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Abstract
The	 evaluation	 of	 pharmacological	 data	 using	 machine	 learning	 requires	 high	
data	quality.	Therefore,	data	preprocessing,	that	is,	cleaning	analytical	laboratory	
errors,	 replacing	 missing	 values	 or	 outliers,	 and	 transforming	 data	 adequately	
before	 actual	 data	 analysis,	 is	 crucial.	 Because	 current	 tools	 available	 for	 this	
purpose	 often	 require	 programming	 skills,	 preprocessing	 tools	 with	 graphical	
user	 interfaces	 that	 can	 be	 used	 interactively	 are	 needed.	 In	 collaboration	 be-
tween	 data	 scientists	 and	 experts	 in	 bioanalytical	 diagnostics,	 a	 graphical	 soft-
ware	package	for	data	preprocessing	called	pguIMP	is	proposed,	which	contains	
a	 fixed	sequence	of	preprocessing	steps	 to	enable	reproducible	 interactive	data	
preprocessing.	As	an	R-	based	package,	it	also	allows	direct	integration	into	this	
data	science	environment	without	requiring	any	programming	knowledge.	The	
implementation	of	contemporary	data	processing	methods,	including	machine-	
learning-	based	imputation	techniques,	ensures	the	generation	of	corrected	and	
cleaned	bioanalytical	data	sets	that	preserve	data	structures	such	as	clusters	bet-
ter	than	is	possible	with	classical	methods.	This	was	evaluated	on	bioanalytical	
data	 sets	 from	 lipidomics	 and	 drug	 research	 using	 k-	nearest-	neighbors-	based	
imputation	followed	by	k-	means	clustering	and	density-	based	spatial	clustering	
of	applications	with	noise.	The	R	package	provides	a	Shiny-	based	web	interface	
designed	to	be	easy	to	use	for	non–	data	analysis	experts.	It	is	demonstrated	that	
the	spectrum	of	methods	provided	is	suitable	as	a	standard	pipeline	for	preproc-
essing	bioanalytical	data	in	biomedical	research	domains.	The	R	package	pguIMP	
is	freely	available	at	the	comprehensive	R	archive	network	(https://cran.r-	proje	
ct.org/web/packa	ges/pguIM	P/index.html).

Study Highlights
WHAT	IS THE CURRENT KNOWLEDGE ON THE TOPIC?
The	 evaluation	 of	 bioanalytical	 data	 by	 means	 of	 classical	 statistics,	 machine-	
learning-	driven	 approaches,	 or	 by	 pharmacokinetic–	pharmacodynamic	 mode-
ling	places	high	demands	on	data	quality,	which	is	ensured	by	data	preprocessing.
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INTRODUCTION

The	 establishment	 of	 high-	throughput	 experiments	 in	
clinical	research	provide	a	wealth	of	data	of	diverse	struc-
ture.	 The	 goal	 of	 systems	 pharmacology	 is	 to	 integrate	
these	high-	dimensional	data	into	complex	models	that	aid	
in	decision	making	in	the	process	of	drug	discovery	or	drug	
safety	assessment.	However,	the	often	nonlinear	and	sto-
chastic	natures	of	these	data	pose	a	challenge	for	data	pro-
cessing,	which	is	why	data	science	methods	have	recently	
made	 their	 way	 into	 systems	 pharmacology.1	 Although	
differential	equation	systems–	based	pharmacokinetic	and	
pharmacodynamic	models	describing	the	temporal	evolu-
tion	of	a	 system,	such	as	plasma	concentrations	or	drug	
effects,	 are	well	 established	 in	 the	preprocessing	of	data	
sets	 from	drug	research	and	development,2–	6	 these	addi-
tional	 data	 pose	 new	 challenges	 to	 the	 preprocessing	 of	
drug	discovery	and	development	data	sets.	This	is	where	
the	 strength	 of	 data	 science	 comes	 into	 play,	 being	 able	
to	 extract	 knowledge	 from	 high-	dimensional	 data,	 often	
by	using	machine-	learning	methods	(for	an	overview,	see	
Badillo	et	al.7).

The	analysis	of	biomedical	data	by	machine	 learning	
requires	data	that	have	been	cleaned	of	analytical	labora-
tory	errors8,9	and	are	adequately	transformed	and	prefer-
ably	free	of	missing	values,	anomalies,10	or	values	below	
the	limit	of	quantification	(LOQ).2,5	Although	likelihood-	
based	 models	 have	 been	 shown	 to	 be	 particularly	 suit-
able	for	handling	values	below	LOQ	in	pharmacokinetics	
mixed-	effects	models,2–	6	many	proposed	solutions	to	this	
problem	in	the	area	of	pharmacological	data	science	are	
data	set	specific10,11	and	must	be	tailored	to	analyses	that	use	
machine-	learning	algorithms.	For	example,	for	the	treat-
ment	of	missing	values	in	gas	chromatography–	mass	spec-
trometry	 metabolomics,	 predictive	 k-	nearest	 neighbors	
(kNN),	and	random	forest	have	proven	to	be	particularly	
suitable.12	Indeed,	for	data	cleaning	of	high-	dimensional	

bioanalytical	data	sets	used	 in	pharmacological	 research	
for	biomarker	 identification	by	machine	 learning,13	data	
science	offers	a	wealth	of	imputation	methods.	However,	
not	every	method	is	suitable	for	every	data	set,	and	when	
choosing	the	 imputation	method,	 it	 is	 important	 to	con-
sider	that	the	replacement	of	missing	values	has	direct	im-
plications	for	further	downstream	analyses,	for	example,	
biomarker	identification.14

