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Abstract
In gastric cancer (GC), there are four molecular subclasses that indicate whether patients respond to chemotherapy or
immunotherapy, according to the TCGA. In clinical practice, however, not every patient undergoes molecular testing.
Many laboratories have used well-implemented in situ techniques (IHC and EBER-ISH) to determine the subclasses in
their cohorts. Although multiple stains are used, we show that a staining approach is unable to correctly discriminate
all subclasses. As an alternative, we trained an ensemble convolutional neuronal network using bagging that can pre-
dict the molecular subclass directly from hematoxylin–eosin histology. We also identified patients with predicted
intra-tumoral heterogeneity or with features from multiple subclasses, which challenges the postulated TCGA-based
decision tree for GC subtyping. In the future, deep learning may enable targeted testing for molecular subtypes and
targeted therapy for a broader group of GC patients.
© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

The correct subclassification of malignant tumors plays a
key role in histopathological evaluation of tumor speci-
mens. In addition to conventional histomorphology,
molecular subclassification of tumor entities is becom-
ing increasingly important for patient care. Gastric can-
cer (GC), one of the most lethal tumor types, can be
divided into diffuse, intestinal, and mixed subclasses
based on its morphologic features according to the clas-
sification of Lauren [1]. In 2014, the TCGA developed a
robust molecular classification system that distinguishes
four molecular subtypes of GC, which were incorporated

into the WHO classification in 2019 [2]: EBV (Epstein–
Barr-virus positive, 9%), MSI (microsatellite unstable,
22%), GS (genomically stable, 19%), and CIN (chromo-
somally unstable, 50%) [3] with some clinical implica-
tions. Here, differences in response to chemotherapy
were observed, with CIN-positive GC patients
benefiting most from chemotherapy [4]. Even more
interestingly, EBV and MSI subtypes appeared to
respond much better to immunotherapy regimens
(e.g. pembrolizumab), with overall response rates rang-
ing from 85% to 100% [5]. Several attempts have been
made to classify GC into molecular subgroups based
on tissue staining techniques, without using molecular
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sequencing methods: EBV cases can be identified using
EBV-encoded RNA (EBER) in situ hybridization, and
MSI can be detected using immunohistochemistry
(IHC; with up to four antibodies: anti-MLH1, anti-
PMS2, anti-MSH2, anti-MSH6) or fragment length
analysis [5–12]. However, the distinction between GS
and CIN is less clear. For these categories, decreased
expression of E-cadherin [8], Lauren morphology [7],
or mutational status of TP53 [11] are used for differenti-
ation. However, comparison of these methods with
genomic data is lacking, so their trustworthiness is
unknown.

Materials and methods

Ethics statement
All experiments were conducted in accordance with the
Declaration of Helsinki and the International Ethical
Guidelines for Biomedical Research Involving Human
Subjects [13]. Pseudonymized archival tissue samples
were retrieved from the tissue bank of the Institute of
Pathology, University Hospital Cologne (UHC) after
approval by the institutional ethics board as described
in the internal documents 13–091 and 10–242.

Antibodies
The following antibodies were used: anti-HER2 (clone
4B5; catalogue number 709-4493; ready-to-use dilution;
Roche/Ventana, Mannheim, Germany), anti-TP53
(clone DO-7; catalogue number M7001; 1:800 dilution;
DAKO, Glostrup, Denmark), anti-E-cadherin (clone
NCH-38; catalogue number M3612; 1:50 dilution;
DAKO), anti-MLH1 (clone M1; catalogue number
760-5091; ready-to-use dilution; Roche/Ventana), and
anti-MSH2 (clone G219-1129; catalogue number
760-5093; ready-to-use dilution; Roche/Ventana).

EBV-encoded RNA (EBER) in situ hybridization
A fluorescein-conjugated oligonucleotide probe was
used in conjunction with a monoclonal anti-fluorescein
antibody (EBER-ISH probe for BOND Ready-to-Use
with Ready-to-Use Anti-Fluorescein Antibody, cata-
logue numbers PB0589 and AR0222; Leica, Newcastle
Upon Tyne, UK) and DAB as chromogen (Leica
Biosystems, Wetzlar, Germany) according to the manu-
facturer’s instructions. EBV positivity was defined as the
presence of staining in more than 80% of tumor cell
nuclei.

