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Abstract
The evaluation of pharmacological data using machine learning requires high 
data quality. Therefore, data preprocessing, that is, cleaning analytical laboratory 
errors, replacing missing values or outliers, and transforming data adequately 
before actual data analysis, is crucial. Because current tools available for this 
purpose often require programming skills, preprocessing tools with graphical 
user interfaces that can be used interactively are needed. In collaboration be-
tween data scientists and experts in bioanalytical diagnostics, a graphical soft-
ware package for data preprocessing called pguIMP is proposed, which contains 
a fixed sequence of preprocessing steps to enable reproducible interactive data 
preprocessing. As an R-based package, it also allows direct integration into this 
data science environment without requiring any programming knowledge. The 
implementation of contemporary data processing methods, including machine-
learning-based imputation techniques, ensures the generation of corrected and 
cleaned bioanalytical data sets that preserve data structures such as clusters bet-
ter than is possible with classical methods. This was evaluated on bioanalytical 
data sets from lipidomics and drug research using k-nearest-neighbors-based 
imputation followed by k-means clustering and density-based spatial clustering 
of applications with noise. The R package provides a Shiny-based web interface 
designed to be easy to use for non–data analysis experts. It is demonstrated that 
the spectrum of methods provided is suitable as a standard pipeline for preproc-
essing bioanalytical data in biomedical research domains. The R package pguIMP 
is freely available at the comprehensive R archive network (https://cran.r-proje​
ct.org/web/packa​ges/pguIM​P/index.html).

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
The evaluation of bioanalytical data by means of classical statistics, machine-
learning-driven approaches, or by pharmacokinetic–pharmacodynamic mode-
ling places high demands on data quality, which is ensured by data preprocessing.
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INTRODUCTION

The establishment of high-throughput experiments in 
clinical research provide a wealth of data of diverse struc-
ture. The goal of systems pharmacology is to integrate 
these high-dimensional data into complex models that aid 
in decision making in the process of drug discovery or drug 
safety assessment. However, the often nonlinear and sto-
chastic natures of these data pose a challenge for data pro-
cessing, which is why data science methods have recently 
made their way into systems pharmacology.1 Although 
differential equation systems–based pharmacokinetic and 
pharmacodynamic models describing the temporal evolu-
tion of a system, such as plasma concentrations or drug 
effects, are well established in the preprocessing of data 
sets from drug research and development,2–6 these addi-
tional data pose new challenges to the preprocessing of 
drug discovery and development data sets. This is where 
the strength of data science comes into play, being able 
to extract knowledge from high-dimensional data, often 
by using machine-learning methods (for an overview, see 
Badillo et al.7).

The analysis of biomedical data by machine learning 
requires data that have been cleaned of analytical labora-
tory errors8,9 and are adequately transformed and prefer-
ably free of missing values, anomalies,10 or values below 
the limit of quantification (LOQ).2,5 Although likelihood-
based models have been shown to be particularly suit-
able for handling values below LOQ in pharmacokinetics 
mixed-effects models,2–6 many proposed solutions to this 
problem in the area of pharmacological data science are 
data set specific10,11 and must be tailored to analyses that use 
machine-learning algorithms. For example, for the treat-
ment of missing values in gas chromatography–mass spec-
trometry metabolomics, predictive k-nearest neighbors 
(kNN), and random forest have proven to be particularly 
suitable.12 Indeed, for data cleaning of high-dimensional 

bioanalytical data sets used in pharmacological research 
for biomarker identification by machine learning,13 data 
science offers a wealth of imputation methods. However, 
not every method is suitable for every data set, and when 
choosing the imputation method, it is important to con-
sider that the replacement of missing values has direct im-
plications for further downstream analyses, for example, 
biomarker identification.14

The addition of these data science methods to phar-
macological research requires user friendly, generalizable 
solutions that allow measurable and documented quality 
control of routine preprocessing of the data, especially be-
cause the aforementioned methods are often new to the 
research field. Unfortunately, available solutions are often 
limited to simple statistics-based imputations, such as 
substitution by the variable mean or median,15 or require 
programming skills in common data science languages 
(Table S1), which is why a wider range of interactive pre-
processing tools for bioanalytical data in drug research 
environments is a recurring desire. To address this need, 
an interactive data engineering package called pguIMP† 
is presented that covers the preprocessing steps of bioan-
alytical data identified in a multidisciplinary approach by 
data scientists and field experts. Its components provide 
visually guided, interactive tools for each major prepro-
cessing step of bioanalytical laboratory data, including 
visualization, transformation, normalization, outlier re-
moval, and imputation of missing values. The design al-
lows free choice of the provided algorithms and separate 
treatment of outliers and values outside the LOQs. The 
package preprocesses data based on established methods, 
including statistical hypothesis testing of the distribu-
tion of the original or transformed data, and it provides 
statistics-based, machine-learning-derived methods for 
imputing missing values and removing outliers. It was 
previously shown that these methods do not cover all pos-
sible sources of error that may occur and that appropriate 

WHAT QUESTION DID THIS STUDY ADDRESS?
This study introduces a software package for data preprocessing that enables 
field experts without programming knowledge to prepare bioanalytical data for 
use in machine-learning-based drug discovery. Together with the software, a se-
quence of preprocessing steps is proposed that prevents common pitfalls in data 
preprocessing.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The need for such a package is demonstrated by attributing the erroneous assign-
ment of bioanalytical data by unsupervised machine-learning models to the loss 
of information attributed to faulty data preprocessing.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
As data preprocessing errors propagate and lead to flawed model predictions, they can 
skew the results of machine-learning-based biomarker or drug discovery programs.
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data visualizations, as implemented in the package, can 
assist the field expert in identifying these otherwise unde-
tected errors in data sets. Because pguIMP is based on the 
R programming language, it fits seamlessly into this data 
science environment and offers the possibility of integra-
tion into more complex workflows and the application of 
additional methods from the large selection offered by the 
R environment.