The	 addition	 of	 these	 data	 science	 methods	 to	 phar-
macological	research	requires	user	friendly,	generalizable	
solutions	that	allow	measurable	and	documented	quality	
control	of	routine	preprocessing	of	the	data,	especially	be-
cause	 the	aforementioned	methods	are	often	new	to	 the	
research	field.	Unfortunately,	available	solutions	are	often	
limited	 to	 simple	 statistics-	based	 imputations,	 such	 as	
substitution	by	the	variable	mean	or	median,15	or	require	
programming	 skills	 in	 common	 data	 science	 languages	
(Table	S1),	which	is	why	a	wider	range	of	interactive	pre-
processing	 tools	 for	 bioanalytical	 data	 in	 drug	 research	
environments	is	a	recurring	desire.	To	address	this	need,	
an	 interactive	 data	 engineering	 package	 called	 pguIMP†	
is	presented	that	covers	the	preprocessing	steps	of	bioan-
alytical	data	identified	in	a	multidisciplinary	approach	by	
data	scientists	and	 field	experts.	 Its	components	provide	
visually	 guided,	 interactive	 tools	 for	 each	 major	 prepro-
cessing	 step	 of	 bioanalytical	 laboratory	 data,	 including	
visualization,	 transformation,	 normalization,	 outlier	 re-
moval,	and	imputation	of	missing	values.	The	design	al-
lows	free	choice	of	the	provided	algorithms	and	separate	
treatment	 of	 outliers	 and	 values	 outside	 the	 LOQs.	 The	
package	preprocesses	data	based	on	established	methods,	
including	 statistical	 hypothesis	 testing	 of	 the	 distribu-
tion	of	 the	original	or	 transformed	data,	and	 it	provides	
statistics-	based,	 machine-	learning-	derived	 methods	 for	
imputing	 missing	 values	 and	 removing	 outliers.	 It	 was	
previously	shown	that	these	methods	do	not	cover	all	pos-
sible	sources	of	error	that	may	occur	and	that	appropriate	

WHAT	QUESTION DID THIS STUDY ADDRESS?
This	 study	 introduces	 a	 software	 package	 for	 data	 preprocessing	 that	 enables	
field	experts	without	programming	knowledge	to	prepare	bioanalytical	data	for	
use	in	machine-	learning-	based	drug	discovery.	Together	with	the	software,	a	se-
quence	of	preprocessing	steps	is	proposed	that	prevents	common	pitfalls	in	data	
preprocessing.
WHAT	DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The	need	for	such	a	package	is	demonstrated	by	attributing	the	erroneous	assign-
ment	of	bioanalytical	data	by	unsupervised	machine-	learning	models	to	the	loss	
of	information	attributed	to	faulty	data	preprocessing.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
As	data	preprocessing	errors	propagate	and	lead	to	flawed	model	predictions,	they	can	
skew	the	results	of	machine-	learning-	based	biomarker	or	drug	discovery	programs.
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data	 visualizations,	 as	 implemented	 in	 the	 package,	 can	
assist	the	field	expert	in	identifying	these	otherwise	unde-
tected	errors	in	data	sets.	Because	pguIMP	is	based	on	the	
R	programming	language,	it	fits	seamlessly	into	this	data	
science	environment	and	offers	the	possibility	of	integra-
tion	into	more	complex	workflows	and	the	application	of	
additional	methods	from	the	large	selection	offered	by	the	
R	environment.

METHODS

Implementation

The	 programming	 work	 for	 this	 report	 was	 performed	 in	
the	 R	 language,16	 which	 is	 available	 free	 of	 charge	 in	 the	
Comprehensive	 R	 Archive	 Network	 (CRAN)	 at	 http://
CRAN.R-	proje	ct.org/.	 The	 pguIMP	 package	 for	 the	 repro-
ducible	cleaning	of	biomedical	 laboratory	data	 is	available	
via	 CRAN	 (https://cran.r-	proje	ct.org/web/packa	ges/pguIM	
P/index.html).	A	detailed	description	of	the	package	can	be	
found	 at	 https://cran.r-	proje	ct.org/web/packa	ges/pguIM	P/
pguIMP.pdf.	Further	 technical	details	are	described	 in	 the	
Supplementary	Information	of	this	report.	The	main	steps	of	
the	data	preprocessing	workflow	that	can	be	performed	with	
the	pguIMP	package	are	described	in	the	next	sections.

Data visualizations

To	examine	the	distribution	of	the	values	of	a	variable,	scat-
ter	 plots,	 box	 plots,	 histogram	 bar	 plots,	 and	 probability	
density	function	(PDF)	plots	are	available.	The	PDF	can	be	
shown	using	the	standard	R	implementation	or	using	the	
Pareto	density	estimation,	which	is	a	variant	that	estimates	
the	PDF	using	hyperspheres	and	facilitates	visual	detection	
of	a	subgroup	structure	in	the	data.17	It	was	designed	to	be	
particularly	useful	for	detecting	subgroups	in	the	data	that	
may	be	of	interest	for	evaluating	drug	effects.	The	deviation	
of	 the	 variable	 distribution	 from	 a	 normal	 distribution	 is	
shown	via	quantile–	quantile	plots	(Q-	Q	plots).18

Data transformations

The	transformation	of	skewed	variable	distributions	into	
a	more	normal	form,	as	implemented	in	pguIMP,	follows	
the	idea	of	Tukey's	ladder	of	powers	(LOP)19	(for	detailed	
information,	see	the	"Data	Transformation"	section	in	the	
Supplementary	Information).	If	the	transformation	result	
by	Tukey’s	LOP	is	not	satisfactory,	pguIMP	alternatively	
offers	a	Box-	Cox	power	transformation20	as	well	as	com-
mon	 parameter-	free	 transformations	 (e.g.,	 the	 binary	

logarithm	 Lb(x)	 with	 a	 base	 of	 2,	 the	 natural	 logarithm	
Ln(x)	that	uses	Euler’s	number	as	the	base,	and	the	com-
mon	or	decadic	logarithm	Lg(x)	with	a	base	of	10).