Immunohistochemistry
GC tissue sections cut at 3 μm from formalin-fixed,
paraffin-embedded (FFPE) blocks were subjected to
antigen retrieval (microwave oven for 10 min at
250 W; citrate buffer for TP53, EDTA for all other anti-
bodies) and immunohistochemistry was carried out in a
Benchmark immunostainer (Ventana, Tucson, AZ,

USA). Two surgical pathologists (RB and AQ) per-
formed a blinded evaluation of the immunostained slides
without knowledge of clinical data. For the analysis of
p53 staining, tumors were scored in five groups based
on the extent of p53 positivity by determining the fre-
quency of tumor cells displaying strong nuclear staining
(0%, 1–10%, 11–50%, 51–90%, and 91–100%). Focal
weak nuclear p53 staining was regarded as background
and scored as 0%. HER2 expression was scored accord-
ing to the DAKO HercepTest criteria [14].

Copy number variations (CNVs)
DNA extraction and Affymetrix (Agilent) OncoScan
copy number variation (CNV) analysis were performed
as described previously [15].

CIN ratios
To obtain CIN ratios for the TCGA data, we downloaded
the broad_values_by_arm.txt file from firebrowse.org
for the TCGA gastric cancer project (STAD, stomach
adenocarcinoma). Arms with a value above 0.1 and
below �0.1 were counted as altered. The CIN ratio
was calculated as modified arms divided by total arms
according to Kohlruss et al [16]. To make the TCGA
data comparable with OncoScan results, only arms cov-
ered by OncoScan CNV arrays were included.

Tumor annotation and patient cohorts
For training, validation, and internal testing 133 whole-
slide images (WSIs) (27 EBV, 38 MSI, 32 GS, 36
CIN) from the TCGA-STAD project were used. The 65
UKC images were used exclusively for external testing.
In all histological images of GC, the cancerous regions
were outlined by an expert pathologist (SG), excluding
regions of low image quality (e.g. pen markings). The
slides were visualized using QuPath [17], and the anno-
tations were made using the tools available there (poly-
gon, wand, brush). For each WSI, up to 100 image
patches of 600 � 600 pixels representing an area of
300 � 300 μm were extracted from these cancerous
regions using the open slide library (v1.1.1) [18] for
WSI handling and skImage (v0.16.2) [19] for scaling.
For convolutional neuronal network (cNN) training
and evaluation, we used the molecular subclass as label.
For the TCGA cohort, we took that label directly from
the supplementary material, Table S11.1a of the original
publication [3]. For the UKC cohort, our ground truth
label used during testing was determined using the stain-
ing approach described herein.

Neural network models and class detection
The individual cNNs classifying the molecular subtypes
were trained using the pyTorch [20] (torch: v1.0.1;
torchvision: 0.2.2) and the fastai [21] (v1.0.52) library.
A (on ImageNet pretrained) DenseNet161 architecture
[22] was used, and the weights of the convolutional
layers were kept fixed, the classification layer consisted
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of three fully connected layers, and a learning rate of
1e-2 was used. Images were augmented slightly in every
epoch (flipping and rotating by 90�). Networks were
trained for seven epochs using 244 � 244 pixels from
each patch with a weight decay of 0.1, a dropout of
0.4, and a batch size of 40. The network with the lowest
error rate at the end of the epochs was saved for
further use.
Because each individual cNN was trained in a bal-

anced manner, and due to the low number of EBV-
positive cases in the TCGA cohort in every iteration,
21 WSIs from each subclass (in total 84) were used for
training, four for validation (in total 16) and the three
or four for the internal/hold-out test (three for EBV and
four for CIN, GS and MSI; in total 15). From each
WSI 30 patches were used, in case less were available
(e.g. because of a too-small tumor area), the other WSIs
were oversampled to balance the dataset. Oversampling
the less frequent classes does not strongly decrease error
rates, while oversampling a limited number of EBV
cases (e.g. use only ten EBV cases for training but
21 for MSI, GS, and CIN) increases error rates.
For the ensemble, the individual cNNs were trained

using a bagging-like approach: The patients were ran-
domly assigned to the datasets and for each patient,
30 image patches from the WSIs were randomly used
so that each cNN was trained with slightly different
patients and image patches in the training dataset. The
final ensemble prediction for one image patch is a simple
consensus/majority vote over all individual cNNs. In
addition, a patient label was determined by simple con-
sensus/majority vote over image patches.

