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Abstract: Bayesian inference is ubiquitous in science and widely used in biomedical research such as
cell sorting or “omics” approaches, as well as in machine learning (ML), artificial neural networks,
and “big data” applications. However, the calculation is not robust in regions of low evidence. In
cases where one group has a lower mean but a higher variance than another group, new cases with
larger values are implausibly assigned to the group with typically smaller values. An approach
for a robust extension of Bayesian inference is proposed that proceeds in two main steps starting
from the Bayesian posterior probabilities. First, cases with low evidence are labeled as “uncertain”
class membership. The boundary for low probabilities of class assignment (threshold ε) is calculated
using a computed ABC analysis as a data-based technique for item categorization. This leaves a
number of cases with uncertain classification (p < ε). Second, cases with uncertain class membership
are relabeled based on the distance to neighboring classified cases based on Voronoi cells. The
approach is demonstrated on biomedical data typically analyzed with Bayesian statistics, such as
flow cytometric data sets or biomarkers used in medical diagnostics, where it increased the class
assignment accuracy by 1–10% depending on the data set. The proposed extension of the Bayesian
inference of class membership can be used to obtain robust and plausible class assignments even for
data at the extremes of the distribution and/or for which evidence is weak.

Keywords: data science; artificial intelligence; machine learning; digital medicine

1. Introduction

Statistical Bayesian reasoning has been successfully applied to a wide range of ap-
plications. It has been used for 250 years [1]. It is a standard used in workflows and
implemented in software environments for the analysis of biomedical and other data. Cell
sorting and “omics” research are among the molecular biomedical applications where
Bayesian inference is used as a default component of many workflows [2–5]. Model-
ing data distributions with mixture models is also commonly used in machine learn-
ing. The task of assigning cluster labels to the data, i.e., classification, is usually per-
formed using Bayes’ theorem. Bayesian inference is used almost ubiquitously in sci-
ence and other areas of human activity. For its use in biomedical research, a PubMed
database search at https://pubmed.ncbi.nlm.nih.gov/ accessed on 29 March 2022, using
the R library “RISmed” (https://CRAN.R-project.org/package=RISmed (accessed on 18
September 2022) [6]) and the search string “(naive Bayesian OR naive Bayesian classifier
OR probabilistic classifiers) NOT review [Publication Type]” returned 1313 hits with a
pronounced increase in yearly publications during the last two decades (Figure 1). Drawing
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inferences using Bayes’ theorem has recently been increasingly used in machine learning to
realize artificial intelligence algorithms [7]).

However, reasoning with Bayes’ theorem is not robust in regions of low evidence [8].
One of the undesirable effects is the possibility of implausible class labeling. Consider,
as an example, data on body size. In a recent summary of height and body mass index
of school-aged children and adolescents between 1985 and 2019 with a total of 65 million
participants [9], data for 11-year-old Germans showed that girls were normally distributed
with a mean ± standard deviation of 149.8081 ± 0.5843 cm. Boys were also Gaussian
distributed with a height of 151.0295 ± 0.5108 cm. Applying Bayes’ theorem to values
of height from 140 to 170 cm correctly assigned the female class for values less than
151 cm and the male class for the range 152 to 159 (Figure 2A). However, individuals
with heights greater than 160 cm were classified by Bayes statistics as definitive female
(Figure 2B). The reason for this effect is that the variance of the distribution of girls was
larger than that of boys. This led to larger values of the probability distribution (pdf) of
girls compared to boys over 160 cm. Bayesian reasoning thus became implausible at large
heights because it concluded that “all giants are female”. Depending on the structure
of covariances, Bayesian statistics, i.e., the strong decision to assign a class based on a
high posterior probability occasionally collides with the low probability of cases, i.e., low
evidence. Moreover, a minimum change in variance can cause a maximum change in the
probability of class assignment that reverses the decision, and variances can be difficult
and error-prone to estimate from the data [10]. This calls into question the robustness of
Bayes’ theorem including robust approaches based on it [11].