METHODS

Implementation

The programming work for this report was performed in 
the R language,16 which is available free of charge in the 
Comprehensive R Archive Network (CRAN) at http://
CRAN.R-proje​ct.org/. The pguIMP package for the repro-
ducible cleaning of biomedical laboratory data is available 
via CRAN (https://cran.r-proje​ct.org/web/packa​ges/pguIM​
P/index.html). A detailed description of the package can be 
found at https://cran.r-proje​ct.org/web/packa​ges/pguIM​P/
pguIMP.pdf. Further technical details are described in the 
Supplementary Information of this report. The main steps of 
the data preprocessing workflow that can be performed with 
the pguIMP package are described in the next sections.

Data visualizations

To examine the distribution of the values of a variable, scat-
ter plots, box plots, histogram bar plots, and probability 
density function (PDF) plots are available. The PDF can be 
shown using the standard R implementation or using the 
Pareto density estimation, which is a variant that estimates 
the PDF using hyperspheres and facilitates visual detection 
of a subgroup structure in the data.17 It was designed to be 
particularly useful for detecting subgroups in the data that 
may be of interest for evaluating drug effects. The deviation 
of the variable distribution from a normal distribution is 
shown via quantile–quantile plots (Q-Q plots).18

Data transformations

The transformation of skewed variable distributions into 
a more normal form, as implemented in pguIMP, follows 
the idea of Tukey's ladder of powers (LOP)19 (for detailed 
information, see the "Data Transformation" section in the 
Supplementary Information). If the transformation result 
by Tukey’s LOP is not satisfactory, pguIMP alternatively 
offers a Box-Cox power transformation20 as well as com-
mon parameter-free transformations (e.g., the binary 

logarithm Lb(x) with a base of 2, the natural logarithm 
Ln(x) that uses Euler’s number as the base, and the com-
mon or decadic logarithm Lg(x) with a base of 10).

Data normalization

The pguIMP package provides three common scaling 
methods, that is, minimum–maximum normalization, 
mean normalization, and z score normalization (for de-
tailed information, see the "Data Normalization" section 
in the Supplementary Information).

Outlier detection

Outliers are extreme values that lie outside the expected 
range of values, but whose occurrence can be attributed 
to various causes (e.g., measurement errors, data trans-
mission errors, legitimate extreme values). Because the 
occurrence of outliers may negatively impact on the gen-
eralizability of predictive models, their identification and, 
if necessary, elimination during data preprocessing is 
mandatory. The pguIMP package offers multiple methods 
for univariate outlier detection. These can be divided into 
statistical methods implemented as the Grubb’s test for 
outliers21 or machine-learning-based methods such as the 
density-based spatial clustering of applications with noise 
(DBSCAN)22 and distance-based methods such as the one-
support vector machine class23 and the kNN method.24

Imputation

The pguIMP package offers two types of imputation methods 
for numerical data comprising (a) substitution by certain sca-
lars (i.e., median or mean) or (b) by values machine learned 
from the available data in a multivariate manner. (So far, the 
available models are distance-based models such as kNN24 
or predictive mean matching [PMM]25,26 and tree-based 
models such as M5P27,28 or classification and regression trees 
[CARTs]29 as well as subsymbolic ensemble models such as 
random forests.30 The imputation of missing values by ma-
chine learning is briefly explained using the kNN algorithm 
as an example in the Supplementary Information.)

Evaluation

The evaluation of the R package pguIMP aimed to assess 
the suitability of the implemented workflow for real bioana-
lytical data. Specific parts where the choice between imple-
mented methods could lead to significant consequences for 

http://CRAN.R-project.org/
http://CRAN.R-project.org/
https://cran.r-project.org/web/packages/pguIMP/index.html
https://cran.r-project.org/web/packages/pguIMP/index.html
https://cran.r-project.org/web/packages/pguIMP/pguIMP.pdf
https://cran.r-project.org/web/packages/pguIMP/pguIMP.pdf
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subsequent data analyses were evaluated separately in dif-
ferent experimental scenarios. In particular, the extent was 
analyzed to which methods of data normalization, transfor-
mation, and imputation influence the structure of the data 
set evaluated in downstream analyses such as the detection 
of "healthy" versus "diseased" group structures by measur-
ing clusters. Of note, clustering is not implemented in the 
pguIMP package, but was used from external R standard li-
braries as a typical type of analysis performed after preproc-
essing the data, for example, with the pguIMP package.

Data sets

Bioanalytical data sets were available from the published 
studies; experimental details of data collection and labo-
ratory analyses were described in detail in the respective 
reports.11,31,32 Data Set 1, which was initially used for bio-
marker identification for dementia,31 includes plasma con-
centrations of d = 35 different lipid mediators and other 
endogenous metabolites from n = 94 subjects, measured by 
means of liquid chromatography–electrospray ionization–
tandem mass spectrometry. The liquid chromatography–
electrospray ionization–tandem mass spectrometry 
methods were validated according to the criteria by the 
United States Food and Drug Administration.33 Values 
outside of the validated concentration limits were initially 
excluded, and compounds with more than 20% missing 
values were not further investigated. For the remaining 
compounds, if possible, values below lower limits of quan-
tification (LLOQs) but above the limits of detection were 
imputed with the measured value as the measurement 
error is still considered to be lower than the error due to 
statistical imputation.34 For simplicity, the data set was re-
duced in the filtering procedure of pguIMP to d = 8  lipid 
mediators (S1P, C16Sphinganin, C16Cer, C20Cer, C24Cer, 
C24_1Cer, C16GluCer, C16LacCer) previously identified as 
informative in relation to psychiatric diagnosis.31 The re-
duced data set contained a total of n = 7 values below the 
LLOQs, all in C16Cer, which were initially imputed with 
the measured value after review by the responsible analyst 
based on published recommendations.35 Data Set 2 was 
previously used in a pharmacogenetic experiment assessing 
the formation of morphine from codeine in the presence 
of variants in cytochrome P450 2D6.32 The set analyzed 
in the present experiments contains urine concentrations 
of the relevant metabolites of codeine, including codeine-
6-glucuronide, morphine, morphine-3-glucuronide, and 
morphine-6-glucuronide. All were measured by means 
of mass spectrometry analysis in n = 50  healthy subjects 
as described with the respective main report.32 The data 
set has no missing values. Data Set 3 comprises liquid 
chromatography–mass spectrometry data from cell samples 