Statistics
Statistical tests were performed with the scipy.stats
package [23] in Python as implemented in the ‘f_one-
way’, ‘ks_2samp’, ‘ttest_ind’ method. For multiple test-
ing, the ‘multicomp.allpairtest’ method was used with
method ‘bonf’ for P value adjustment.

Results and discussion

Design and validation of a staining approach
We decided to classify patients from our own GC cohort
collected at UKC into the different molecular subclasses
using an approach integrating the previously used cri-
teria (Figure 1A). In total, 538 of 572 cases were analyz-
able (94%). EBV patients were detected using EBER in
situ hybridization (25/538, 5%). Patients with negative
immunoreactivity for MLH1 or MSH2 were classified
as MSI-positive (44/538, 8%). Compared with the
TCGA cohort, these two groups were underrepresented
in our German cohort. The remaining patients were sep-
arated into GS (42/538, 8%) and CIN (427/538, 79%)
based on Lauren morphology, loss of E-cadherin expres-
sion, and TP53 overexpression.

In the original TCGA publication, the latter distinction
was based on clustering of an SNP array-based copy
number analysis [3]. However, a measure with a clear
threshold value such as the CIN ratio [16] would be more
suitable for clinical routine. To now verify whether our
staining approach can reproduce the separation between
GS and CIN, we additionally performed molecular ana-
lyses of the copy number changes using OncoScan
CNV arrays and computed CIN ratios, covering all sub-
classes of the staining approach (Figure 1B). Supplemen-
tary material, Figure S1 provides gains and losses per
chromosome for all patients from the Cologne cohort
for whom CNV data could be generated. For example,
cases #2 and #8 from the Cologne cohort classified as
CIN by staining methods nicely show the discrepancy
with the OncoScan CNV data; both cases show hardly
any aberrations (supplementary material, Figure S1).
Conversely, numerous GC samples labeled as GS by
staining techniques show numerous aberrations
(e.g. #37-41, #43, and #46). The calculation of the CIN
ratio [16] thus represents a simple, quantitative, and
easily interpretable measure for the estimation of chro-
mosomal instability (CIN), which enables the differentia-
tion of GS and CIN.

Figure 1. Gastric cancer cohort and CIN ratios determined by in situ hybridization. (A) Schematic representation of the staining approach to
determine the molecular subtypes in the UKC cohort. The numbers in the circles indicate the number of patients in the UKC cohort assigned to
each class. Thirty-four patients could not be classified using this approach. (B) Boxplot of CIN ratios separated by molecular subclasses for the
TCGA dataset. CIN ratios for selected cases from the UKC dataset are shown in color for each subclass as determined by the staining approach.
There were 6/8 GS cases that had abnormally high CIN ratios compared with the TCGA data. An asterisk marks classes where TCGA and UKC
data are from different distributions (ks test with p < 0.05).
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Although there was no defined threshold to distin-
guish CIN from GS cases in the TCGA cohort, as
expected, CIN cases had a higher CIN ratio compared
with the other classes in the TCGA cohort [Figure 1B,
mean CIN ratio: CIN 0.53, EBV 0.26, MSI 0.15, GS
0.12; ANOVA P value = 3.9e-52 and Kolmogorov–
Smirnov (ks) test p < 0.05 (with Bonferroni correction)
for CIN versus all other and EBV versus GS]. CIN ratios
of GS cases based on in situ-based subtyping were sig-
nificantly different from GS cases within TCGA
(ks test p < 0.05). Thus, GS labeling based on the two
key features defined in TCGA (diffuse histology and
altered cell adhesion) [3] is insufficient for correct iden-
tification of GS cases and cannot replace the explicit
determination of copy number alterations. Moreover,
this observation is consistent with the fact that expres-
sion of cell adhesion proteins (e.g. B1/B3 integrins)
was increased [3] in GS, and detection of E-cadherin loss
by IHC [24] is not an appropriate criterion to identify GS
cases. For the classes GS and CIN, no gene with suffi-
cient differential expression was found in the TCGA
data, so improved staining-based classification appeared
difficult (Supplementary materials and methods and
Figure S2).