Figure 1. Bar chart of the number of biomedical publications per year obtained by a computational
search of the PubMed database for “(naive Bayesian OR naive Bayesian classifier OR probabilistic
classifiers) NOT review [Publication Type]”. The line shows the bilinear trend in the number of publi-
cations with an acceleration from year 2001. The figure has been created using the software package R
(version 4.1.3 for Linux; https://CRAN.R-project.org/ (accessed on 18 September 2022) [12] accessed
on 18 September 2022 and the R library “ggplot2” (https://CRAN.R-project.org/package=ggplot2
(accessed on 18 September 2022) [13]).

https://CRAN.R-project.org/
https://CRAN.R-project.org/package=ggplot2
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Figure 2. Distribution of body heights 11-year-old girls (red) and boys (blue) and assignment to sex
based on Bayesian posteriors of observations of sex-specific body height [9]. (A) Probability density
functions based on observed mean and standard deviation values of 149.8081 ± 0.5843 cm for girls
and 151.0295 ± 0.5108 cm for boys. In addition, Bayesian posterior probabilities of sex assignment
are shown in lighter blue and red lines. Bayesian decision boundaries are shown as vertical red
dashed lines. (B) Simulation of 100 heights per sex randomly drawn from a normal distribution
with above means and standard deviations, and addition of 16 arbitrary heights between 140 and
170 cm in increments of 2 cm. Points are colored for assigned sex based on Bayesian posteriors
shown in panel A. The points are jittered for better distinguishability. (C) Following the method
of reasonable Bayes proposed in this report, cases with certain versus uncertain class assignment
were identified, which occurred in marginal regions where the probability density functions of
the data classes were very low. (D) For cases unclassified by the above method, sex assignment
was substituted based on the “plausible Bayes” method proposed in this report. The figure has
been created using the R software package (version 4.1.3 for Linux; https://CRAN.R-project.org/
(accessed on 18 September 2022) [12] (accessed on 18 September 2022) and the R library “ggplot2”
(https://CRAN.R-project.org/package=ggplot2 (accessed on 18 September 2022) [13]).

https://CRAN.R-project.org/
https://CRAN.R-project.org/package=ggplot2
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2. Results
2.1. Multiple Sclerosis Lipidomics Data

Serum concentrations of n = 43 different lipid markers of different classes (ceramides,
lysophosphatidic acids, endocannabinoids, pterins, prostaglandins, dihydroxyeicosatrienoic
acids, and HETEs) were available from n = 102 patients with multiple sclerosis and
from n = 301 healthy subjects previously published [14]. Concentrations were analyzed
by liquid chromatography–electrospray ionization tandem mass spectrometry (LC-ESI-
MS/MS) [15,16]. One of the ceramides, C18Cer, was selected for the present calculations.
C18Cer plays a critical role in fat-induced insulin resistance in skeletal muscle [17] and
has been implicated in multiple sclerosis where it was statistically significantly correlated
with the Expanded Disability Status Scale [18]. It was not included in a sensitive, complex,
supervised, machine-learning-based lipid biomarker for multiple sclerosis; however, it
showed the same pathology of means and standard deviations between the two groups as
the body weight data in the introductory example, namely that very low and very high
values were assigned to the same group when Bayesian statistics were applied (Figure 3).

Patients with multiple sclerosis had, on average, lower C18Cer levels than healthy
subjects (Figure 3A–E). The standard deviation in the empirical patient group happened to
be higher than in the control group. The use of a Bayesian classifier had the undesirable
effect of classifying individuals with C18Cer levels above 159 ng/mL as diseased, which
would assign the diagnosis to subjects with particularly normal signals if C18Cer were a
biomarker for multiple sclerosis. In the specific case of this experiment, this led to at least
1% of incorrect classifications. This was corrected when the classification was performed
according to the proposed “plausible Bayes” strategy (Figure 3E). In a 100-fold repeated
bootstrap experiment, the overall improvement of class assignment accuracy was small and
raised from 68.8 ± 2% to 68.9 ± 2%; however, the nonparametric 95%-confidence interval
moved from 64.9–74.1% for the Bayes classification to 64.8–73.8% for the class assignment
according to the “reasonable Bayes” procedure.