originally published in a tutorial on lipidomic data analy-
sis.11 It originally included concentrations of d = 212 lipids 
measured in n = 18 samples. For simplicity, the data set was 
reduced to 6 lipids (2, 10, 140, 170, 171, 175) during filtering, 
none of which had missing values. The samples are divided 
into three subgroups consisting of a control group (C) and 
two differently treated groups (here for simplicity termed A 
and B; for further information, see the original literature11).

Experimentation

To evaluate the usefulness of the pguIMP package, five 
different experiments were conducted aimed at (a) com-
paring the transformation methods in terms of their 
normalization ability, (b) comparing the substitution pos-
sibilities of values outside the quantification limits and 
their effects on the distribution of the processed variables 
(Supplementary Material: Supplementary experiment 
1), (c) characterizing the randomness of the occurrence 
of missing values, (d) comparing imputation methods in 
terms of their imputation error, and (e) evaluating the con-
sequences of outlier imputation for the subsequent detec-
tion of subgroup structures in the data set. Furthermore, 
two additional experiments were conducted in which, 
first, the direct impact of data imputation on informa-
tion loss due to dimensionality reduction is investigated 
(Supplementary Material: Supplementary experiment 
2) and, second, the consequences of outlier imputa-
tion for the subsequent detection of subgroup structures 
was reproduced using Weka as an alternative to pguIMP 
(Supplementary Material: Supplementary experiment 3).

Comparison of transformation 
methods with respect 
to their normalization capability

The normalization capability of various data transforma-
tion methods was validated on Data Set 1 using Tukey's 
LOP19 with various values of λ = [2, 1, 0, −1] (Equation 
S1). Subsequently, the distributions of the transformed 
variables were tested for normality using Shapiro–Wilk36 
and Lilliefors’ Kolmogorov–Smirnov tests.37

Characterization of the randomness of 
missing values

For the handling of missing values, it is essential to find 
out whether the entries of the respective instances are 
missing completely at random (CAR) or not at random 
(NAR). For this purpose, pguIMP maps the relationships 
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between missing and observed values of a variable in the 
form of a pairwise comparison of the instance values of 
the remaining variables. Subsequently, the distribution 
pairs are compared using the Kruskal–Wallis test.38 In the 
case where missing values occur CAR, no significant dif-
ference is expected between the pairwise distributions.14

To analyze missing values in this context, two incom-
plete data sets were generated from the complete Data Set 
2 using the “simulateMissings” function from the compo-
sitions package.39 In each of the data sets, values were re-
moved with a probability of p = 0.1 either CAR or NAR. 
According to the reference manual of the compositions 
package, the CAR method of the “simulateMissings” func-
tion removes a value from the data with a probability that 
is independent of each variable. The NAR method removes 
small values with a higher probability.39 Subsequently, the 
two data sets were analyzed according to the method de-
scribed previously using the “missing_pairs” function of 
the package finalfit.40 The experiment was repeated 100 
times, and the fraction of significantly different distribu-
tions per iteration was documented. Finally, the docu-
mented fractions of significantly different distributions in 
CAR and NAR data sets were compared using the inde-
pendent two-group Mann–Whitney U test.41

Validation of imputation methods

From the complete Data Set 2, instance values were re-
moved with a probability of p = 0.1 as described previ-
ously. The resulting imperfect data sets were transformed 
according to Tukey's ladder of powers19 with optimized λ 
(Equation S1) and then minimum–maximum normalized 
(Equation S2). Subsequently, missing values were substi-
tuted by different values: the variable mean, the variable 
median, or values machine learned from the remain-
ing variables using different models (CART,29 kNN,24 
PMM25,26). Finally, the imputed data were transformed 
back to their original state, and substituted values were 
compared with the original values in the form of the root 
mean squared percentage error (RMSPE).42 The experi-
ment was performed with missing values simulated CAR 
and NAR, and each procedure was repeated 100 times.

Estimation of consequences of outlier 
imputation for data set subgroup structure 
determination

Consequences of outliers and their imputation were fur-
ther evaluated in the context of clustering as a common 
task in biomedical data analysis to identify subgroups. As 
mentioned previously, clustering is not implemented in the 

pguIMP package because it is not part of the data preproc-
essing. The present experiment deals with the consequences 
of imputation for clustering as an example of a typical 
downstream analysis. For this purpose, an attempt was 
made to reconstruct the original group structure of Data Set 
3 from the dimensionality reduced data sets (XPCA) using 
centroid-based and density-based methods of unsupervised 
learning. The results were compared with the known three-
group structure described previously. Centroid-based clus-
tering was realized by training a k-means model43,44 on the 
XPCA data using the “kmeans” function of the stats pack-
age.16 Graphical validation of the procedure was done with 
a scatter plot of the XPCA data color coded by the true under-
lying group structure, superimposing the proposed groups 
as convex hulls. Alternatively, density-based clustering was 
performed by training the ordering of points to identify the 
clustering structure (OPTICS) algorithm implemented in 
the dbscan package45 on the XPCA data with hyperparam-
eters ε = 2 and minPoints = 3. The hierarchical clustering 
structure was visualized as a dendrogram and reachability 
distance plot. Subsequently, the DBSCAN cluster struc-
ture was extracted from the OPTICS result by defining 
a reachability-distance threshold that would result in a 
clustering solution matching the true number of clusters 
using the “extractDBSCAN” function of the dbscan pack-
age.45 Graphical data representation was realized using the  	
ggplot2 package, which is part of the tidyverse package.46

RESULTS

The workflow of data preprocessing with pguIMP, includ-
ing visual inspection, error correction, outlier detection, 
and imputation of missing values, is shown as a flowchart 
in Figure 1a, and insights into the graphical user interface 
of the package are given in Figure 1b.

