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Abstract: Knowledge discovery in biomedical data using supervised methods assumes that the
data contain structure relevant to the class structure if a classifier can be trained to assign a case
to the correct class better than by guessing. In this setting, acceptance or rejection of a scientific
hypothesis may depend critically on the ability to classify cases better than randomly, without high
classification performance being the primary goal. Random forests are often chosen for knowledge-
discovery tasks because they are considered a powerful classifier that does not require sophisticated
data transformation or hyperparameter tuning and can be regarded as a reference classifier for
tabular numerical data. Here, we report a case where the failure of random forests using the default
hyperparameter settings in the standard implementations of R and Python would have led to the
rejection of the hypothesis that the data contained structure relevant to the class structure. After
tuning the hyperparameters, classification performance increased from 56% to 65% balanced accuracy
in R, and from 55% to 67% balanced accuracy in Python. More importantly, the 95% confidence
intervals in the tuned versions were to the right of the value of 50% that characterizes guessing-level
classification. Thus, tuning provided the desired evidence that the data structure supported the class
structure of the data set. In this case, the tuning made more than a quantitative difference in the form
of slightly better classification accuracy, but significantly changed the interpretation of the data set.
This is especially true when classification performance is low and a small improvement increases the
balanced accuracy to over 50% when guessing.

Keywords: data science; artificial intelligence; machine-learning; digital medicine

1. Introduction

In biomedical research, knowledge is increasingly being discovered using machine-
learning techniques. Unsupervised and supervised methods are used to analyze whether
a data set contains a structure relevant to the research subject. Among the supervised
methods, the classification algorithms are of particular interest and have been described
in detail elsewhere for this purpose [1]. The approach assumes that if a classifier can be
trained to assign a case to the correct class better than by guessing, then the data contain
a structure that is relevant to the class structure and the variables the classifier needs to
perform this task contain relevant information about the class structure being addressed. In
this setting, high classification performance is not necessarily the primary goal, but rather
the focus is on supporting the hypothesis that the variables “X” collected contain relevant
information to support the given class structure “y”. This hypothesis must be rejected if
a reasonably chosen classifier, such as random forests for tabular numerical data, cannot
assign cases to classes better than by guessing.
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Random forests [2,3] is a tree-based bagging classification algorithm that creates a
set of distinct, uncorrelated, and often very simple decision trees [3]. The splits of the
features are random, and the classifier refers to the majority vote for class membership
provided by hundreds of simple decision trees. It is considered a powerful classifier on
tabular numeric data compared to deep learning neural networks [4,5] and outperforms
logistic regression [6]. Increasing the number of trees in the forests does not tend toward
overfitting [7]. Moreover, random forests can be used without prior complex parameter set-
tings [8]; removing uninformative features has been advised to suffice the tuning [9]. These
are key advantages to alternative classifiers, such as k-nearest neighbors [10] that requires
a valid distance measure often difficult to define [11], or support vector machines [12] that
have regularization as a critical hyperparameter [13], or deep learning layered artificial
neural networks, that while considered universal classifiers [14], need the number of layers
and the number of neurons in each layer to be set.

Its advantages make random forests a reference classifier for tabular numerical data.
Initial investigation of whether the data contain a structure that reflects the class structure
and can be used for classification is often performed with random forests. The present case
study reports an occasional failure of random forests to classify a simple data set using
the default hyperparameter settings of random forests implementations in the R [15] and
Python [16] programming languages. The context of this observation was data exploration
using unsupervised methods. As machine learning becomes more prevalent in biomedical
research and “out-of-the-box” solutions become widely available, it is important to be
aware of its pitfalls. The fact that an important decision about whether to accept or reject
a research hypothesis may depend on the voting of random forests is the motivation for
describing the following case.