Deep learning as an alternative approach
Overall, separation of GC patients was not possible
using simple staining methods. A possible alternative
to determine the correct molecular subtype without com-
prehensive molecular profiling could be deep learning,
which is gaining attention in some medical data analysis
tasks [25]. For example, using deep learning, cancer
patient survival and mutation status in tumors could be
predicted from H&E images of tumors of the lung [26],
prostate [27,28], brain [29], and other locations.
Recently, molecular subclasses based on tissue morphol-
ogy were also shown to be successfully predicted using
convolutional neuronal networks (cNNs) in bladder
[30] and colorectal [31] cancer. In addition, Kather
et al showed that MSI can be correctly predicted in gas-
tric and colorectal cancer using artificial intelli-
gence [32,33].

Therefore, we decided to train a classifier (Figure 2A)
to predict the molecular subtype of GC based solely on
H&E histomorphology using expert annotated WSIs
from TCGA as a study cohort. Data from TCGA were
used for training and model selection (here called valida-
tion), as well as for internal testing. The UKC cohort was
used exclusively for external approval (here called test-
ing) and not for training. The training, validation, and
testing datasets were balanced for the image patches.
Each patient belonged exclusively to only one dataset.
We found that training was limited by the subclass with
the lowest case number (EBV) and that oversampling
this class to include more CIN, MSI, and GS patients
did not increase performance (Supplementary materials
and methods, Figure S3, and Table S1).
Ideal parameters were achieved via a grid search (Sup-
plementary materials and methods and Figure S4). An

individual cNN achieved a mean validation error rate
of 43 � 7% and a slightly higher mean test error of
49 � 8% for TCGA data, while there were no significant
differences between the two error rates (supplementary
material, Figure S5). Next, we wanted to test whether
the trained cNN also worked on the independent UKC
test dataset. As expected, the test error rate was signifi-
cantly increased to 62 � 6% (Figure 2B and supplemen-
tary material, Figure S5 and Table S2).
To test whether the GS cases, likely to be misclassi-

fied by our staining approach, were responsible for this
observation, we removed them from the test datasets.
And in these modified test datasets, the resulting error
rates were no longer significantly different (Figure 2B).
In line with this, the number of potentially detected GS
cases in the full UKC test dataset was 11 � 7%, so it
was below random guessing (25% for four classes) and
differed from the other classes, where the number of true
positives was between 40% (CIN) and 58% (EBV) (sup-
plementary material, Table S2). In contrast, the true pos-
itive rate in the hold-out TCGA test dataset was in the
same range for all four classes (MSI, 43%; GS, 55%;
supplementary material, Table S2). To further support
the hypothesis that the GS cases caused the problem,
we additionally trained cNNs with three classes. In each
experiment, we used only a subset of the molecular sub-
types and removed one class from all datasets (training,
validation, and hold-out test data). And, indeed, all
experiments where the GS class was included in the
training data showed significant differences between
the error rates of the TCGA and UKC hold-out test data-
sets. Interestingly, no such differences between the two
test error rates were observed in the experiment where
the GS class was excluded (supplementary material, Fig-
ure S6). Taken together, this strengthens the hypothesis
that the GS class labels determined via morphology
and staining techniques contain errors and that our
models trained on TCGA data are generalizable to the
external UKC test data. But it is important to mention
that it is still possible that the model does not generalize
for the GS class, since we cannot test for this fact: a
proper relabeling of the UKC cohort was still not possi-
ble, for example, because MSI detection using IHC only
achieves ~95% accuracy [12]. In addition, a clear separa-
tion of CIN and GS cases in the TCGA dataset based on
the CIN ratio was not possible due to the lack of a unique
cutoff (Figure 1B). Therefore, we decided to continue
our experiments with the UKC(�GS) test dataset.
Remarkably, however, this potential mislabeling of dif-
fuse cases also showed that our model, which can cor-
rectly predict GS cases in the TCGA test dataset, not
only focuses on diffuse morphology but also learned true
features of the GS subtype.
Kather et al calculated a consensus across all tiles in a