2.2. Flow Cytometric Data

Flow cytometry with fluorescence-activated cell sorting (FACS) data were available
from a hematologic analysis of n = 296,755 cells obtained from peripheral blood samples
from n = 14 subjects (https://data.mendeley.com/datasets/jk4dt6wprv/1, accessed on 18
September 2022 [19]). FACS analyses originally included d = 10 features.

For the present experiments, d = 2 variables were used, including the differentiation
cluster CD45, denoting protein tyrosine phosphatase, receptor type C, involved in B- and
T-cell-receptor-mediated activation [20], and CD13, denoting membrane alanyl aminopep-
tidase N. CD13 is involved in the metabolism of regulatory peptides in various cell types,
including, for example, macrophages and granulocytes, as well as involved in induced
T cell activation [21], the response of leukemic cells to colony-stimulating factors [22] or the
development of dendritic cells and macrophages from blood cells [23].

A FACS data analysis allows the easy identification of subgroups (classes, populations)
of cells defined as Gaussian distributions in two-dimensional scatter plots [24]. Populations
in the CD45/CD13 data set followed were identified as myeloid cells ( CD13+ CD45+),
lymphocytes (CD13− CD45+) and nonleukocytes (CD13− CD45−). The assignment of
cells to populations was done by autogating [25] supervised by a medical expert. Bayesian
reasoning was performed using a Gaussian mixture model (GMM) with the expectation
maximization (EM) algorithm [26]. EM selected three modes and optimized the parameters
of the two-dimensional Gaussian distributions. The obtained GMM allowed the application
of Bayes’ theorem to classify the data into the three classes defined by the likelihoods (pdf)
for each event (cell). The three subpopulations could be defined as arbitrarily numbered
classes, with class 1 characterized by low levels of expression of both CD45 and CD13,
i.e., class 1 = CS45−, CD13−, class 2 = CD45+, CD13+, and class 3 = CD45+, CD13−.

https://data.mendeley.com/data sets/jk4dt6wprv/1
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Figure 3. Distribution of serum concentrations of the lipid mediator C18Cer of the ceramide class, as-
sayed in the serum of n = 102 patients with multiple sclerosis and n = 301 healthy controls [14]. (A) Prob-
ability density functions based on observed means and standard deviations of 74.3881 ± 36.2643 ng/mL
for patients with multiple sclerosis and 86.8806± 29.8202 for healthy subjects. (B) Bayesian posterior
probabilities for assignment to patients or controls are shown in light blue and red lines. Bayesian
decision boundaries are shown as vertical red dashed lines. (C) Dot histogram representation of
individual cases. Dots are colored for multiple sclerosis or healthy diagnosis based on Bayesian poste-
riors in panel B. (D) According to the “reasonable Bayes” method proposed in this report, cases with
uncertain class assignment were identified, which occurred in marginal areas where the probability
density functions of the data set instances were very low. (E) For cases that were not classified by the
above method, assignment to clinical diagnosis group was based on the “plausible Bayes” method
proposed in this report. The figure has been created using the R software package (version 4.1.3 for
Linux; https://CRAN.R-project.org/ (accessed on 18 September 2022) [12]) and the R library “ggplot2”
(https://cran.r-project.org/package=ggplot2 (accessed on 18 September 2022) [13]).

https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
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However, Bayesian statistical classification assigned cells with intermediate CD45 and
CD13− to the CD13+ of class 2. Cells with high CD45 content (CD45+) that should be
either class 2 or class 3 were assigned to class 1, resulting in 6% of the data apparently
being incorrectly assigned to class 1 and appearing to be separated from the majority of
the members of this class in the scatter plots (Figure 4A). Class 1, characterized by low
CD45 levels (CD45−), had greater variance than the other two classes, so cells with CD45+
that fell between classes 2 and 3 were incorrectly assigned to class CD45−. This was
circumvented by applying the “reasonable Bayes” calculation proposed here, in which
no class assignment was made below a data-adjusted threshold (Figure 4B). The three
Gaussian modes or the mean values of the Gaussian modes defined a Voronoi cell mosaic
of level CC45 versus CD13. On this basis, the “plausible Bayes” calculation proposed here
assigned the data that remained unclassified in the “reasonable Bayes” classification to
the nearest class center (Figure 4C). In a 100-fold repeated bootstrap experiment, for cells
with low empirical probabilities (<10 percentile of probabilities), the correct classes were
assigned by Bayesian classification with an accuracy of 81.5 ± 0.3% and by “reasonable
Bayes” classification with an accuracy of 91.4 ± 0.2%.