Data normalization

The	 pguIMP	 package	 provides	 three	 common	 scaling	
methods,	 that	 is,	 minimum–	maximum	 normalization,	
mean	 normalization,	 and	 z	 score	 normalization	 (for	 de-
tailed	 information,	 see	 the	 "Data	Normalization"	 section	
in	the	Supplementary	Information).

Outlier detection

Outliers	are	extreme	values	that	lie	outside	the	expected	
range	of	values,	but	whose	occurrence	can	be	attributed	
to	 various	 causes	 (e.g.,	 measurement	 errors,	 data	 trans-
mission	 errors,	 legitimate	 extreme	 values).	 Because	 the	
occurrence	of	outliers	may	negatively	impact	on	the	gen-
eralizability	of	predictive	models,	their	identification	and,	
if	 necessary,	 elimination	 during	 data	 preprocessing	 is	
mandatory.	The	pguIMP	package	offers	multiple	methods	
for	univariate	outlier	detection.	These	can	be	divided	into	
statistical	 methods	 implemented	 as	 the	 Grubb’s	 test	 for	
outliers21	or	machine-	learning-	based	methods	such	as	the	
density-	based	spatial	clustering	of	applications	with	noise	
(DBSCAN)22	and	distance-	based	methods	such	as	the	one-	
support	vector	machine	class23	and	the	kNN	method.24

Imputation

The	pguIMP	package	offers	two	types	of	imputation	methods	
for	numerical	data	comprising	(a)	substitution	by	certain	sca-
lars	(i.e.,	median	or	mean)	or	(b)	by	values	machine	learned	
from	the	available	data	in	a	multivariate	manner.	(So	far,	the	
available	models	are	distance-	based	models	such	as	kNN24	
or	 predictive	 mean	 matching	 [PMM]25,26	 and	 tree-	based	
models	such	as	M5P27,28	or	classification	and	regression	trees	
[CARTs]29	as	well	as	subsymbolic	ensemble	models	such	as	
random	forests.30	The	imputation	of	missing	values	by	ma-
chine	learning	is	briefly	explained	using	the	kNN	algorithm	
as	an	example	in	the	Supplementary	Information.)

Evaluation

The	 evaluation	 of	 the	 R	 package	 pguIMP	 aimed	 to	 assess	
the	suitability	of	the	implemented	workflow	for	real	bioana-
lytical	data.	Specific	parts	where	the	choice	between	imple-
mented	methods	could	lead	to	significant	consequences	for	

http://CRAN.R-project.org/
http://CRAN.R-project.org/
https://cran.r-project.org/web/packages/pguIMP/index.html
https://cran.r-project.org/web/packages/pguIMP/index.html
https://cran.r-project.org/web/packages/pguIMP/pguIMP.pdf
https://cran.r-project.org/web/packages/pguIMP/pguIMP.pdf
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subsequent	data	analyses	were	evaluated	separately	 in	dif-
ferent	experimental	scenarios.	In	particular,	the	extent	was	
analyzed	to	which	methods	of	data	normalization,	transfor-
mation,	and	imputation	influence	the	structure	of	the	data	
set	evaluated	in	downstream	analyses	such	as	the	detection	
of	 "healthy"	versus	 "diseased"	group	structures	by	measur-
ing	clusters.	Of	note,	clustering	 is	not	 implemented	 in	 the	
pguIMP	package,	but	was	used	from	external	R	standard	li-
braries	as	a	typical	type	of	analysis	performed	after	preproc-
essing	the	data,	for	example,	with	the	pguIMP	package.

Data sets

Bioanalytical	 data	 sets	 were	 available	 from	 the	 published	
studies;	 experimental	 details	 of	 data	 collection	 and	 labo-
ratory	 analyses	 were	 described	 in	 detail	 in	 the	 respective	
reports.11,31,32	Data	Set	1,	which	was	initially	used	for	bio-
marker	identification	for	dementia,31	includes	plasma	con-
centrations	 of	 d	 =	 35	 different	 lipid	 mediators	 and	 other	
endogenous	metabolites	from	n	=	94 subjects,	measured	by	
means	of	 liquid	chromatography–	electrospray	 ionization–	
tandem	 mass	 spectrometry.	 The	 liquid	 chromatography–	
electrospray	 ionization–	tandem	 mass	 spectrometry	
methods	 were	 validated	 according	 to	 the	 criteria	 by	 the	
United	 States	 Food	 and	 Drug	 Administration.33	 Values	
outside	of	the	validated	concentration	limits	were	initially	
excluded,	 and	 compounds	 with	 more	 than	 20%	 missing	
values	 were	 not	 further	 investigated.	 For	 the	 remaining	
compounds,	if	possible,	values	below	lower	limits	of	quan-
tification	 (LLOQs)	 but	 above	 the	 limits	 of	 detection	 were	
imputed	 with	 the	 measured	 value	 as	 the	 measurement	
error	 is	 still	 considered	 to	be	 lower	 than	 the	error	due	 to	
statistical	imputation.34	For	simplicity,	the	data	set	was	re-
duced	 in	 the	 filtering	procedure	of	pguIMP	 to	d	=	8  lipid	
mediators	(S1P,	C16Sphinganin,	C16Cer,	C20Cer,	C24Cer,	
C24_1Cer,	C16GluCer,	C16LacCer)	previously	identified	as	
informative	 in	 relation	 to	 psychiatric	 diagnosis.31	 The	 re-
duced	data	set	contained	a	total	of	n	=	7 values	below	the	
LLOQs,	all	 in	C16Cer,	which	were	 initially	 imputed	with	
the	measured	value	after	review	by	the	responsible	analyst	
based	 on	 published	 recommendations.35	 Data	 Set	 2	 was	
previously	used	in	a	pharmacogenetic	experiment	assessing	
the	 formation	 of	 morphine	 from	 codeine	 in	 the	 presence	
of	 variants	 in	 cytochrome	 P450	 2D6.32	 The	 set	 analyzed	
in	 the	 present	 experiments	 contains	 urine	 concentrations	
of	 the	relevant	metabolites	of	codeine,	 including	codeine-	
6-	glucuronide,	 morphine,	 morphine-	3-	glucuronide,	 and	
morphine-	6-	glucuronide.	 All	 were	 measured	 by	 means	
of	 mass	 spectrometry	 analysis	 in	 n	 =	 50  healthy	 subjects	
as	 described	 with	 the	 respective	 main	 report.32	 The	 data	
set	 has	 no	 missing	 values.	 Data	 Set	 3	 comprises	 liquid	
chromatography–	mass	spectrometry	data	from	cell	samples	