GC patient to determine a patient-based classification
[33]. For an independent test dataset (KCCH Gastric),
they achieved an AUC (area under the curve) of 0.69
on patient level for a two-class model (MSI-high versus
MSS) in GC [33]. Similarly, we achieved better perfor-
mance when considering patient-based consensus
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(patch-based: 53.5% versus patient-based: 47.4%) and
achieved an AUC of 0.76 with our four-class model on
our independent UKC(�GS) test dataset on the patient
level. A recent multi-center study, including many more
patients in training compared with our study (90 EBV-
positive; 182 MSI-positive), trained several two-class
cNNs to detect either EBV or MSI in GC and reached
AUCs of 0.81 and 0.76 for an external test cohort [34].
Still, our AUC values are in a similar range and in line
with their findings. Of note, our four-class model also
performed better in detecting EBV compared with MSI
for the external UKC cohort (supplementary material,
Table S2).
In addition to being able to perform majority voting

for a patient’s individual tiles, one can also perform
majority voting on multiple cNNs, a so-called ensemble
cNN, which we trained using bagging to obtain slightly

different individual cNNs (Figure 2A). For bagging,
the training and validation datasets coming from the
TCGA data differ for each individual cNN: we randomly
assign patients to one of the datasets and then randomly
draw 30 image patches from its pool of 100 pre-extracted
patches. Due to the overrepresentation of MSI, GS, and
CIN, there were patients who were not used during the
corresponding round. But these patients can be used in
one of the other rounds. A large decrease was observed
for both patch-based and patient-based error rates in
the external UKC(�GS) test data, even when only five
cNNs were included in the ensemble cNN (patient-based
five cNNs: 35.6%). Using even more cNNs (up to ~40
cNNs) in the ensemble further decreased the patient-
based error rate to ~32% (Figure 2C). In addition,
ensemble cNNs trained using the bagging approach
always perform better compared with vanilla ensembles

Figure 2. Study design, and single and ensemble cNN performance. (A) Study design of the training procedure. Individual DenseNet161 cNNs
were trained with TCGA data to distinguish between the four molecular subclasses. Each model was trained using the bagging approach. The
TCGA dataset was split into a training, a validation (for model selection), and a test dataset; the remaining patients were not used in this
round. Later, multiple individual cNNs were combined into an ensemble and a consensus prediction was made for a single image patch.
The individual and ensemble cNNs were then used for predictions on unseen test data. (B) Performance of single cNNs for the TCGA and
UKC cohorts. The error rates for test data at the image patch level are shown graphically. No significant difference was observed for TCGA
and UKC datasets without the GS class (�GS) (t-test p < 0.05). (C, D) Performance of ensemble cNNs for the UKC cohort. To obtain the pre-
diction for a patient, the most frequently selected class of a cNN (four-class model) was chosen. To obtain consensus prediction for each
image/patient, the most frequently selected class determined by multiple cNNs was accepted. (C) The number of cNNs used to calculate
the consensus affected the error rate for the hold-out UKC test dataset (excluding GS cases). Dotted lines give the mean error rates for
the prediction using a single cNN. (D) Under the condition that a certain number of cNNs have the same result to be counted, we could
not make a prediction for every patient. For those patients for whom a prediction could be made under the above condition, the error rates
decreased significantly, while the remaining patients were excluded. For example, if we accept a consensus prediction for only 40% of all
patients and use an ensemble with 200 individual cNNs, we observe an error rate of only ~10%. For more details on this plot, please refer
to supplementary material, Figure S7.
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(ensembles trained with the same datasets but different
random seeds; supplementary material, Table S3).

Prediction using multiple cNNs, each trained with a
slightly different but overlapping dataset, allowed us to
make predictions only when a certain number of net-
works reached the same result as an additional quality
criterion. To do this, we enforced that a certain percent-
age of the ensemble supported the majority vote and
recorded the error rate for the subset of patients for
whom enough individual cNNs supported the decision.
Assuming that well-supported consensus prediction is
only possible for half of all patients, the error rate can
be reduced to 15% if 50 cNNs are used for majority
voting. Using this method, it was even possible to reduce
the error rate to below 10% (Figure 2D and supplemen-
tary material, Figure S7) while estimating not only
MSI [33] but all four subtypes.