2. Materials
2.1. Data Set

A biomedical data set was available from an assessment of pain sensitivity to var-
ious experimental noxious stimuli collected in a quantitative sensory testing study in
n = 125 healthy Caucasian volunteers (69 men, 56 women, aged 18 to 46 years, mean
25 ± 4.4 years) [17]. From that study it was known that blunt pressure pain had a com-
paratively large effect size with respect to sex differences in pain perception (Figure 1)
with an estimate of Cohen’s d [18] = 0.83. Reassessing the sex difference verified statistical
significance (t-test [19]: t = 4.7025, degree of freedom = 122.93, p = 6.783 × 10−6). In an
actual reanalysis of this data set, a focus of assigning the subjects’ sex from the acquired
pain information was pursued, reversing the widely accepted fact that pain perception is
gender specific [20].

2.2. Experimentation
2.2.1. Programming Environment

Programming was performed in the R language [15] using the R software package [21],
version 4.1.2 for Linux, available free of charge from the Comprehensive R Archive Net-
work (CRAN) at https://CRAN.R-project.org/ (accessed on 9 October 2022), and in the
Python language [16] using Python version 3.8.13 for Linux, available free of charge at https:
//www.python.org (accessed on 1 March 2022). The main R packages used for the experi-
ments were R package “randomForest” (https://cran.r-project.org/package=randomForest
(accessed on 9 October 2022) [23]), “caret” (https://cran.r-project.org/package=caret (ac-
cessed on 9 October 2022) [24]) and “pROC” (https://cran.r-project.org/package=pROC
(accessed on 9 October 2022) [25]). The main packages used for the Python-based data anal-
ysis were the numerical Python package “numpy” (https://numpy.org (accessed on 9 Octo-
ber 2022) [26]), “pandas” (https://pandas.pydata.org (accessed on 9 October 2022) [27,28]),
fundamental algorithms for scientific computing in Python “SciPy” (https://scipy.org
(accessed on 9 October 2022) [29]) and “scikit-learn” (https://scikit-learn.org/stable/ (ac-
cessed on 9 October 2022) [30]). Experiments were performed on 1–64 cores/threads on an

https://CRAN.R-project.org/
https://www.python.org
https://www.python.org
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https://cran.r-project.org/package=caret
https://cran.r-project.org/package=pROC
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AMD Ryzen Threadripper 3970X (Advanced Micro Devices, Inc., Santa Clara, CA, USA)
computer with 256 GB random access memory (RAM) running Ubuntu Linux 22.04.1 LTS
(Canonical, London, UK)).

Figure 1. Pressure pain data set: class-wise distributions. Density plot showing the distribution of
the raw data of pain thresholds to blunt pressure stimuli, color coded for the two sexes. The figure
has been created using the R software package (version 4.2.1 for Linux; https://CRAN.R-project.org/
(accessed on 9 October 2022) [21]) and the library “ggplot2” (https://cran.r-project.org/package=
ggplot2 (accessed on 9 October 2022) [22]).

2.2.2. Design of the Experiments

In a 1000-fold cross-validation scenario on training data subsets comprising 2/3 of
the original data drawn by random Monte-Carlo re-sampling [31] from the original data.
The trained classifiers were then applied to the remaining 1/3 of the cases that have not
been used for training. The success of classifier training was quantified by calculating
the balanced accuracy [32], which corresponds to the area under the receiver operating
characteristic curve (roc-auc) [33]. These calculations were done using the R libraries “caret”
and “pROC”.

3. Results
3.1. Random Forests Classification with Default Hyperparameters

An initial attempt to assign subjects to the correct sex based on their pain threshold
to blunt pressure stimuli using a random forests classifier was performed using the de-
fault parameters of the R library “randomForest”, i.e., n = 500 decision trees with sqrt(d)
features = 1 and no restriction on the number of nodes or the depth of the trees (Listing 1).

Listing 1: R code for classification with random forests using the default settings of the library “ran-
domForest” (https://cran.r-project.org/package=randomForest (accessed on 9 October 2022) [23]).

# w i t h o u t tuning
r f <−

randomForest : : randomForest ( as . f a c t o r ( sex ) ~ . ,
data = t r a i n i n g

)

https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=randomForest
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This led to a 95 % confidence interval of both, balanced accuracy and roc-auc, that
included the value of 0.5, i.e., the classification could not be considered as better than mere
guessing (Table 1). This was unexpected given the significant difference determined by a
t-test, the clear separation of the distributions of pain thresholds (Figure 1) between the
two sexes, and therefore prompted further investigation.