originally	published	in	a	tutorial	on	lipidomic	data	analy-
sis.11	It	originally	included	concentrations	of	d	=	212 lipids	
measured	in	n	=	18 samples.	For	simplicity,	the	data	set	was	
reduced	to	6 lipids	(2,	10,	140,	170,	171,	175)	during	filtering,	
none	of	which	had	missing	values.	The	samples	are	divided	
into	three	subgroups	consisting	of	a	control	group	(C)	and	
two	differently	treated	groups	(here	for	simplicity	termed	A	
and	B;	for	further	information,	see	the	original	literature11).

Experimentation

To	 evaluate	 the	 usefulness	 of	 the	 pguIMP	 package,	 five	
different	experiments	were	conducted	aimed	at	(a)	com-
paring	 the	 transformation	 methods	 in	 terms	 of	 their	
normalization	ability,	(b)	comparing	the	substitution	pos-
sibilities	 of	 values	 outside	 the	 quantification	 limits	 and	
their	effects	on	the	distribution	of	the	processed	variables	
(Supplementary	 Material:	 Supplementary	 experiment	
1),	 (c)	 characterizing	 the	 randomness	 of	 the	 occurrence	
of	missing	values,	(d)	comparing	imputation	methods	in	
terms	of	their	imputation	error,	and	(e)	evaluating	the	con-
sequences	of	outlier	imputation	for	the	subsequent	detec-
tion	of	subgroup	structures	in	the	data	set.	Furthermore,	
two	 additional	 experiments	 were	 conducted	 in	 which,	
first,	 the	 direct	 impact	 of	 data	 imputation	 on	 informa-
tion	 loss	due	 to	dimensionality	 reduction	 is	 investigated	
(Supplementary	 Material:	 Supplementary	 experiment	
2)	 and,	 second,	 the	 consequences	 of	 outlier	 imputa-
tion	for	the	subsequent	detection	of	subgroup	structures	
was	reproduced	using	Weka	as	an	alternative	to	pguIMP	
(Supplementary	Material:	Supplementary	experiment	3).

Comparison of transformation 
methods with respect 
to their normalization capability

The	normalization	capability	of	various	data	transforma-
tion	methods	was	validated	on	Data	Set	1	using	Tukey's	
LOP19	with	various	values	of	λ	=	[2,	1,	0,	−1]	(Equation	
S1).	 Subsequently,	 the	 distributions	 of	 the	 transformed	
variables	were	tested	for	normality	using	Shapiro–	Wilk36	
and	Lilliefors’	Kolmogorov–	Smirnov	tests.37

Characterization of the randomness of 
missing values

For	the	handling	of	missing	values,	it	is	essential	to	find	
out	 whether	 the	 entries	 of	 the	 respective	 instances	 are	
missing	 completely	 at	 random	 (CAR)	 or	 not	 at	 random	
(NAR).	For	this	purpose,	pguIMP	maps	the	relationships	
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between	missing	and	observed	values	of	a	variable	in	the	
form	of	a	pairwise	comparison	of	 the	 instance	values	of	
the	 remaining	 variables.	 Subsequently,	 the	 distribution	
pairs	are	compared	using	the	Kruskal–	Wallis	test.38	In	the	
case	where	missing	values	occur	CAR,	no	significant	dif-
ference	is	expected	between	the	pairwise	distributions.14

To	analyze	missing	values	in	this	context,	two	incom-
plete	data	sets	were	generated	from	the	complete	Data	Set	
2	using	the	“simulateMissings”	function	from	the	compo-
sitions	package.39	In	each	of	the	data	sets,	values	were	re-
moved	with	a	probability	of	p	=	0.1	either	CAR	or	NAR.	
According	 to	 the	 reference	 manual	 of	 the	 compositions	
package,	the	CAR	method	of	the	“simulateMissings”	func-
tion	removes	a	value	from	the	data	with	a	probability	that	
is	independent	of	each	variable.	The	NAR	method	removes	
small	values	with	a	higher	probability.39	Subsequently,	the	
two	data	sets	were	analyzed	according	to	the	method	de-
scribed	previously	using	the	“missing_pairs”	function	of	
the	 package	 finalfit.40	The	 experiment	 was	 repeated	 100	
times,	and	the	fraction	of	significantly	different	distribu-
tions	 per	 iteration	 was	 documented.	 Finally,	 the	 docu-
mented	fractions	of	significantly	different	distributions	in	
CAR	and	NAR	data	sets	were	compared	using	 the	 inde-
pendent	two-	group	Mann–	Whitney	U	test.41

Validation of imputation methods

From	 the	 complete	 Data	 Set	 2,	 instance	 values	 were	 re-
moved	 with	 a	 probability	 of	 p	 =	 0.1	 as	 described	 previ-
ously.	The	resulting	imperfect	data	sets	were	transformed	
according	to	Tukey's	ladder	of	powers19	with	optimized	λ	
(Equation	S1)	and	then	minimum–	maximum	normalized	
(Equation	S2).	Subsequently,	missing	values	were	substi-
tuted	by	different	values:	the	variable	mean,	the	variable	
median,	 or	 values	 machine	 learned	 from	 the	 remain-
ing	 variables	 using	 different	 models	 (CART,29	 kNN,24	
PMM25,26).	 Finally,	 the	 imputed	 data	 were	 transformed	
back	 to	 their	 original	 state,	 and	 substituted	 values	 were	
compared	with	the	original	values	in	the	form	of	the	root	
mean	 squared	 percentage	 error	 (RMSPE).42	 The	 experi-
ment	was	performed	with	missing	values	simulated	CAR	
and	NAR,	and	each	procedure	was	repeated	100	times.