Figure 4. Three-dimensional dot plots of n = 296,755 cells from peripheral human blood analyzed by
fluorescence-activated cell sorting (FACS) [19] and class assignment based on the Bayesian statistical
method and modifications proposed in this report. Cells were labeled for d = 2 surface markers
belonging to the CD45 and CD13 discrimination clusters. The distribution is modeled by three two-
dimensional Gaussian curves whose parameters were fitted to the empirical data using the classical
EM algorithm. Colors and class numbers are arbitrary for each class and indicate the assignment
of each cell to one of the three modes based on (A) statistical reasoning using Bayes’ theorem or
(B) “reasonable Bayes” classification as proposed here. Events shown in black have not been given a
class label. (C) Plausible Bayes classification of the events, as suggested here: the Voronoi cells induced
by the modes (= mean values) of the three Gaussian curves determine the class of the unlabeled data.
For a precise localization of the classes, the insets show a top view of the data. The figure was created
using Python version 3.8.12 for Linux (https://www.python.org (accessed on 18 September 2022))
and the “seaborn” statistical data visualization package (https://seaborn.pydata.org (accessed on 18
September 2022) [27]).

3. Discussion

Algorithms for classification, i.e., classifiers based on Bayes’ theorem, have become
extremely popular in recent years in both statistics and machine learning. Their mention
in the biomedical scientific literature has recently seen a strong upward trend. Using
the Akaike information criterion [28] for a bilinear fit with a sliding breakpoint between
segments, the trend in biomedical publications mentioning Bayesian methods can be

https://www.python.org
https://seaborn.pydata.org
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described as accelerating from 2001, whereas prior to that year the number of publications
was low (Figure 1).

The main reasons for this are, first, the ease of use of ready-made and predefined
programs in most data analysis repositories or toolboxes such as CRAN (see above)
or Bioconductor (https://bioconductor.org (accessed on 18 September 2022)) for R, the
“Bioinformatics” Toolbox for Matlab, the “GaussianNB” method from “scikit-learn” (https:
//scikit-learn.org/stable/ (accessed on 18 September 2022) [29]) for Python, and many
others. Second, there is theoretical evidence that Bayesian classifiers are optimal classifiers
that minimize the probability of misclassification (e.g., [30]). Third, Bayesian classifiers
(probabilistic classifiers) can be easily generalized to d dimensions, i.e., data sets with d
variables (features, markers, parameters, measurements, dimensions). With the additional
assumption of independence between features, the computation of Bayesian statistics is
fast and simple, often linear in d, and still yields a high degree of accuracy [31,32].

The performance of Bayes classifiers, including those with independence assumption,
also referred to as naïve or simple Bayes classifiers, has been reported to perform extremely
well in many complex real-world situations, e.g., in classifying gene sequences [33], identi-
fying lesions in the brain [34], including automatically identifying stroke lesions in MRI
scans [35], and predicting the carcinogenicity of substances [36]. The Bayes classifier is
considered one of the most popular classifiers for class prediction or pattern recognition
for microarray gene expression data [37]. A theoretical analysis of classifiers based on
Bayes’ theorem has shown that there are even good theoretical reasons for the apparently
implausible effectiveness of probabilistic Bayes classifiers, even the naïve ones [36].

The method presented here considered regions of the data space where little was
known about the data. One of the “curses of dimensionality” is that for multivariate data,
almost all of the multidimensional space is empty [38]. Consider, for example, data on
height and gender. Bayes’ theorem calculates with high certainty that giants, i.e., tall
individuals, are female. This is related to the assumption of word proximity. If data
(or assumptions) about giants were given, the theorem of Bayes would argue differently.
Within the “closed world”, our approach either returns “don’t know” (“reasonable Bayes”)
or uses the closest class (“plausible Bayes”). Since the mean body length of men (boys)
is larger than that of women (girls), the “plausible Bayes” reasoning concludes that tall
individuals are more likely to be male.

