Our results also indicated that an intermedi-198

ate level of inhibition is optimal for decorrelated firing in the network with high information content per spike.
This suggests that there might be a vulnerability of functional cortical activity to GABAergic disturbances200

or excitation-inhibition balance [33]. Indeed, experimental findings showed that extreme levels of inhibition
are associated with psychiatric diseases and that intermediate inhibitory strength correlates to functional brain202

activity [34, 33].
However, in cortical networks, different cell types contribute to lateral inhibition, exhibiting diverse neu-204

ronal properties and connectivity patterns with excitatory neurons [35, 36, 37]. This heterogeneity gives rise to
various excitation-inhibition motifs [38, 39], transient and oscillatory activity [40, 41], and significantly affects206

synaptic plasticity [42]. Therefore, it is important to note that our current work employs a simplified implemen-
tation of recurrent inhibition in the network. Future works will incorporate inhibitory neurons into the network208
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and explore the role of different connectivity schemes in anticipating multiple sequences. This will also provide
insights into how the prediction of multiple sequences relates to the balance of excitation and inhibition in neu- 210

ral networks. Furthermore, the emerging evidence of inhibitory plasticity [43, 44] and its diverse consequences
on cortical computations [45] introduces another interesting direction for exploration. It is e.g. possible that 212

inhibitory plasticity contributes to reaching an optimum, i.e. intermediate level of global inhibition.
Previous studies have investigated the combination of local learning rules and competition mechanisms. 214

For instance, certain forms of spike-timing-dependent plasticity (STDP), when combined with global winner-
take-all mechanisms, can result in neurons representing different segments of a repeating pattern [13, 46]. 216

Additionally, specific STDP windows can produce a reduction in output latency for frequently occurring inputs
[8, 47]. Other spike-based learning rules, when combined with WTA mechanisms, have also shown high perfor- 218

mance in classification tasks [48, 49]. It is worth noting that the predictive learning rule encompasses multiple
STDP phenomena, including multiple STDP windows and higher-order effects (beyond pre-post pairing) [10]. 220

Thereby, our findings provide a general description of sequence anticipation as a result of predictive processes
based on synaptic plasticity, whereby STDP mechanisms come about as a consequence of predictive plasticity. 222

Differently from previous works, we also performed a direct comparison of the predictive learning rule with
standard training algorithms, and we showed that the combination of self-supervised learning rules and global 224

inhibition led to fast, and energy-efficient encoding of stimulus identity compared to backpropagation-through-
time (BPTT). 226

Our model relies on the temporal relationships between input spikes, and it has been tested on sequential
pre-synaptic spike trains. Experimental evidence from various brain regions supports the existence of reliable 228

spike sequences [3, 50]. For instance, the serial firing of neurons can represent the sequential nature of external
stimuli. Moving objects can trigger the sequential firing of neurons in the visual system [4], resulting in waves 230

of activity that can contain predictive information about the object’s trajectory [51, 52]. In the hippocampus, the
sequential activity of place cells encodes the motion of the animal entering different locations [53]. Moreover, 232

spike sequences can also emerge as internally generated activities, e.g. during goal-oriented behaviour [54].
Neurons can engage in structured sequential firing during internal simulations and memory consolidation [55], 234

motor planning, and online control of actions [54]. Interestingly, these sequential activities exhibit experience-
dependent facilitation [2], and can be replayed at compressed time scales [56, 5]. Moreover, reliable spike 236

sequences can be induced only by the activation of a few spikes neurons [57, 58]. Our findings support the idea
that even a few spikes can initiate a cascade of neuronal activity and that learning can flatten internal activity 238

by assigning credit to inputs with predictive power. Thereby, our model provides insight into the neuronal
mechanisms underlying reliable spike sequences and their experience-dependent compression at the network 240

level. Our results suggest a functional role of sequential spiking activity for predictive processes and for the
engagement of networks in anticipating future events and organizing behaviour [2]. 242