Estimation of consequences of outlier 
imputation for data set subgroup structure 
determination

Consequences	 of	 outliers	 and	 their	 imputation	 were	 fur-
ther	 evaluated	 in	 the	 context	 of	 clustering	 as	 a	 common	
task	in	biomedical	data	analysis	to	identify	subgroups.	As	
mentioned	previously,	clustering	is	not	implemented	in	the	

pguIMP	package	because	it	is	not	part	of	the	data	preproc-
essing.	The	present	experiment	deals	with	the	consequences	
of	 imputation	 for	 clustering	 as	 an	 example	 of	 a	 typical	
downstream	 analysis.	 For	 this	 purpose,	 an	 attempt	 was	
made	to	reconstruct	the	original	group	structure	of	Data	Set	
3	 from	the	dimensionality	reduced	data	sets	(XPCA)	using	
centroid-	based	and	density-	based	methods	of	unsupervised	
learning.	The	results	were	compared	with	the	known	three-	
group	structure	described	previously.	Centroid-	based	clus-
tering	was	realized	by	training	a	k-	means	model43,44	on	the	
XPCA	data	using	the	“kmeans”	 function	of	 the	stats	pack-
age.16	Graphical	validation	of	the	procedure	was	done	with	
a	scatter	plot	of	the	XPCA	data	color	coded	by	the	true	under-
lying	group	structure,	superimposing	the	proposed	groups	
as	convex	hulls.	Alternatively,	density-	based	clustering	was	
performed	by	training	the	ordering	of	points	to	identify	the	
clustering	 structure	 (OPTICS)	 algorithm	 implemented	 in	
the	dbscan	package45	on	the	XPCA	data	with	hyperparam-
eters	ε	=	2	and	minPoints	=	3.	The	hierarchical	clustering	
structure	was	visualized	as	a	dendrogram	and	reachability	
distance	 plot.	 Subsequently,	 the	 DBSCAN	 cluster	 struc-
ture	 was	 extracted	 from	 the	 OPTICS	 result	 by	 defining	
a	 reachability-	distance	 threshold	 that	 would	 result	 in	 a	
clustering	 solution	 matching	 the	 true	 number	 of	 clusters	
using	the	“extractDBSCAN”	function	of	the	dbscan	pack-
age.45	Graphical	data	representation	was	realized	using	the			
ggplot2	package,	which	is	part	of	the	tidyverse	package.46

RESULTS

The	workflow	of	data	preprocessing	with	pguIMP,	includ-
ing	 visual	 inspection,	 error	 correction,	 outlier	 detection,	
and	imputation	of	missing	values,	is	shown	as	a	flowchart	
in	Figure 1a,	and	insights	into	the	graphical	user	interface	
of	the	package	are	given	in	Figure 1b.

Quantification of the normalization 
capability of transformation methods

For	various	 transformations	commonly	used	 for	bioana-
lytical	 data	 of	 concentrations	 in	 biological	 materials,	 it	
was	observed	that	the	Ln(x)	transformation	resulted	in	the	
smallest	deviation	from	normality	as	indicated	by	nonsig-
nificant	 outcomes	 of	 three	 different	 tests	 comparing	 the	
observed	with	a	normal	distribution	of	the	data	(Figure 1b	
and	Table	S2).	This	is	consistent	with	the	common	inde-
pendent	observations	that	bioanalytical	variables	are	often	
positively	skewed	and	 that	a	 logarithmic	 transformation	
often	results	in	a	normal	distribution	of	the	variable,	for	
example,	for	the	common	continuous	noncompartmental	
pharmacokinetic	data.47
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Characterization of the randomness of 
missing values

Figure 2a	visualizes	the	entries	of	the	distribution	matrix	
of	a	data	set	with	CAR-	simulated	misses	as	an	example.	
Here,	 none	 of	 the	 pairs	 of	 distributions	 shown	 exhibit	
significant	 differences.	 Contrasted	 in	 Figure  2b	 are	 the	
entries	of	the	distribution	matrix	of	a	data	set	with	NAR-	
simulated	defects.	Of	the	distribution	pairs,	35%	that	have	
significant	differences	are	shown.	After	repeating	the	ex-
periment	100	times,	it	is	found	that	the	distribution	matrix	
of	the	data	sets	with	NAR-	simulated	misses	has	a	signifi-
cantly	 higher	 fraction	 of	 difference	 distributions	 than	
do	 the	entries	of	 the	distribution	matrix	of	 the	data	 sets	
with	 CAR-	simulated	 misses	 (p	 =	 8.9772  ×  10−5,	 Mann–	
Whitney	U	test;	Figure 2c).

Validation of different imputation methods

In	 general,	 substituting	 missing	 values	 with	 the	 variable	
mean	or	variable	median	results	in	a	higher	RMSPE	than	
does	substitution	with	machine-	learned	values	from	the	re-
maining	variables	(Figure 3).	For	missing	values	occurring	
CAR,	the	median	error	of	the	mean-	based/median-	based	

substitution	 is	 in	 a	 similar	 range	 as	 the	 median	 error	
of	 the	 machine-	learning-	based	 substitution	 methods	
(Figure 3a).	However,	the	dispersion	of	the	error	values	is	
higher	with	mean-	based/median-	based	 substitution.	The	
situation	 is	 different	 for	 missing	 values	 that	 occur	 NAR	
(Figure 3b).	Here,	all	methods	make	a	bigger	mistake	than	
they	 do	 in	 imputing	 CAR	 missing	 values.	 However,	 the	
median	 error	 of	 mean-	based/median-	based	 substitution	
is	an	order	of	magnitude	higher	than	the	median	error	of	
machine-	learning-	based	 imputation	 methods,	 suggesting	
a	systematic	error	of	the	first	two	methods.	For	Data	Set	2,	
kNN-	based	imputation	seems	to	provide	the	most	robust	
results	regardless	of	the	nature	of	the	missing	values.