Quantification of the normalization 
capability of transformation methods

For various transformations commonly used for bioana-
lytical data of concentrations in biological materials, it 
was observed that the Ln(x) transformation resulted in the 
smallest deviation from normality as indicated by nonsig-
nificant outcomes of three different tests comparing the 
observed with a normal distribution of the data (Figure 1b 
and Table S2). This is consistent with the common inde-
pendent observations that bioanalytical variables are often 
positively skewed and that a logarithmic transformation 
often results in a normal distribution of the variable, for 
example, for the common continuous noncompartmental 
pharmacokinetic data.47



1376  |      MALKUSCH et al.

Characterization of the randomness of 
missing values

Figure 2a visualizes the entries of the distribution matrix 
of a data set with CAR-simulated misses as an example. 
Here, none of the pairs of distributions shown exhibit 
significant differences. Contrasted in Figure  2b are the 
entries of the distribution matrix of a data set with NAR-
simulated defects. Of the distribution pairs, 35% that have 
significant differences are shown. After repeating the ex-
periment 100 times, it is found that the distribution matrix 
of the data sets with NAR-simulated misses has a signifi-
cantly higher fraction of difference distributions than 
do the entries of the distribution matrix of the data sets 
with CAR-simulated misses (p = 8.9772  ×  10−5, Mann–
Whitney U test; Figure 2c).

Validation of different imputation methods

In general, substituting missing values with the variable 
mean or variable median results in a higher RMSPE than 
does substitution with machine-learned values from the re-
maining variables (Figure 3). For missing values occurring 
CAR, the median error of the mean-based/median-based 

substitution is in a similar range as the median error 
of the machine-learning-based substitution methods 
(Figure 3a). However, the dispersion of the error values is 
higher with mean-based/median-based substitution. The 
situation is different for missing values that occur NAR 
(Figure 3b). Here, all methods make a bigger mistake than 
they do in imputing CAR missing values. However, the 
median error of mean-based/median-based substitution 
is an order of magnitude higher than the median error of 
machine-learning-based imputation methods, suggesting 
a systematic error of the first two methods. For Data Set 2, 
kNN-based imputation seems to provide the most robust 
results regardless of the nature of the missing values.

Consequences of outlier imputation for 
data set subgroup structures

Consistent with the results of the preceding experiments, 
clustering methods such as k-means and DBSCAN were 
able to reproduce the true cluster separation in Data Set 3 
when trained on the kNN-imputed data set (Figure 4l–p). 
By contrast, both clustering algorithms produced errone-
ous solutions when trained with either the control data 
set (Figure 4) or when outliers had been substituted by the 

F I G U R E  1   (a) Flowchart of the data engineering pipeline as it is used in the pguIMP package. The sequence of the individual processes 
is predefined. The user can choose from different algorithms under each subprocess and adjust the respective process parameters. The 
user can return to all subprocesses and change algorithms or optimize their parameters if the validation results of the pipeline created 
are not satisfactory. The result of such an iterative optimization routine is an individual, problem-specific preprocessing pipeline that 
prepares the data set for the following chemometric analyses. (b) Screenshot of the graphical user interface of pguIMP. (1) The navigation 
menu under which the individual preprocessing steps are listed. In the example shown, the Transform process is selected. (2) The user can 
select the parameters for the respective analysis. In the case presented, the user would like to log-normally transform the lipid mediator 
C16Sphinganin. (3) The user ran the preprocessing step using the parameters chosen in (2). (4) After the preprocessing step has been 
performed, a graphical validation of the process is shown. In the particular case, the deviation of the transformed lipid mediator distribution 
from a normal distribution is depicted via an overlay (upper left) of the transformed lipid mediator distribution (bar diagram) and the 
normal distribution (line plot): the residuals between the two distributions (lower left), a quantile–quantile plot (upper right), and the 
residual distribution (lower right). (LOQ, limit of quantification)

(a) (b)
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variable median (Figure 4). Precisely, the k-means model 
mislabeled seven instances on the control data set and two 
instances in the median-imputed data set, whereas the 
DBSCAN model mislabeled five instances when on the 
control data set and two instances on the median-imputed 
data set.