Finally, the results presented in this study have implications for training spiking neural networks (SNNs)
with biologically-inspired algorithms, particularly for assigning credit to local synapses based on non-local 244

information [59]. Indeed, the credit-assignment problem is particularly hard in SNNs, where the errors are
propagated both in time and in space and through non-differentiable activation functions [60, 61]. Previous 246

research has approached this problem by drawing insights from neuroscience, including the interplay between
different neuronal types [62, 63], the multiplexing of signals through distinct firing patterns [63] and the in- 248

volvement of different neuronal compartments [64, 65, 66]. Here, we showed that the combination of a local,
self-supervised learning rule and an arguably simple inhibitory mechanism leads to distinguishable network 250

activities and successful classification of neuronal inputs. Moreover, the predictive learning rule enables gra-
dient propagation through differentiable functions. Indeed, the loss functions at the single neuron level depend 252

solely on the membrane potential of each respective cell. It is important to note that our model was specifically
tested on classifying spike sequences with direct temporal relationships between input spikes. An interesting 254

direction for future research would be to apply our model to different classification tasks and systematically
evaluate its performance in various scenarios. 256

Methods

Network model
We implemented a recurrent neural network composed by Nnn neurons, where each i-th neuron in the

network received external inputs from Npresyn pre-synaptic neurons x⃗i ∈ RNpresyn . The synaptic weights asso- 258
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ciated with the recurrent connection and with the external inputs were determined by the connectivity matrix
Wrec ∈ RNnn,Nnn and W ∈ RNpresyn,Nnn , respectively. Each i-th neuron in the network obeyed a discrete-time model260

of the form vi,t = α vi,t−1 − v(th) si,t−1 + w⃗⊤i x⃗i,t + w⃗⊤rec,i s⃗t

si,t = H(vi,t − v(th)) .
(1)

Here, vi,t ∈ R is the membrane potential of the i-th neuron at timestep t, α ≡ 1−h/τm where τm is the membrane262

time constant and h is the timestep size, x⃗i,t ∈ RNpresyn is the pre-synaptic input to the i-th neuron at timestep
t, v(th) is the spiking threshold (the subscript (th): “threshold”), and H(·) is the Heaviside function. The weight264

vector of the external inputs w⃗i ∈ RNpresyn and of the recurrent connections w⃗rec,i ∈ RNnn are the i-th column
of the connectivity matrix W and Wrec, respectively. The two connectivity matrices W and Wrec were defined266

depending on the specific type of simulations, see the section Optimization and training schemes. The variable
si,t ∈ {0, 1} takes binary values and indicates the presence or absence of an output spike at timestep t. If the268

voltage exceeds the threshold, an output spike is emitted, and this event reduces the membrane potential by
a constant value v(th) at the next time step. This implementation of the membrane potential reset relates our270

model to the spike response model [67]. We set h = 1 ms in all numerical simulations.
We also implemented a readout layer composed of nclass neurons, one for each class c. Each i-th neuron272

in the layer received the activity of the recurrent neural network s⃗t, and the associated synaptic weights were
determined by the connectivity matrix Wout ∈ RNnn,nclass . The readout neurons obeyed a discrete-time equation274

of the form
ui,t = β ui,t−1 + w⃗⊤out,i s⃗t . (2)

Here, β ≡ 1 − h/τm,out where τm,out is the membrane time constant of the readout neurons and h is the timestep276

size, and w⃗out,i is the i-th column of the connectivity matrix Wout.

Predictive learning rule
The predictive learning rule used in this study was adapted from a previously published paper [10]. This278

rule is derived from an optimization problem in time at the single neuron level. Specifically, each i-th neuron
in the network is assigned with an objective function Li as follows,280

Li ≡

T∑
t=0

Li,t ≡

T∑
t=0

1
2

∣∣∣∣∣∣x⃗i,t − vi,t−1 w⃗i
∣∣∣∣∣∣2

2 , (3)

where || · ||2 is the l2-norm, x⃗i,t are the external inputs to the i-th neuron in the network, vi,t−1 is the membrane
potential of the i-th neuron and w⃗i is the synaptic weight vector of the external inputs, see Equation (1). Here,282

the objective is to obtain the minimal difference between the input x⃗i,t received by the neuron, and its prediction
via vi,t−1 and w⃗i. To derive the predictive learning rule, one computes the gradient of Li w.r.t. w⃗i,284

∇⃗w⃗Li =

T∑
t=0

1
2

(
∇⃗w⃗i Li,t +

∂Li,t

∂vi,t−1
∇⃗w⃗i vi,t−1

)
. (4)