Implausible class assignments using Bayesian statistics can be detected in one or
two dimensions by visualizing the data. For more than two features or dimensions, the most
used Bayesian classifier is independent (naïve) Bayes using Gaussian mixture models
(GMM). These models are also referred to as hidden Markov models (HMM) [39], Markov
chains [40], or Kalman filters [41]. It can be assumed that many of the applications in
multivariate statistics that use Bayesian inference suffer from the problem addressed in
this report. The “plausible Bayes” approach proposed here avoids misclassification, while
the “reasonable Bayes” calculation should be applied when distance calculations on high-
dimensional empirical data are possible, and all data set instances need to be labeled.

4. Materials and Methods
4.1. Bayesian Reasoning

The theorem is well known, so its recapitulation can be minimized as follows. The start-
ing point is the distribution of the observed data. Since the observed data in many cases
result from sums of underlying processes, the assumption that the data follow a Gaussian
distribution N (m,s) with parameters mean m and standard deviation s is justified by the
central limit theorem [42]. This assumes that the data are generated by a process that
uses this “likelihood function”. Returning to the introductory example of 11-year-old Ger-
mans [9], this means that 11-year-old boys in Germany are “produced” by nature using the
sum of all parts of their bodies with an average height resulting in a Gaussian distribution
N (m,s) with observed parameters m = 151.0295 cm and s = 0.5108 cm.

https://bioconductor.org
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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The second component of Bayes’ theorem is the probability of occurrence of a particular
class of data, the so-called prior probability or “weight” of the class. In the present example
the probability that a child is male. Under the so-called “closed world assumption” [43],
i.e., there are only males and females, the weighted sum of the probabilities for boys and
girls gives the evidence. This is the general probability to observe a data value. Thus,
the probability of a child having a male sex as a function of its height can be calculated
using Bayes’ theorem as p(male|height) = p(male) · likelihood(male)

evidence .
Here, the likelihood is the “likelihood function” mentioned above, which follows the

Gaussian distribution of body heights. The general form of this is p(class|x) = p(class) ·
likelihood(class)

evidence . This formula for the Bayesian reasoning is critical for evidence close to
zero. At such regions in the data space, the knowledge about the data’s classification is
low (insecure), however, the posterior probabilities p(class|x) suggest either 0 or 100%
membership to one of the classes.

The posterior probability, i.e., the probability of having a certain sex, if the person
has a certain height, is shown in Figure 2A (lines in the range 0 to 1). Below 150 cm,
the probability of being a boy is low and approaches zero (see the left vertical red dashed
line in Figure 2A). For individuals taller than 152 cm, the probability of being a boy is high
and approaches p = 1 (see the right vertical red dashed lines in Figure 2). Bayes’ theorem
can also be used to calculate a decision boundary, that is, a boundary that allows one to
decide for or against a class, which in this example is at heights of 150.43 cm and 159.55 cm
(red dashed lines in Figure 2). For heights of 11-year-old Germans below 159 cm, Bayes’
theorem holds perfectly and provides unambiguous assignments to the probable sex of the
individual. However, a problem arises when the observation range is extended beyond
160 cm (Figure 2A, right side). When arguing with Bayes’ decision rule, one concludes
that larger individuals must be female. This is a systematic error in Bayesian reasoning.
It occurs when the lower (female) probability has a larger variance than the higher (male)
probability, resulting in the probability being larger for a female than for a male beyond
160 cm. When visually inspecting the Bayesian reasoning as in Figure 2 or using interactive,
visually guided software for Gaussian mixture analysis such as the R library “AdaptGauss”
(https://CRAN.R-project.org/package=AdaptGauss (accessed on 18 September 2022) [44]),
this can be detected. As will be shown below, the misclassifications can also be seen in
appropriate visualizations in two dimensions. However, the implausibility of Bayesian
results is difficult to detect for data with dimensions > 2. The results of such data mining,
machine learning, and knowledge discovery applications, especially for biomedical data,
may contain these types of obvious errors unnoticed.