Consequences of outlier imputation for 
data set subgroup structures

Consistent	with	the	results	of	the	preceding	experiments,	
clustering	methods	such	as	k-	means	and	DBSCAN	were	
able	to	reproduce	the	true	cluster	separation	in	Data	Set	3	
when	trained	on	the	kNN-	imputed	data	set	(Figure 4l–	p).	
By	contrast,	both	clustering	algorithms	produced	errone-
ous	 solutions	 when	 trained	 with	 either	 the	 control	 data	
set	(Figure 4)	or	when	outliers	had	been	substituted	by	the	

F I G U R E  1  (a)	Flowchart	of	the	data	engineering	pipeline	as	it	is	used	in	the	pguIMP	package.	The	sequence	of	the	individual	processes	
is	predefined.	The	user	can	choose	from	different	algorithms	under	each	subprocess	and	adjust	the	respective	process	parameters.	The	
user	can	return	to	all	subprocesses	and	change	algorithms	or	optimize	their	parameters	if	the	validation	results	of	the	pipeline	created	
are	not	satisfactory.	The	result	of	such	an	iterative	optimization	routine	is	an	individual,	problem-	specific	preprocessing	pipeline	that	
prepares	the	data	set	for	the	following	chemometric	analyses.	(b)	Screenshot	of	the	graphical	user	interface	of	pguIMP.	(1)	The	navigation	
menu	under	which	the	individual	preprocessing	steps	are	listed.	In	the	example	shown,	the	Transform	process	is	selected.	(2)	The	user	can	
select	the	parameters	for	the	respective	analysis.	In	the	case	presented,	the	user	would	like	to	log-	normally	transform	the	lipid	mediator	
C16Sphinganin.	(3)	The	user	ran	the	preprocessing	step	using	the	parameters	chosen	in	(2).	(4)	After	the	preprocessing	step	has	been	
performed,	a	graphical	validation	of	the	process	is	shown.	In	the	particular	case,	the	deviation	of	the	transformed	lipid	mediator	distribution	
from	a	normal	distribution	is	depicted	via	an	overlay	(upper	left)	of	the	transformed	lipid	mediator	distribution	(bar	diagram)	and	the	
normal	distribution	(line	plot):	the	residuals	between	the	two	distributions	(lower	left),	a	quantile–	quantile	plot	(upper	right),	and	the	
residual	distribution	(lower	right).	(LOQ,	limit	of	quantification)

(a) (b)
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variable	median	(Figure 4).	Precisely,	the	k-	means	model	
mislabeled	seven	instances	on	the	control	data	set	and	two	
instances	 in	 the	 median-	imputed	 data	 set,	 whereas	 the	
DBSCAN	 model	 mislabeled	 five	 instances	 when	 on	 the	
control	data	set	and	two	instances	on	the	median-	imputed	
data	set.

DISCUSSION

The	 growing	 importance	 of	 machine	 learning	 in	 phar-
macological	 research	 is	 accompanied	 by	 the	 advent	 of	
high-	dimensional	 biomedical	 data	 sets.	 In	 contrast	 to	
classical	 pharmacometric	 models,	 which	 are	 based	 on	

F I G U R E  2  Inference	about	the	origin	of	missing	values.	Missing	values	have	been	simulated	either	(a)	completely	at	random	(CAR)	
or	(b)	not	at	random	(NAR).	For	each	variable,	the	data	set	was	divided	into	two	groups.	The	first	group	comprises	the	instances	that	were	
observed	in	the	respective	variable	(Obs).	The	second	group	comprises	the	instances	that	were	missing	in	the	respective	variable	(Miss).	The	
value	distributions	of	the	two	groups	were	plotted	for	the	remaining	variables.	This	procedure	is	repeated	row-	wise	for	all	variables	resulting	
in	a	distribution	matrix.	(c)	The	probability	density	function	of	the	sum	of	significantly	different	groups	per	distribution	matrix	throughout	
100	experiments.	Significance	was	tested	using	the	Kruskal–	Wallis	test	with	α = 0.05.	(C6G,	codeine-	6-	glucuronide;	COD,	codeine;	M3G,	
morphine-	3-	glucuronide;	M6G,	morphine-	6-	glucuronide;	MOR,	morphine)
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pharmacological	 principles	 and	 can	 therefore	 be	 inter-
preted	 physiologically,	 in	 machine-	learning	 models	 the	
relationships	are	learned	by	a	computer	on	the	basis	of	a	
data	set.7	Such	a	data	set	consists	of	a	list	of	data	points,	
so-	called	instances,	which	in	turn	represent	the	entities	to	
be	studied,	such	as	patients	or	individual	cells.	The	data	
points	 in	 turn	 represent	 the	 totality	 of	 measured	 vari-
ables.	These	variables	can	be	any	measurable	parameter:	
categorical	 variables	 such	 as	 gender	 or	 the	 division	 into	
smokers	and	nonsmokers	are	just	as	possible	as	numeri-
cal	variables	such	as	age,	height,	weight,	or	a	biomarker	
concentration.	All	of	these	variables	collected	for	an	entity	
can	be	combined	arbitrarily	to	a	data	point.	The	number	
of	variables	in	a	data	point	is	also	referred	to	as	dimension-
ality.	 Pharmacological	 data	 sets	 used	 to	 train	 machine-	
learning	 models	 usually	 have	 a	 high	 dimensionality	
because	 they	 often	 contain	 different	 omics	 data	 or	 gene	
expression	 profiles	 of	 the	 entities.	 In	 general,	 machine-	
learning	models	are	designed	to	handle	high-	dimensional	
data	sets.	However,	their	performance	depends	largely	on	
the	form	in	which	the	data	are	presented	to	them.	It	is	not	
uncommon	to	train	the	models	on	derived	data	sets	with	
transformed	and	normalized	variable	values.	In	addition,	
most	 machine-	learning	 models	 do	 not	 tolerate	 missing	
values,	which	is	why	missing	values	are	usually	imputed	
before	training.	Because	of	the	high	variability	of	data	sets,	
a	high	degree	of	domain	knowledge	is	necessary	for	data	
preprocessing.7