The first term accounts for the direct effect of a weight change on Lt, while the second accounts for its indirect
effect via the membrane potential vi,t−1. The first term of the gradient is given by286

∇⃗w⃗iLi,t = −2
(
x⃗i,t − vi,t−1w⃗i

)
vi,t−1 , (5)

while the second term is given by
∂Li,t

∂vi,t−1
= −2

(
x⃗i,t − vi,t−1w⃗i

)⊤w⃗i , (6)

and by288

∇⃗w⃗ivi,t =
(
α − v(th)

∂si,t−1

∂vi,t−1

)
∇⃗w⃗ivi,t−1 + x⃗t . (7)

We define an influence vector p⃗i,t ≡ ∇⃗w⃗ivi,t such that it obeys the recursive equation (see Equation (7))

p⃗i,t = Ji,t p⃗i,t−1 + x⃗i,t , (8)
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where Ji,t is the Jacobian from the recurrent equation of the membrane voltage of the i-th neuron in Equation 290

(1)

Ji,t =
∂vi,t

∂vi,t−1
= α − v(th)

∂si,t−1

∂vi,t−1
. (9)

The gradient of Li w.r.t. w⃗i is then given by 292

∇⃗w⃗iLi = −

T∑
t=0

[(
x⃗i,t − vi,t−1w⃗i

)
vi,t−1 − 2

(
x⃗i,t + vi,t−1w⃗i

)⊤w⃗i p⃗i,t−1
]

(10)

We define the prediction error ϵ⃗i,t at timestep t as

ϵ⃗i,t ≡ x⃗i,t − vi,t−1 w⃗i , (11)

that determines the sign and amplitude of synaptic plasticity, and the global signal Ei,t at timestep t as 294

Ei,t ≡ ϵ⃗
⊤
i,t w⃗i , (12)

thereby the gradient of Li w.r.t. w⃗i is given

∇⃗w⃗Li = −

T∑
t=0

[⃗
ϵi,t vi,t−1 + Ei,t p⃗i,t−1

]
, . (13)

After the end of the period [0,T ], the exact gradient can be used to update the weight vector via gradient 296

descent.

w⃗i,k = w⃗i,k−1 − η ∇⃗w⃗iLi = w⃗i,k−1 − η

T∑
t=0

∆w⃗i,t

= w⃗i,k−1 + η

T∑
t=0

[⃗
ϵi,t vi,t−1 + Ei,t p⃗i,t−1

]
.

(14)

where η is the learning rate, and ∆w⃗t is the weight update obtained with the predictive learning rule [10] 298

∆w⃗i,t = ϵ⃗i,t vi,t−1 + Ei,t p⃗i,t−1 . (15)

Each neuron in the network receives inputs from other neurons, and the associated recurrent connections
are defined by the specific connectivity scheme. The contributions to the gradient of the recurrent connections 300

from neuron j to neuron i in the network are proportional to

∝
∂s j,t

∂si,t

∂vi,t

∂vi,t
. (16)

These contributions have a discontinuous effect at the time of output spikes, and thereby we neglected these 302

contributions to the gradient. Conforming to previous works [68, 61, 69], we also neglected the contribution of
the reset mechanisms in Equation (9), that is 304

Ji,t ≃ α . (17)

In the predictive learning rule, the membrane potential vi,t serves as the input variable for the loss function,
while si,t acts as a hidden variable. Thus, the predictive learning rule circumvents the issue of back-propagating 306

through discrete output variables.
In this work, we also considered weight updates that take place in real time with the prediction of the pre- 308

synaptic inputs. To do so, we approximated the Equation (14) with the current estimate of the gradient at each
timestep t, 310

w⃗i,t = w⃗i,t−1 − η ∇⃗w⃗iLi

∣∣∣∣
w⃗i=w⃗i,t−1

= w⃗i,t−1 + η
[⃗
ϵi,t vi,t−1 + Ei,t p⃗i,t−1

]
. (18)
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Spike sequences datasets
Each dataset is composed of spike sequences belonging to nclass different sequence classes, and comprise the

correlated activity of Npresyn pre-synaptic neurons. Each sequence class c ∈ nclass is defined by a unique order312