In this report, we propose an approach to circumvent the implausible class assignment
of observations by Bayesian statistics at the tails of the distribution of observations, where
the probability of occurrence of a case is often very low and yet yields high posterior
probabilities (Figure 2C). The proposed robust method first identifies the regions where
class assignment is uncertain (“uncertain Bayes”) and then replaces the decision based
on Bayesian statistics with a more plausible class assignment based on Voronoi cells [45]
(Figure 2D).

4.2. Algorithm

The proposed algorithm proceeds in two main steps starting from the Bayesian pos-
terior probabilities (Figure 5). First, cases with low evidence are labeled as “uncertain”
class membership. The boundary for low probabilities of class assignment (threshold ε) is
calculated using a data-based technique for computational item categorization. This leaves
a number of cases with uncertain classification (p < ε). Second, cases with uncertain class
membership are relabeled based on the distance to neighboring classified cases.

https://CRAN.R-project.org/package=AdaptGauss
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Figure 5. Proposed algorithm to circumvent misclassifications that occasionally occur when using
the posterior probabilities in Bayes’ theorem that are very low. The threshold ε below which the
evidence is considered as low is estimated for each pdf of the posteriors using a computed ABC
analysis. Subset “C” of this item categorization contains the nonprofitable values, i.e., the lowest
probabilities (“the trivial many”). These cases are classified as “uncertain”. Subsequently, a relabeling
of these cases is performed, either as “unclassified”, which is referred to as “reasonable Bayes”,
or they are assigned to the class with nearest class center based on Voronoi cell discrimination,
which is referred to as “plausible Bayes”. Please note that the first row of panels shows schematic
drawings similar to the main calculations in each step. The details are not explained. The second
row of panels describes the individual steps. The figure was created using Microsoft PowerPointr

(Redmond, WA, USA) on Microsoft Windows 11 running in a virtual machine powered by VirtualBox
6.1.36 (Oracle Corporation, Austin, TX, USA) as guest on Linux, and then further modified with the
free vector graphics editor Inkscape (version 1.2 for Linux, https://inkscape.org/ (accessed on 18
September 2022)).

4.2.1. Calculation of the Threshold for Low Probabilities

Misclassifications using Bayes statistics occur when the posterior probabilities in Bayes’
theorem are very low, i.e., below a certain threshold ε. Using the computed ABC analysis,
this limit ε can be estimated for each pdf for which n values pdf(xi) can be computed at
equidistant supporting xi with i = 1, . . . , n points within the data range of interest [46]. This
method allows the optimal calculation of three disjoint subsets A, B, and C in data sets
with positive values. Subset “A” contains the most profitable values, i.e., the largest data
values (“the important few”), subset “B” contains data for which the profit gain is equal to
the effort required to achieve that gain, and subset “C” contains the nonprofitable values,
i.e., the lowest probabilities (“the trivial many”).

The threshold ε for a class assignment probability that is considered too low for the
assignment decision is defined as the BC limit calculated in the ABC analysis. In this way,
the “trivial many” probabilities are removed from the Bayesian class assignment decision.
The computed ABC analysis determines the limits for the subsets, in particular for the B–C
limit used here, based on results from the statistics for asymmetrical (skewed) distributions,
supplemented by the efficiency theory [47]. The theorem of Bayes is not limited to univariate
data. Multivariate applications, even in its “naive” form that assumes independence, often
show that it can compete with modern AI methods such as support vector machines
or modern decision tree algorithms [48]. In the present paper, we also demonstrate the
proposed approach for two-dimensional data (Figure 4). However, the method can be
applied unchanged to multivariate classification tasks.

4.2.2. Corrected Assignments to Classes

Cases that have a probability of belonging to a particular class below the threshold
ε calculated above can either be left “unclassified”, which is called “reasonable Bayes”
classification, or their classification can be based on the distance to the class center of
neighborhood classified cases, which is called “plausible Bayes” classification.

https://inkscape.org/
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Reasonable Bayes