The	pguIMP	package	for	tracible	and	reproducible	pre-
processing	of	pharmacological	data	sets	offers	a	variety	of	
algorithms	 for	 data	 transformation,	 normalization,	 and	
imputation,	 which	 can	 be	 variably	 combined	 to	 form	 a	
data	set	specific,	individual	solution.	This	is	done	with	the	
use	of	interactive	dashboards	on	which	the	results	of	the	
individual	 analyses	 are	 presented	 graphically.	 This	 type	
of	graphical	 result	presentation	provides	a	platform	that	
can	either	be	used	by	domain	experts	and	data	scientists	
to	discuss	the	results	of	data	preprocessing	from	different	
perspectives.	In	this	way,	a	suitable	solution	for	a	data	set	
can	be	approached	individually.

During	 the	 development	 of	 the	 package,	 great	 em-
phasis	was	placed	on	the	traceability	and	reproducibility	
of	the	data	preprocessing,	as	these	are	basic	concepts	of	
good	 laboratory	 practices.48	 The	 traceability	 is	 guaran-
teed	by	the	documentation	of	the	package	as	well	as	the	
public	availability	of	the	source	code.49,50	The	reproduc-
ibility	of	individual	data	preprocessing	routines	is	guar-
anteed	 by	 detailed	 reports	 that	 archive	 results	 and	 all	
decisions	and	settings	made	by	the	user.	At	this	point,	it	
should	be	mentioned	that	some	of	the	machine-	learning	
models	used	for	outlier	detection	and	missing	value	im-
putation	 rely	 to	 some	 degree	 on	 randomness.	 The	 re-
quired	 random	numbers	are	generated	on	 the	 software	
side	 by	 so-	called	 random	 number	 generators	 using	 de-
terministic	 mathematical	 functions.	 These	 generators	
deliver	 the	 same	 sequence	 of	 random	 numbers	 for	 the	
same	starting	point,	 the	so-	called	seed	value.	Here,	 the	
reproducibility	of	the	results	of	these	randomness-	based	
algorithms	is	guaranteed	by	the	fact	that	the	seed	values	
are	also	archived.

One	of	the	most	challenging	tasks	in	data	preprocess-
ing	 is	dealing	with	missing	values.	The	reasons	for	 their	
occurrence	 in	bioanalytical	data	sets	are	diverse.	On	the	
one	hand,	stochastically	occurring	errors	in	data	acquisi-
tion	can	lead	to	a	situation	where	the	information	content	
of	 individual	 measurements	 cannot	 be	 trusted.	 On	 the	
other	 hand,	 regular	 measurements	 of	 values	 below	 the	
LLOQ	may	have	been	removed	from	the	data	set	on	pur-
pose	 and	 reported	 as	 "<LLOQ"	 instead.	 However,	 it	 has	
been	shown	that	models	trained	on	data	containing	values	
below	 LLOQ	 can	 be	 less	 erroneous	 than	 models	 trained	
on	 data	 where	 instances	 with	 variable	 values	 below	 the	
LLOQ	 were	 discarded	 or	 where	 the	 critical	 values	 were	
replaced	by	 the	variable	LLOQ/2	during	preprocessing35	
(Supplementary	Material:	Supplementary	experiment	1).	
It	is	therefore	essential	for	a	preprocessing	routine	to	sep-
arately	 process	 measurements	 that	 are	 missing	 because	
of	stochastically	occurring	errors	and	measurements	that	
are	highly	error	prone	because	of	a	 low	value.	From	ex-
perience,	however,	one	will	be	confronted	with	different	

F I G U R E  3  Errors	of	various	imputation	methods.	Missing	values	have	been	simulated	either	(a)	completely	at	random	(CAR)	or	(b)	
not	at	random	(NAR)	and	were	subsequently	substituted	either	by	the	variable	mean	or	median	value.	Alternatively,	the	substitution	values	
were	machine	learned	from	the	remaining	variables	using	the	classification	and	regression	tree	(CART),	k-	nearest	neighbors	(knn),	or	
predictive	mean	matching	(pmm)	algorithm.	The	error	is	calculated	as	root	mean	squared	percentage	error	(RMSPE)

(a) (b)
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data	 sets	 during	 data	 preprocessing.	 In	 few	 cases,	 it	 is	 a	
data	set	where	missing	values	are	because	of	stochastically	
occurring	measurement	errors	and	the	measurements	of	
variables	whose	value	is	below	the	LLOQ	are	given.	Often,	
values	below	the	LLOQ	are	masked	or	removed	before	the	
data	is	passed	on.	As	a	result,	no	information	about	the	or-
igin	of	the	missing	values	is	available.	In	this	case,	pguIMP	
offers	 two	 imputation	approaches.	 In	 the	 first	approach,	
the	 missing	 values	 are	 simply	 replaced	 by	 a	 variable	

characteristic	such	as	the	variable	mean	or	median.	In	the	
second	approach,	the	missing	values	are	machine	learned	
from	 the	 remaining	 values	 of	 all	 variables	 using	 predic-
tive	models.	Recent	benchmarks	of	different	 imputation	
methods	 show	 that	 machine-	learning-	based	 imputation	
methods	such	as	kNN	and	random	forests	mostly	outper-
form	simple	mean	imputation	when	applied	to	data	sets	
comprising	 missing	 values	 introduced	 to	 complete	 data	
sets	either	as	CAR	or	NAR.14