DISCUSSION

The growing importance of machine learning in phar-
macological research is accompanied by the advent of 
high-dimensional biomedical data sets. In contrast to 
classical pharmacometric models, which are based on 

F I G U R E  2   Inference about the origin of missing values. Missing values have been simulated either (a) completely at random (CAR) 
or (b) not at random (NAR). For each variable, the data set was divided into two groups. The first group comprises the instances that were 
observed in the respective variable (Obs). The second group comprises the instances that were missing in the respective variable (Miss). The 
value distributions of the two groups were plotted for the remaining variables. This procedure is repeated row-wise for all variables resulting 
in a distribution matrix. (c) The probability density function of the sum of significantly different groups per distribution matrix throughout 
100 experiments. Significance was tested using the Kruskal–Wallis test with α = 0.05. (C6G, codeine-6-glucuronide; COD, codeine; M3G, 
morphine-3-glucuronide; M6G, morphine-6-glucuronide; MOR, morphine)
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pharmacological principles and can therefore be inter-
preted physiologically, in machine-learning models the 
relationships are learned by a computer on the basis of a 
data set.7 Such a data set consists of a list of data points, 
so-called instances, which in turn represent the entities to 
be studied, such as patients or individual cells. The data 
points in turn represent the totality of measured vari-
ables. These variables can be any measurable parameter: 
categorical variables such as gender or the division into 
smokers and nonsmokers are just as possible as numeri-
cal variables such as age, height, weight, or a biomarker 
concentration. All of these variables collected for an entity 
can be combined arbitrarily to a data point. The number 
of variables in a data point is also referred to as dimension-
ality. Pharmacological data sets used to train machine-
learning models usually have a high dimensionality 
because they often contain different omics data or gene 
expression profiles of the entities. In general, machine-
learning models are designed to handle high-dimensional 
data sets. However, their performance depends largely on 
the form in which the data are presented to them. It is not 
uncommon to train the models on derived data sets with 
transformed and normalized variable values. In addition, 
most machine-learning models do not tolerate missing 
values, which is why missing values are usually imputed 
before training. Because of the high variability of data sets, 
a high degree of domain knowledge is necessary for data 
preprocessing.7

The pguIMP package for tracible and reproducible pre-
processing of pharmacological data sets offers a variety of 
algorithms for data transformation, normalization, and 
imputation, which can be variably combined to form a 
data set specific, individual solution. This is done with the 
use of interactive dashboards on which the results of the 
individual analyses are presented graphically. This type 
of graphical result presentation provides a platform that 
can either be used by domain experts and data scientists 
to discuss the results of data preprocessing from different 
perspectives. In this way, a suitable solution for a data set 
can be approached individually.

During the development of the package, great em-
phasis was placed on the traceability and reproducibility 
of the data preprocessing, as these are basic concepts of 
good laboratory practices.48 The traceability is guaran-
teed by the documentation of the package as well as the 
public availability of the source code.49,50 The reproduc-
ibility of individual data preprocessing routines is guar-
anteed by detailed reports that archive results and all 
decisions and settings made by the user. At this point, it 
should be mentioned that some of the machine-learning 
models used for outlier detection and missing value im-
putation rely to some degree on randomness. The re-
quired random numbers are generated on the software 
side by so-called random number generators using de-
terministic mathematical functions. These generators 
deliver the same sequence of random numbers for the 
same starting point, the so-called seed value. Here, the 
reproducibility of the results of these randomness-based 
algorithms is guaranteed by the fact that the seed values 
are also archived.

One of the most challenging tasks in data preprocess-
ing is dealing with missing values. The reasons for their 
occurrence in bioanalytical data sets are diverse. On the 
one hand, stochastically occurring errors in data acquisi-
tion can lead to a situation where the information content 
of individual measurements cannot be trusted. On the 
other hand, regular measurements of values below the 
LLOQ may have been removed from the data set on pur-
pose and reported as "<LLOQ" instead. However, it has 
been shown that models trained on data containing values 
below LLOQ can be less erroneous than models trained 
on data where instances with variable values below the 
LLOQ were discarded or where the critical values were 
replaced by the variable LLOQ/2 during preprocessing35 
(Supplementary Material: Supplementary experiment 1). 
It is therefore essential for a preprocessing routine to sep-
arately process measurements that are missing because 
of stochastically occurring errors and measurements that 
are highly error prone because of a low value. From ex-
perience, however, one will be confronted with different 

F I G U R E  3   Errors of various imputation methods. Missing values have been simulated either (a) completely at random (CAR) or (b) 
not at random (NAR) and were subsequently substituted either by the variable mean or median value. Alternatively, the substitution values 
were machine learned from the remaining variables using the classification and regression tree (CART), k-nearest neighbors (knn), or 
predictive mean matching (pmm) algorithm. The error is calculated as root mean squared percentage error (RMSPE)

(a) (b)
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data sets during data preprocessing. In few cases, it is a 
data set where missing values are because of stochastically 
occurring measurement errors and the measurements of 
variables whose value is below the LLOQ are given. Often, 
values below the LLOQ are masked or removed before the 
data is passed on. As a result, no information about the or-
igin of the missing values is available. In this case, pguIMP 
offers two imputation approaches. In the first approach, 
the missing values are simply replaced by a variable 

characteristic such as the variable mean or median. In the 
second approach, the missing values are machine learned 
from the remaining values of all variables using predic-
tive models. Recent benchmarks of different imputation 
methods show that machine-learning-based imputation 
methods such as kNN and random forests mostly outper-
form simple mean imputation when applied to data sets 
comprising missing values introduced to complete data 
sets either as CAR or NAR.14

F I G U R E  4   Graphical validation of the effect of data preprocessing on unsupervised cluster analysis using factorial instance plots on the 
principal component map. For all experiments, data preprocessing incorporated data transformation (Ln) and normalization (minimum–
maximum). Outliers are defined variable-wise by using Grubb's test for outliers with α = 0.05. Variable values deviating from normality were 
identified in five instances (1, 8, 10, 12, 17). Further preprocessing incorporated three different methods of outlier handling: outliers were 
left untouched (Row 1; a–e), variable values in outlier instances were replaced by the respective variable median (Row 2; f–j), and variable 
values in outlier instances were imputed based on the remaining instances via k-nearest neighbors (Row 3; k–o). The cluster separation as 
proposed by various unsupervised cluster analysis methods trained on the first two principal components of the preprocessed data are each 
shown column-wise. (a, f, k) Black polygons visualize the cluster separation according to the original labeling of the data set. (b, g, l) Black 
polygons visualize the cluster separation following k-means clustering. (c, h, m) Dendrogram according to the ordering of points to identify 
the clustering structure (OPTICS). (d, i, n) Reachability plot according to OPTICS. (e, j, o) Black polygons visualize the cluster separation 
following density-based spatial clustering of applications with noise (DBSCAN) as extracted from the OPTICS analysis by applying a 
distance threshold (dashed line in c, h, m and d, i, n). The color code visualizes the true cluster separation as proposed by the original data 
labeling (Treatment A, blue; Treatment B, green; control, magenta). The numbers represent the instances of the data. Gray numbers indicate 
instances with regular variable values, black numbers indicate outlier instances. (ID, instance identification label; PC1, principal component 
1; PC2, principal component 2)