of the firing times of the pre-synaptic neurons. The Npresyn pre-synaptic neurons fire one spike in each sequence
with relative delays of 2 ms, resulting in a total sequence length of 2 Npresyn ms. We also add to the dataset314

nrandom random spiking sequences, that is, sequences whose order of firing was drawn randomly. We created the
dataset as follows. First, we set the number of pre-synaptic neurons Npresyn and the number of sequence classes316

nclass, then we randomly drew the order of firing of the Npresyn pre-synaptic neuron in each class c. Second, we
created bclass examples of the spike sequences belonging to each class c. Finally, the inputs were convoluted318

with an exponential kernel with τx = 2 ms to replicate the fast dynamics of post-synaptic currents. Thereby,
the dataset was composed by N(dataset) = (bclass ∗ nclass + nrandom) spike sequences. An example set of spike320

sequences from N = 10 pre-synaptic neurons and belonging to nclass = 4 classes is as follows:

1 2 3 4 5 6 7 8 9 10
c1 10 ms 18 ms 2 ms 4 ms 12 ms 16 ms 8 ms 0 ms 20 ms 14 ms
c2 0 ms 8 ms 12 ms 18 ms 10 ms 6 ms 2 ms 20 ms 4 ms 14 ms
c3 14 ms 10 ms 20 ms 4 ms 2 ms 8 ms 16 ms 6 ms 0 ms 12 ms
c4 4 ms 2 ms 0 ms 12 ms 20 ms 18 ms 6 ms 16 ms 14 ms 10 ms

Table 1: Example set of spike sequences from N = 10 pre-synaptic neurons and belonging to nclass = 4 classes

In Figure 1a-b and Figure S1 the dataset was composed by one example (bclass = 1) of a single sequence322

class (nclass = 1), and without examples of random spiking sequences (nrandom = 0).
In Figure 1, Figure 2, Figure 3 and Figure S2 the dataset was composed of several examples (bclass = 500)324

for each sequence class (nclass = 30), and by random spiking sequences (nrandom = 500). In Fig S3 we used the
same ratio between class examples and random sequences, but with nclass = 10.326

In Figure 4, Figure 5, Figure S4, Figure S5 and Figure S2 the dataset was composed of several examples
(bclass = 50) for each sequence class (nclass = 10), and by random spiking sequences (nrandom = 500).328

Objective functions and regularizations
We defined the predictive objective function of a network as

Lpred =
1

Nnn

Nnn∑
i=1

Li , (19)

where Li is the objective function associated to each i-th neuron in the network, see Equation (3).330

We trained the readout layer using supervised learning. During each iteration in the training and testing
phase, the actual label ys of every random sequence was drawn randomly from the nclass possible classes,332

resulting in the following dataset{
(Xs, ys) |s = 1, . . . ,N(dataset) ; ys ∈ {1, . . . , nc}

}
. (20)

Here, Xs is an example sequence in the dataset and ys is the associated label. We applied a cross-entropy loss334

to the activity of the readout layer u⃗t,

Lclass = −
1

N(dataset)

N(dataset)∑
s=1

1(i = ys) log
[

exp
(
ui,tmax

)∑nc
i=1 exp

(
ui,tmax

) ] . (21)

Here 1 is the indicator function and ui,tmax is the maximal membrane potential of the i-th readout neuron across336

timesteps, where tmax = argmaxt ui,t.
In Figure S5 we also applied an L1-regularization to the total number of spikes emitted by the network, as338

to penalize excessive firing

Lreg = λL1

Nnn∑
i=1

T∑
t=0

si,t (22)

where λL1 is a hyperparameter controlling the influence of the regularization term.340
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Optimization and training schemes

In the following, we provide a description of the optimization techniques and the training schemes used in
this study. 342

In Figure 1, Figure 3, Figure S1, Figure S2 and Figure S3, we minimized Lpred using the online approxi-
mation of the predictive learning rule. That is, each i-th column of W was updated following Equation (18). 344