To better understand which morphological features
are important for the prediction of ensemble cNNs, an
examination of the confidently predicted image patches
revealed that EBV is associated with a high density
of lymphocytes, MSI with duct-like structures, GS
with diffuse morphologies, and CIN with necrotic areas
(supplementary material, Figure S8).

Detailed comparison of deep learning and
staining-based labels
As mentioned previously, selected GC cases were ana-
lyzed using OncoScan copy number variation (CNV)
arrays (Affymetrix), which also provide reliable labels
for the UKC dataset. The selection of samples for this
ground truth generation is detailed in supplementary
material, Figure S9. In general, we noticed that samples
with high homogeneity in the predicted class of all tiles
were those with a valid consensus prediction across
multiple cNNs (Figure 3A and supplementary material,
Figure S9). Interestingly, there were also potential GC
patients in the UKC dataset with high predicted homo-
geneity and incorrect consensus prediction according to
the in situ-based label: for example, almost all tiles of
case #2 (Figure 3A) were predicted to be positive for
EBV subtype. However, the label assigned by the stain-
ing method was CIN. In general, EBER-ISH can lead to
false negatives [35,36] and together with a measured
CIN ratio of 0 (supplementary material, Table S4),
which clearly contradicts the staining-based label, it is
possible that the safe consensus prediction is not an
error of the cNN but again one of the staining-based
method. In addition, case #20 was predicted to be
CIN by the ensemble cNN, although the EBER-ISH
was positive. However, because the CIN ratio of this
case was quite high (0.81 versus 0.61, the maximum
observed value from TCGA), its actual classification
was also controversial. For the remaining three cases
with incorrect but confident prediction, we either had
no tissue left for CNV analysis or the proportion of
aberrant cells was too low for correct analysis using
CNV arrays. Also, on a more global level (of course
limited to our 22 cases with available CNV array data),

the cNN approach was better at predicting CIN-high
(6/10) and CIN-low (9/12) compared with the staining
approach, which correctly assigned only 3/10 and
8/12 cases, respectively (Figure 3B and supplementary
material, Table S4). According to Kohlruss et al [16],
cases are considered as CIN-high if their CIN ratio
is above 0.5, while also thresholds in the range of
0.4–0.6 would come to the same conclusion. These
results again highlighted the error-proneness of our
staining-based method and further demonstrated that
determining GC molecular subtypes using in situ
hybridization was not feasible, whereas deep learning
was a more powerful tool.

Gastric cancer (GC) intra-tumor heterogeneity
In general, it was difficult to assess whether there was
true intra-tumor heterogeneity in the remaining cases
with respect to molecular subclasses, while the error
rate for a single tile was over 40% on the external
UKC(�GS) test data. To test whether there are patients
with true intra-tumor heterogeneity, we tested whether
we could identify patients in which the different sub-
types are localized in different spatial regions. To do
this, we calculated the average pairwise distance
between all tiles of a subclass and tested whether this
distance was below the 95% confidence interval for a
randomly drawn set of tiles of the same size. Indeed,
in 27/53 patients (50.1%, Figure 3C) of the UKC
(�GS) test dataset, at least one of the molecular sub-
classes was confined to a specific area of tissue,
whereas the most common subclass in these cases usu-
ally accounted for only 40–90% of all tiles (24/27
cases) and true tumor heterogeneity could be suspected.
An example where two subtypes were detected that
were in different regions of the tumor is shown in
Figure 3D (see supplementary material, Figure S10
for larger image patches of both regions). In this case,
the consensus prediction (EBV) is false, but a large area
is also classified as MSI, which is consistent with
ground truth. Such tumor heterogeneities can also be
observed in the TCGA dataset (supplementary mate-
rial, Figure S11) for 54/134 patients (40.3%); here, we
also trained ensemble cNNs but only collected data if
the corresponding patient was in the hold-out test data-
set in the respective run. Consistent with our data, intra-
tumor heterogeneity in GC is well known: For example,
the Lauren classification already accounts for the mixed
type, which has different histomorphologic growth pat-
terns within a tumor [1] but is thought to have a clonal
origin. The HER2 status of a tumor also varies at differ-
ent sites [37], so it is also possible that different molec-
ular subtypes exist within a tumor. In addition to our
data suggesting that heterogeneity of molecular sub-
types according to TCGA definition is a common phe-
nomenon, there are already case reports in which
intra-tumoral heterogeneity has been observed for
EBV [36,38] or MSI [39,40]. Although GC heterogene-
ity is known, its detection is still challenging in the
laboratory and deep learning could help. In general,
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heterogeneity could be of enormous importance as data
of its influence on the therapy success of, for example,
immune checkpoint inhibition is missing.
The observation of true tumor heterogeneity in many