1

2
3
4

5
6

7

8

9
10

11

12

13

14
15

16
17

18

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
PC1 (54.45%)

P
C

2 
(2

0.
26

%
)

Clusters by labeling(a)

1

2
3
4

5
6

7

8

9
10

11

12

13

14
15

16
17

18

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
PC1 (54.45%)

P
C

2 
(2

0.
26

%
)

Clusters by kMeans(b)

1 6 5 3 2 4 13 17 16 18 14 15 10 11 9 7 8 12
0.0

0.2

0.4

0.6

instance ID

re
ac

h
ab

ili
ty

 d
is

ta
n

ce

OPTICS dendrogram(c)

6

5 3 2 4

13 17 16 18
14 15

10 11 9 7

8 12

0.0

0.2

0.4

0.6

0 5 10 15
instance order

re
ac

h
ab

ili
ty

 d
is

ta
n

ce

OPTICS reachability
(d)

1

2
3
4

5
6

7

8

9
10

11

12

13

14
15

16
17

18

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
PC1 (54.45%)

P
C

2 
(2

0.
26

%
)

Clusters by DBSCAN(e)

12
3

4
567

89 10
11 12

13
14

15 16

17

18

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
PC1 (76.40%)

P
C

2 
(1

8.
34

%
)

Clusters by labeling

(f)

12
3

4
567

89 10
11 12

13
14

15 16

17

18

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
PC1 (76.40%)

P
C

2 
(1

8.
34

%
)

Clusters by kMeans

(g)

1 5 3 6 4 2 17 13 16 18 14 15 12 10 11 9 8 7
0.0

0.2

0.4

0.6

instance ID

re
ac

h
ab

ili
ty

 d
is

ta
n

ce

OPTICS dendrogram
(h)

5 3 6 4 2
17

13
16 18

14 15

12

10
11 9 8

7

0.0

0.2

0.4

0.6

0 5 10 15
instance order

re
ac

h
ab

ili
ty

 d
is

ta
n

ce

OPTICS reachability
(i)

12
3

4
567

89 10
11 12

13
14

15 16

17

18

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
PC1 (76.40%)

P
C

2 
(1

8.
34

%
)

Clusters by DBSCAN(j)

12
3

4
56

7

89
10

11 12

13
14

15 16
1718

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
PC1 (75.05%)

P
C

2 
(2

0.
31

%
)

Clusters by labeling(k)

12
3

4
56

7

89
10

11 12

13
14

15 16
1718

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
PC1 (75.05%)

P
C

2 
(2

0.
31

%
)

Clusters by kMeans(l)

1 5 3 6 4 2 13 17 16 18 14 15 12 10 11 9 8 7
0.0

0.2

0.4

0.6

instance ID

re
ac

h
ab

ili
ty

 d
is

ta
n

ce
OPTICS dendrogram

(m)

5 3 6 4 2

13
17 16 18

14 15

12

10
11 9 8

7

0.0

0.2

0.4

0.6

0 5 10 15
instance order

re
ac

h
ab

ili
ty

 d
is

ta
n

ce

OPTICS reachability
(n)

12
3

4
56

7

89
10

11 12

13
14

15 16
1718

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
PC1 (75.05%)

P
C

2 
(2

0.
31

%
)

Clusters by DBSCAN
(o)



1380  |      MALKUSCH et al.

The results of the benchmark study are consistent 
with the results presented here. For this reason, machine-
learning-based imputation methods are usually preferable 
to simple replacement with the variable mean or median. 
However, there are conceivable situations in which a 
model generalizes poorly and cannot make meaningful 
predictions about missing values. Most machine-learning-
based models predict the value of a missing variable based 
on the remaining variables’ values. In case the machine-
learning-based imputation methods do not provide satis-
factory results, the pguIMP package will report an error 
message to the user and offers the possibility to substitute 
missing values by the variable mean or median. However, 
the choice of a suitable substitution method should al-
ways be preceded by an analysis of the origin of the miss-
ing values to avoid systematic errors, such as those caused 
by substituting the variable mean or median for NAR 
missing values.

The performance of classification models or cluster 
models, as used in pharmacological research to identify 
biomarkers from high-dimensional data sets,13 is directly 
influenced by the upstream data preprocessing. The re-
sults of recent benchmark studies show that classifier 
models show higher performance when erroneous train-
ing data have been previously cleaned using machine-
learning-based models, such as kNN or random forests.14 
These results could be reproduced within this study using 
downstream analyses such as clustering or dimension 
reduction (Supplementary Material S2) subsequently to 
data cleansing using the pguIMP package. With its strat-
egy of taking into account the reason for the occurrence 
of missing data during imputation, pguIMP stands out 
from previous graphical solutions whose range of possible 
imputation methods in data preprocessing filters is lim-
ited to fix values or statistical solutions15 (Supplementary 
Material: Supplementary experiment 3).