F I G U R E  4  Graphical	validation	of	the	effect	of	data	preprocessing	on	unsupervised	cluster	analysis	using	factorial	instance	plots	on	the	
principal	component	map.	For	all	experiments,	data	preprocessing	incorporated	data	transformation	(Ln)	and	normalization	(minimum–	
maximum).	Outliers	are	defined	variable-	wise	by	using	Grubb's	test	for	outliers	with	α	=	0.05.	Variable	values	deviating	from	normality	were	
identified	in	five	instances	(1,	8,	10,	12,	17).	Further	preprocessing	incorporated	three	different	methods	of	outlier	handling:	outliers	were	
left	untouched	(Row	1;	a–	e),	variable	values	in	outlier	instances	were	replaced	by	the	respective	variable	median	(Row	2;	f–	j),	and	variable	
values	in	outlier	instances	were	imputed	based	on	the	remaining	instances	via	k-	nearest	neighbors	(Row	3;	k–	o).	The	cluster	separation	as	
proposed	by	various	unsupervised	cluster	analysis	methods	trained	on	the	first	two	principal	components	of	the	preprocessed	data	are	each	
shown	column-	wise.	(a,	f,	k)	Black	polygons	visualize	the	cluster	separation	according	to	the	original	labeling	of	the	data	set.	(b,	g,	l)	Black	
polygons	visualize	the	cluster	separation	following	k-	means	clustering.	(c,	h,	m)	Dendrogram	according	to	the	ordering	of	points	to	identify	
the	clustering	structure	(OPTICS).	(d,	i,	n)	Reachability	plot	according	to	OPTICS.	(e,	j,	o)	Black	polygons	visualize	the	cluster	separation	
following	density-	based	spatial	clustering	of	applications	with	noise	(DBSCAN)	as	extracted	from	the	OPTICS	analysis	by	applying	a	
distance	threshold	(dashed	line	in	c,	h,	m	and	d,	i,	n).	The	color	code	visualizes	the	true	cluster	separation	as	proposed	by	the	original	data	
labeling	(Treatment	A,	blue;	Treatment	B,	green;	control,	magenta).	The	numbers	represent	the	instances	of	the	data.	Gray	numbers	indicate	
instances	with	regular	variable	values,	black	numbers	indicate	outlier	instances.	(ID,	instance	identification	label;	PC1,	principal	component	
1;	PC2,	principal	component	2)
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The	 results	 of	 the	 benchmark	 study	 are	 consistent	
with	the	results	presented	here.	For	this	reason,	machine-	
learning-	based	imputation	methods	are	usually	preferable	
to	simple	replacement	with	the	variable	mean	or	median.	
However,	 there	 are	 conceivable	 situations	 in	 which	 a	
model	 generalizes	 poorly	 and	 cannot	 make	 meaningful	
predictions	about	missing	values.	Most	machine-	learning-	
based	models	predict	the	value	of	a	missing	variable	based	
on	the	remaining	variables’	values.	In	case	the	machine-	
learning-	based	imputation	methods	do	not	provide	satis-
factory	 results,	 the	 pguIMP	 package	 will	 report	 an	 error	
message	to	the	user	and	offers	the	possibility	to	substitute	
missing	values	by	the	variable	mean	or	median.	However,	
the	 choice	 of	 a	 suitable	 substitution	 method	 should	 al-
ways	be	preceded	by	an	analysis	of	the	origin	of	the	miss-
ing	values	to	avoid	systematic	errors,	such	as	those	caused	
by	 substituting	 the	 variable	 mean	 or	 median	 for	 NAR	
missing	values.

The	 performance	 of	 classification	 models	 or	 cluster	
models,	 as	 used	 in	 pharmacological	 research	 to	 identify	
biomarkers	from	high-	dimensional	data	sets,13	is	directly	
influenced	 by	 the	 upstream	 data	 preprocessing.	 The	 re-
sults	 of	 recent	 benchmark	 studies	 show	 that	 classifier	
models	show	higher	performance	when	erroneous	 train-
ing	 data	 have	 been	 previously	 cleaned	 using	 machine-	
learning-	based	models,	such	as	kNN	or	random	forests.14	
These	results	could	be	reproduced	within	this	study	using	
downstream	 analyses	 such	 as	 clustering	 or	 dimension	
reduction	 (Supplementary	 Material	 S2)	 subsequently	 to	
data	cleansing	using	 the	pguIMP	package.	With	 its	strat-
egy	of	 taking	 into	account	 the	reason	for	 the	occurrence	
of	 missing	 data	 during	 imputation,	 pguIMP	 stands	 out	
from	previous	graphical	solutions	whose	range	of	possible	
imputation	 methods	 in	 data	 preprocessing	 filters	 is	 lim-
ited	to	fix	values	or	statistical	solutions15	(Supplementary	
Material:	Supplementary	experiment	3).

CONCLUSIONS

The	R	package	pguIMP	for	the	visually	guided	preproc-
essing	of	bioanalytical	laboratory	data	was	developed	in	
close	collaboration	between	data	scientists	and	field	ex-
perts	in	bioanalytical	diagnostics.	It	provides	a	graphi-
cal	 user	 interface	 designed	 to	 be	 easy	 to	 use	 even	 for	
non–	data	analysis	experts,	and	its	application	program-
ming	 interface	 is	 also	 accessible	 from	 the	 command	
line	using	R	scripts.	It	is	available	free	of	charge	under	
version	3	of	the	GNU	General	Public	License	version	3	
(GPLv3).
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