In order to achieve reasonable assignments to the classes with Bayes’ theorem, i.e., the
evidence, the sum of the class likelihoods weighted with the priors is considered. If the
evidence falls below a threshold ε, the conclusion, i.e., class assignment, becomes uncertain.
Thus, a Bayes decision is accepted as reasonable, only if there is sufficient evidence for a
data value. If the evidence falls below ε, the decision is suspended, i.e., a special value,
such as SQL’s “NULL” [49], or the symbol “NaN” (not a number) proposed by IEEE for
missing values in computations (IEEE Standard for Floating-Point Arithmetic, 2019), is the
result of the decision. Suggested estimates for ε are, first, the BC limit calculated during the
ABC analysis as the maximum value in set C that captures the so-called “trivial many” [46],
and second, ε = 1% of the maximum evidence. For normal distributions, the computed ABC
analysis captures approximately the range m ± 2 s and the 1% limit the range m ± 3 s [50].

Plausible Bayes

Often a decision is required for all empirical cases, even for cases x with low evidence.
A reasonable assignment is then to assign x to the class whose probability centroid is closest.
In general, this can be calculated using Voronoi cells [45] that are defined as follows. Let
P = {pi, i = 1, . . . , n} be a set of n distinct points in a metric space D ε Rd with a distance
function d(x,y) defined for all x,y in P. The Voronoi cells of P are a tessellation of D into
n cells, one for each point in P. A point x lies in the cell corresponding to a (center) point
pi ε P, if for each pi ε P, j 6= i : d

(
x, pj

)
> d(x, pi). The center points for Voronoi cells of

distributions are the expected value E[X] =
∫ ∞
−∞ x f (x)dx. For normal distributions, this is

the mean m.
In the one-dimensional case, a “plausible Bayes” classification is computed using the

distances from x to the modes (=maxima) or mean values {m1, . . . , mc} of the pdfs of
the class likelihoods. If the “plausible Bayes” calculation results in an undefined value,
the class with the closest distance is assigned to x: class(x) = argmin({d(x,m1), . . . , d(x,mc)}).
There are efficient algorithms for Voronoi cell calculations for feature spaces D ε Rd with
d from 1 up to 20, which are included in most statistical software packages, for example
in the R package “geometry” (https://CRAN.R-project.org/package=geometry (accessed
on 18 September 2022) [51]) or as built-in function of the Matlab system. Many of these
algorithms are based on the efficient and well-tested convex hull algorithm “qhull” (http:
//www.qhull.org (accessed on 18 September 2022) [52]). For larger number of features
(d > 20), there are approximations for the Voronoi cells or their equivalent, the Delaunay
graph (e.g., [53]).

4.3. Experimentation

Programming was performed in the matrix laboratory programming language using
the Matlab software package (version 7.1, MathWorks for Windows, Natick, MS, USA),
in the R language [54] using the R software package [12], version 4.1.3 for Linux, available
free of charge from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-
project.org/ (accessed on 18 September 2022), and in the Python language [55] using Python
version 3.8.12 for Linux, available free of charge at https://www.python.org (accessed
on 18 September 2022). Data sets comprised body heights of school-aged children and
adolescents from 1985 to 2019 in 200 countries with 65 million participants [9], which served
as introductory example. Further data sets included lipid markers measured in blood serum
of patients with multiple sclerosis or healthy controls published previously [14], and public
domain flow cytometric data of peripheral blood [19].

5. Conclusions

In some real-world cases, Bayesian reasoning leads to implausible results. This effect
occurs particularly with data with a small general probability (evidence). Using item
categorization via a computed ABC analysis on the evidence of the data, the proposed
method at least allowed to identify which data might be misclassified and for which

https://CRAN.R-project.org/package=geometry
http://www.qhull.org
http://www.qhull.org
https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://www.python.org
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data Bayes’ theorem provided good classifications. A threshold ε was calculated for the
probability of class assignment to be considered as too low to classify. The “reasonable
Bayes” classification proposed to leave those points unclassified or classified as “uncertain”.
The “plausible Bayes” classification proposed that data points that were not assigned
to a class using the “plausible Bayes” method be placed in the Voronoi cell of the class
centers. Thus, the proposed extension of a Bayesian inference of class membership can be
used to obtain robust and plausible class assignments even for data at the extremes of the
distribution and/or for which evidence is weak. The gain in assignment accuracy depends
on the actual data set and ranged in the present experiments from as little as 1% or less to
as much as 10%.
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