CONCLUSIONS

The R package pguIMP for the visually guided preproc-
essing of bioanalytical laboratory data was developed in 
close collaboration between data scientists and field ex-
perts in bioanalytical diagnostics. It provides a graphi-
cal user interface designed to be easy to use even for 
non–data analysis experts, and its application program-
ming interface is also accessible from the command 
line using R scripts. It is available free of charge under 
version 3 of the GNU General Public License version 3 
(GPLv3).

CONFLICT OF INTEREST
The authors declared no competing interests for this work.

AUTHOR CONTRIBUTIONS
S.M., L.H., R.G., and J.L. wrote the manuscript. S.M. and 
J.L. designed the research. J.L. aquired the funding. S.M. 
performed the research. S.M. analyzed the data.

ORCID
Sebastian Malkusch   https://orcid.
org/0000-0001-6766-140X 
Lisa Hahnefeld   https://orcid.org/0000-0002-0382-5695 
Robert Gurke   https://orcid.org/0000-0001-8218-1295 
Jörn Lötsch   https://orcid.org/0000-0002-5818-6958 

ENDNOTE
	†	 The name is a compound acronym: the domain name "pgu" stands 

for Pharmacology of Goethe University and "IMP" for imputation 
package.

REFERENCES
	 1.	 Hart T, Xie L. Providing data science support for systems phar-

macology and its implications to drug discovery. Expert Opin 
Drug Discov. 2016;11(3):241-256.

	 2.	 Beal SL. Ways to fit a PK model with some data below 
the quantification limit. J Pharmacokinet Pharmacodyn. 
2001;28(5):481-504.

	 3.	 Ahn JE, Karlsson MO, Dunne A, Ludden TM. Likelihood 
based approaches to handling data below the quantification 
limit using NONMEM VI. J Pharmacokinet Pharmacodyn. 
2008;35(4):401-421.

	 4.	 Bergstrand M, Karlsson MO. Handling data below the limit of 
quantification in mixed effect models. AAPS J. 2009;11(2):371-380.

	 5.	 Senn S, Holford N, Hockey H. The ghosts of departed quanti-
ties: approaches to dealing with observations below the limit of 
quantitation. Stat Med. 2012;31(30):4280-4295.

	 6.	 Irby DJ, Ibrahim ME, Dauki AM, et al. Approaches to handling 
missing or “problematic” pharmacology data: Pharmacokinetics. 
CPT: Pharm Syst Pharmacol. 2021;10(4):291-308.

	 7.	 Badillo S, Banfai B, Birzele F, et al. An introduction to machine 
learning. Clin Pharmacol Ther. 2020;107(4):871-885.

	 8.	 Hyotylainen T, Oresic M. Bioanalytical techniques in nontar-
geted clinical lipidomics. Bioanalysis. 2016;8(4):351-364.

	 9.	 Lötsch J. Data visualizations to detect systematic errors in labo-
ratory assay results. Pharmacol Res Perspect. 2017;5(6):e00369.

	10.	 Kotsiantis SB, Kanellopoulos D, Pintelas PE. Data preprocess-
ing for supervised leaning. Proceedings of World Academy of 
Science, Engineering and Technology 2006;12(2):278-283.

	11.	 Checa A, Bedia C, Jaumot J. Lipidomic data analysis: Tutorial, 
practical guidelines and applications. Anal Chim Acta. 
2015;885:1-16.

	12.	 Gromski PS, Xu Y, Kotze HL, et al. Influence of missing val-
ues substitutes on multivariate analysis of metabolomics data. 
Metabolites. 2014;4(2):433-452.

	13.	 Davis KD, Aghaeepour N, Ahn AH, et al. Discovery and vali-
dation of biomarkers to aid the development of safe and effec-
tive pain therapeutics: challenges and opportunities. Nat Rev 
Neurol. 2020;16(7):381-400.

	14.	 Jäger S, Allhorn A, Bießmann F. A Benchmark for data imputa-
tion methods. Frontiers in Big Data. 2021;4(48).

https://orcid.org/0000-0001-6766-140X
https://orcid.org/0000-0001-6766-140X
https://orcid.org/0000-0001-6766-140X
https://orcid.org/0000-0002-0382-5695
https://orcid.org/0000-0002-0382-5695
https://orcid.org/0000-0001-8218-1295
https://orcid.org/0000-0001-8218-1295
https://orcid.org/0000-0002-5818-6958
https://orcid.org/0000-0002-5818-6958


      |  1381R LIBRARY "PGUIMP" FOR REPORTABLE PREPROCESSING OF LABORATORY DATA

	15.	 Srivastava S. Weka: a tool for data preprocessing, classifica-
tion, ensemble, clustering and association rule mining. Int J 
Computer Appl. 2014;88(10):26-29.

	16.	 Ihaka R, Gentleman R. R: a language for data analysis and 
graphics. J Computat Graph Stat. 1996;5(3):299-314.

	17.	 Ultsch A, Thrun MC, Hansen-Goos O, Lötsch J. Identification 
of molecular fingerprints in human heat pain thresholds by use 
of an interactive mixture model R toolbox (AdaptGauss). Int J 
Mol Sci. 2015;16(10):25897-25911.

	18.	 Wilk MB, Gnanades R. Probability plotting methods for analy-
sis of data. Biometrika. 1968;55(1):1-11.

	19.	 Tukey JW. Exploratory data analysis, vol. 2. Reading, Mass.; 
1977.

	20.	 Box GEP, Cox DR. An analysis of transformations. J Roy Stat 
Soc B. 1964;26(2):211-252.

	21.	 Grubbs FE. Sample criteria for testing outlying observations. 
Ann Math Stat. 1950;21(1):27-58.

	22.	 Ester M, Kriegel H-P, Sander J, et al. A density-based algorithm 
for discovering clusters in large spatial databases with noise. 
Kdd. 1996;96:226-231.