In Figure 4, Figure 5, Figure S4, and Figure S5 we used different networks with different optimization
schemes. For the case of the predictive neural network, we employed backpropagation-through-time (BPTT) 346

to minimize both the network’s objective Lpred and the readout layer’s objective Lclass. For the LIF network
with recurrent inhibition, we used BPTT to minimize the objective Lclass. We updated all the synaptic weights 348

in the networks, except for the connectivity matrix Wrec that was kept fixed. Finally, in the LIF network without
recurrent inhibition, we also employed BPTT to minimize the objective Lclass of the readout layer. Unlike the 350

previous case, we updated all the synaptic weights in the networks.
For all the spiking neural networks that were not optimized with the predictive learning rule, we applied 352

a surrogate gradient to replace the spiking non-linearity with a differentiable function [61]. Specifically, we
chose a fast sigmoid function of the form 354

−v(th)
∂si,t

∂vi,t
≃

1
γ |vi,t| + 1

(23)

where γ is a parameter controlling the steepness of the sigmoid function. We optimized the model parameters
with the Adam optimizer [70] in all the simulations shown in this study. 356

Weights initialization

In Figure 1, Figure 2, Figure 3, and Figure S1 the synaptic weights from the input dataset to the network
were determined by the connectivity matrix W ∈ RNpresyn,Nnn . Before training, the entries of W were indepen- 358

dently drawn from a uniform distribution U(0,winit), with winit > 0. The connections between neurons in the
network were defined by the connectivity matrix Wrec ∈ RNnn,Nnn . Before training, the connectivity matrix Wrec 360

was defined as Wrec = wihn
(
Inn + N−1/2

nn Unn
)
, where Inn is the identity matrix, Nnn is the number of neurons in

the network, Unn is a random matrix drawn from a uniform distribution between [0,1], and wihn < 0 defines the 362

overall strength of the recurrent inhibition. The connectivity matrix Wrec was fixed during the simulations, that
is, the associated synaptic weights were not subject to plasticity. 364

In Figure 4, Figure 5, Figure S4, and Figure S5 we used different types of networks with different initializa-
tion schemes. The connections between the network and the readout layer were determined by the connectivity 366

matrix Wout ∈ RNnn,nclass . Before training, the entries of Wout were independently drawn from a normal distri-
bution N(0, 1/

√
Nnn). For the case of the predictive neural network and the LIF network with inhibition, we 368

initialized the connectivity matrices W and Wrec as in Figure 1 and Figure 3. For the case of the LIF network
without inhibition and the random neural network, the entries of W and of Wrec were independently drawn from 370

the normal distribution N(0, 1/
√

Npresyn) and N(0, 1/
√

Nnn), respectively.

Data analysis

We calculated each entry Ci j of the confusion matrix in Figure 4 as the average number of observations 372

known to belong to sequence class i and predicted by the readout to belong to sequence class j. We calculated
the average entry Ci j at the end of training (epoch 4000) and over 100 different simulations. 374

To calculate the Mutual Information (MI) in Figure 4, we first assume a uniform prior distribution p( j) of
the sequence class, and we calculated the joint probability p(i, j) as the product of the prior distribution p( j) 376

and the conditional distribution p(i| j) obtained from the confusion matrix,

p(i, j) = p(i| j)p( j) . (24)

Then, we calculated p( j) as the sum of the joint probability p(i| j)p( j) over the expected sequence class p( j), 378

and we finally calculate the MI as

MI =
∑

i

∑
j

p(i, j) log
(

p(i, j)
p(i)p( j)

)
. (25)
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We averaged the MI in each epoch over 100 different simulations.380

We calculated the average Spearman correlation corr(k, l) in Figure 4 between each pair of spike train k and
l as382

corr(k, l) =
⟨sk − µk, sl − µl⟩√

⟨sk − µk, sk − µk⟩ ⟨sl − µl, sl − µl⟩
, (26)

where s is the spike train, µ is the mean of the respective spike train, and ⟨·⟩ is the dot product. We calcu-
lated corr(k, l) of the spike trains of any pair of neurons (k, l), for each sequence class c and for 100 different384