patients indicated that there are image tiles labeled with
a false ground truth, since only one global label is avail-
able for each patient. For this reason, we started a sec-
ond round of training and first generated a TCGA core
dataset in which we included only images that were
correctly classified by consensus prediction while the
patient was in the hold-out test dataset (supplementary
material, Figure S12). Using this core TCGA dataset
for training, we obtained lower error rates for individ-
ual tiles as well as for complete patients. However, for
consensus prediction with an ensemble cNN, the error
rates in the external UKC(�GS) test data did not
decrease as much as for the complete dataset. This indi-
cated that removing potentially mislabeled data indeed
reduces error rates; however, it seemed possible that
images with, for example, atypical features for the
respective subclass were removed when creating the
core dataset. Thus, in the future, it would be important,
to first experimentally identify patients with tumor het-
erogeneity, which is especially true for the test dataset,
because only with this information can the correct error
rates be determined, and each mislabeled image
reduces the observed accuracy of the learned model.
Second, more sophisticated label de-noising methods
should be tested in training.

Molecular classification of gastric cancer (GC)
It needs to be validated whether the postulated decision
tree is a valid method to classify all GC patients, because
patients with multiple characteristics exist (e.g. patient
#20 or #53 of the UKC cohort; Figure 3 and supplemen-
tary material, Table S4). Moreover, the data-rich molec-
ular clustering in the TCGA publication and the final
decision tree partially contradict each other in up to
26% of all patients (Supplementary materials and
methods). Thus, comparing our error rate of the cNN
ensemble (~33%) with that of the full clustering (22–
26%), we can see that we are already close to the opti-
mum. Moreover, it is also unclear which molecular clas-
sification system is most appropriate for GC as other
systems exist – for example, the ACRG (Asian Cancer
Research Group) system based on mRNA expression
[41], systems based on methylation data [42–44], or sys-
tems that attempt to combine ARCG and TCGA [8,9].
This suggests that there is still be a long way to go to per-
fectly classify GC into molecular subtypes [45].

Conclusions

The simplified molecular TCGA subclasses could be
predicted by deep learning directly based on H&E stain-
ing, and no systematic errors were included, as it was
with the easy-to-use staining approach based on WHO

Figure 3. Gastric cancer heterogeneity and CIN prediction of the UKC cohort based on deep learning from H&E morphology. (A) Four class
ensemble cNN models trained with TCGA data. The frequency of consensus prediction for all tiles of individual patients [UKC(�GS) test data]
is shown. The ground truth (gt) is indicated in the top row. Green/red squares below indicate patients with secure correct/incorrect consensus
prediction using ensemble cNNs. (B) Comparison of ensemble cNN-based deep learning using the staining approach in predicting CIN-high
(molecular subclass designation: CIN) and CIN-low (molecular subclass designation: EBV, GS, MSI). CIN ratios above 0.5 are usually consid-
ered chromosomally unstable. (C) Histogram for the frequencies of the class with the consensus prediction (whether correct or not) for the
UKC(�GS) test dataset (light grey). Dark grey indicates the number of patients in whom at least one molecular subclass was found at a given
location and is counted as locally clustered. (D) Example of a whole-slide image for patient #53 where more than one subclass was found,
each at a defined region.
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rules. Those morphologic and staining methods for sub-
classification of GCs were not adequate to distinguish
all four molecular subtypes. Due to the inaccurate
classification (especially of GS/CIN) as well as the
overlap of the four GC subgroups, the artificial intelli-
gence (AI)-based model was less trainable: with each
mislabeled image, the observed accuracy of the
learned model decreased. Possible causes of mislabel-
ing in the TCGA cohort included simplified classifica-
tion using a decision tree, the fact that certain tumors
belong to more than one class, and intra-tumor hetero-
geneity. Therefore, it is promising to further refine this
cNN approach in the future with additional training
data (especially important for the rarer EBV class) to
reduce error rates.
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