	23.	 Moya MM, Hush DR. Network constraints and multi-objective 
optimization for one-class classification. Neural Networks. 
1996;9(3):463-474.

	24.	 Cover T, Hart P. Nearest neighbor pattern classification. IEEE 
Trans Inf Theory. 1967;13(1):21-27.

	25.	 Rubin DB. Statistical matching using file concatenation with 
adjusted weights and multiple imputations. J Bus Econ Stat. 
1986;4(1):87-94.

	26.	 Little RJA. Missing-data adjustments in large surveys. J Bus 
Econ Stat. 1988;6(3):287-296.

	27.	 Quinlan JR. Learning with continuous classes. In: Proceedings 
from the 5th Australian Joint Conference on Artificial 
Intelligence; November 16-18. Vol. 92 1992; Hobart, Tasmania.

	28.	 Wang Y, Witten IH. Induction of model trees for predicting con-
tinuous classes; 1996.

	29.	 Breiman L. Classification and regression trees. Wadsworth 
International Group; 1984:358 p.

	30.	 Ho TK. The random subspace method for constructing decision 
forests. IEEE T Pattern Anal. 1998;20(8):832-844.

	31.	 Gurke R, Etyemez S, Prvulovic D, et al. A data science-based 
analysis points at distinct patterns of lipid mediator plasma 
concentrations in patients with dementia. Front Psychiatry. 
2019;10:41.

	32.	 Lötsch J, Rohrbacher M, Schmidt H, Doehring A, Brockmöller 
J, Geisslinger G. Can extremely low or high morphine forma-
tion from codeine be predicted prior to therapy initiation? 
PAIN®. 2009;144(1–2):119-124.

	33.	 US Food and Drug Administration. Bioanalytical Method 
Validation Guidance for Industry. Silver Spring, MD: US Food 
and Drug Administration; 2018.

	34.	 Harel O, Perkins N, Schisterman EF. The use of multiple impu-
tation for data subject to limits of detection. Sri Lankan J Appl 
Stat. 2014;5(4):227-246.

	35.	 Keizer RJ, Jansen RS, Rosing H, et al. Incorporation of con-
centration data below the limit of quantification in popu-
lation pharmacokinetic analyses. Pharmacol Res Perspect. 
2015;3(2):e00131.

	36.	 Shapiro SS, Wilk MB. An analysis of variance test for normality 
(complete samples). Biometrika. 1965;52:591-611.

	37.	 Lilliefors HW. On the Kolmogorov-Smirnov test for nor-
mality with mean and variance unknown. J Am Stat Assoc. 
1967;62(318):399-402.

	38.	 Kruskal WH, Wallis WA. Use of ranks in one-criterion variance 
analysis. J Am Stat Assoc. 1952;47(260):583-621.

	39.	 van den Boogaart KG, Tolosana-Delgado R, Bren M. 
Compositions: Compositional Data Analysis. R package ver-
sion 2.0-1; CRAN; 2021. Accessed September 6, 2021. https://
CRAN.R-proje​ct.org/packa​ge=compo​sitions

	40.	 Harrison E, Drake T, Ots R. finalfit: Quickly Create Elegant 
Regression Results Tables and Plots when Modelling. R pack-
age version 1.0.2; CRAN; 2020. Accessed September 6, 2021. 
https://CRAN.R-proje​ct.org/packa​ge=finalfit

	41.	 Mann HB, Whitney DR. On a test of whether one of two ran-
dom variables is stochastically larger than the other. Ann Math 
Stat. 1947;18(1):50-60.

	42.	 Shcherbakov MV, Brebels A, Shcherbakova NL, et al. A survey of 
forecast error measures. World Appl Sci J. 2013;24(24):171-176.

	43.	 MacQueen J. Some methods for classification and analysis of 
multivariate observations. In: Proceedings of the Fifth Berkeley 
symposium on Mathematical Statistics and Probability; 1967; 
Oakland, CA.

	44.	 Lloyd SP. Least-squares quantization in Pcm. IEEE Trans Inf 
Theory. 1982;28(2):129-137.

	45.	 Hahsler M, Piekenbrock M, Doran D. dbscan: Fast density-
based clustering with R. J Stat Softw. 2019;91(1):1-30.

	46.	 Wickham H, Averick M, Bryan J, et al. Welcome to the ti-
dyverse. J Open Source Softw. 2019;4(43):1686.

	47.	 Lacey LF, Keene ON, Pritchard JF, Bye A. Common noncom-
partmental pharmacokinetic variables: are they normally or 
log-normally distributed? J Biopharm Stat. 1997;7(1):171-178.

	48.	 Jena GB, Chavan S. Implementation of Good Laboratory 
Practices (GLP) in basic scientific research: Translating the con-
cept beyond regulatory compliance. Regul Toxicol Pharmacol. 
2017;89:20-25.

	49.	 Ferrero E, Brachat S, Jenkins JL, et al. Ten simple rules to 
power drug discovery with data science. PLoS Comput Biol. 
2020;16(8):e1008126.

	50.	 Peng RD. Reproducible research in computational science. 
Science. 2011;334(6060):1226-1227.

SUPPORTING INFORMATION
Additional supporting information may be found online 
in the Supporting Information section.

How to cite this article: Malkusch S, Hahnefeld L, 
Gurke R, Lötsch J. Visually guided preprocessing of 
bioanalytical laboratory data using an interactive R 
notebook (pguIMP). CPT Pharmacometrics Syst 
Pharmacol. 2021;10:1371–1381. https://doi.
org/10.1002/psp4.12704

https://CRAN.R-project.org/package=compositions
https://CRAN.R-project.org/package=compositions
https://CRAN.R-project.org/package=finalfit
https://doi.org/10.1002/psp4.12704