simulations.
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b

a

Figure S1: Dependence of sequence anticipation to model parameters - relates to Figure 1 in the main text. a) The purple line
represents the duration of the neuron activity at the end of training (epoch 150) for different numbers of pre-synaptic neurons N. We
performed the same simulations with the same model parameters for each value of N. The black line represents the duration of the
associated pre-synaptic spike sequence. As in Figure 1, the N pre-synaptic neurons fired sequentially with relative delays of 2 ms,
resulting in a total sequence length of 2 ∗ N ms in each case. The neuron learns to fire at the beginning of each sequence, regardless of
the number of pre-synaptic neurons N. b) Dynamics of the synaptic weights w⃗ as a function of the training epochs, and for different
numbers of pre-synaptic inputs N. From left to right: N = 10, N = 20, N = 50, N = 80. In each plot, the synaptic weights are ordered
along the y-axis from 1 to N following the temporal order of the sequence.
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Figure S2: Evolution of the synaptic weights and the spiking activity for selective neurons - relates to Figure 1 in the main text.
Simulations were performed as in Figure 1, but with different network initialization. a) The synaptic weight matrix of the network at
the end of training (epoch 750). The input was composed of sequences belonging to 30 different classes (nclass = 30). The synaptic
weights are ordered along the y-axis from 1 to 100 following the temporal order of the input spikes in sequence class c = 1. Neuron
n = 0 developed selectivity to class c = 1, and assigned credit to the first inputs in the order of class c = 1. b Left) Dynamics of the
synaptic weights w⃗ of the neuron n = 0 as a function of the training epochs. In each plot, the synaptic weights are ordered along the
y-axis from 1 to 100 following the temporal order of the specific sequence class c. The synaptic weights dynamics resemble the one in
Figure 1d only for class c = 1. The neuron developed selectivity due to the recurrent inhibition in the network, thereby assigning credit
only to the first inputs of class c = 1. Right) Dynamics of the spiking activity of the neuron n = 0 as a function of the training epochs.
Each plot shows the dynamics of the spiking activity across epochs when the neuron was presented to the specific sequence class c.
The neuron developed selectivity by firing only when presented to class c = 1. The neuron grouped its activity earlier in time, such that
it eventually learned to fire for the first inputs in the sequence class c = 1. c) Same as in a for the sequence class c = 4. d) Same as in b
for the neuron n = 5.
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a b c

Figure S3: Dependence of network selectivity to model parameters - relates to Figure 1 in the main text. Simulations were
performed as in Figure 1, but with nclass = 10. a) Network selectivity is shown as a function of the mean of the initial weight matrix for
the external input W. The network selectivity does not strongly depend on the initial conditions. For each weight, we performed 100
simulations (shown are the standard errors of the mean). For each simulation, we used 1000 epochs. b) As in panel a, but as a function
of the percentage of random sequences in the dataset. c) As in panel a, but as a function of the membrane time constant τm and of the
spiking threshold v(th). Here we performed the simulations with bclass/brandom = 1. The network gets selective for a vast range of model
parameters. The highest degree of selectivity is obtained at the border of the region where the neurons in the network start spiking.

ba

Figure S4: Model performances and network selectivity - relates to Figure 4 in the main text. a) Classification accuracy of the
readout layer and percentage of selective neurons in the PLR+GI network, see the legend. The panel shows the mean and standard
deviation computed over 100 different simulations. b) Evolution of the objectives Lclass and Lpred during the training and testing phase.
The random sequences comprised 10% of the dataset during the training phase, and 50% of the dataset during the testing phase. All the
objectives functions are normalized to the initial value at epoch 0.

ba

PLR+IF
reg_BPTT

Figure S5: Effect of regularization on the classification of spike sequences - relates to Figure 5 in the main text. Simulations
were performed as in Figure 5, but here we compared the performance of the PLR+GI network with the BPTT network augmented
with a L1 regularization on the network activity (reg BPTT). Specifically, we trained the network end-to-end on the total objective
Ltot = Lclass + λL1Lreg, where Lreg =

∑T
t=0

∑Nnn
i=1 |si,t | and λL1 is a hyperparameter that controls the influence of the regularization term,

see Methods. a) Evolution of the objectives Lclass for the train and test sets, and of the objective Lreg for the train set. All the objective
functions are normalized to the initial value at epoch 0. b) The classification accuracy of the readout layer during training is shown
on the left. The reg BPTT network achieved similar performances to the BPTT network in Figure 5d. The average time step at which
the classification accuracy reached its maximum value is shown in the center. The PLR+GI network reaches its maximal performance
in half the time compared to the reg BPTT network. The average number of spikes observed by the readout layer prior to reaching
the maximum accuracy is presented on the right. As expected, the regularization term limits the total amount of spikes in the network
activity.
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