Table 1. Performance of non-tuned and tuned random forests and of two ad hoc classifiers consisting
of a simple brute force split rule or a Bayesian decision rule. Performance was evaluated as balanced
accuracy (BA) and, for random forests, also as area under the receiver operator characteristic (auc-
roc). The latter was not calculated for the ad hoc classifiers because the assignment probability was
either not implemented (split) or not queried (Bayes). Implementations of random forests in the R
(“randomForest”) and Python (“RandomForestClassifier”) programming languages were both used.

Classifier Tuning Performance
Measure

Package RandomForest (R) RandomForest
Classifier (Python)

RF

non-tuned BA 0.56 (0.42–0.68) 0.55 (0.43–0.67)
auc-roc 0.59 (0.45–0.72) 0.58 (0.45–0.7)

tuned BA 0.65 (0.53–0.77) 0.67 (0.55–0.78)
auc-roc 0.73 (0.59–0.85) 0.72 (0.58–0.85)

Split ad hoc BA 0.65 (0.54–0.76) -

Bayes decision ad hoc BA 0.67 (0.55–0.79) -

3.2. Investigation of the Classification Failure

First, it was checked whether the R library “randomForest” accidentally failed on
this data set. Therefore, the classification attempt was repeated using the Python imple-
mentation “RandomForestClassifier” from the “sklearn.ensemble” package (Textbox 2).
Again, the balanced accuracy and the roc-auc were close to the value of 0.5 (50%), and their
confidence interval spanned the value 0.5, indicating a failed classification (Table 1)).

Second, a simple splitting rule was built by brute force by testing each possible
splitting of the pressure pain threshold of the training data set for the best accuracy for
discriminating the sexes. The classification performance of these rules was evaluated on the
test data subset. In addition, a Bayesian boundary [34] in the pain threshold between sexes
was computed using our R library “AdaptGauss” (https://cran.r-project.org/package=
AdaptGauss (accessed on 9 October 2022) [35]), and used as another simple classifier. These
two ad hoc classifiers had no problem assigning sexes based on pressure pain threshold
with balanced accuracy and a roc-auc better than guessing, that is, with a lower limit of the
95% confidence interval 0.5 (Table 1).

3.3. Random Forests Classification with Tuned Hyperparameters

Tuning the hyperparameters of the implementation of the package “randomForest”
for the number of trees (100 to 1500 in increments of 100) and the number of nodes in each
tree (1–8) (Figure 2) indicated that the classifier should be run with n = 1300 trees and a
maximum of n = 3 nodes.

A rerun of the classifier training and testing with the tuned hyperparameters (code not
shown) provided the desired result of balanced accuracy and roc-auc for sex assignment
from the pain threshold variable better than guessing, i.e., with confidence intervals to
the right of the 0.5 value (Table 1). The Python implementation (Listing 2) resulted in
n = 700 trees with a maximum depth of only one split. Again, the desired classification bet-
ter than chance was achieved, almost exactly as with the R implementation “randomForest”
(Table 1).

https://cran.r-project.org/package=AdaptGauss
https://cran.r-project.org/package=AdaptGauss
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Listing 2: Python code for hyperparameter tuning and classification with random forests using the
“RandomForestClassifier” method imported from the “scikit-learn”package (https://scikit-learn.org/
stable/ (accessed on 9 October 2022) [30]).

import pandas as pd
import numpy as np
from sk learn . metr i cs import balanced_accuracy_score , roc_auc_score
from sk learn . model_se lec t ion import t r a i n _ t e s t _ s p l i t , GridSearchCV
from sk learn . ensemble import RandomForestClass i f ier

# %% C l a s s i f i e r tuning
f o r e s t = RandomForestClass i f ier ( random_state =0)
param_grid = { ’ boots t rap ’ : [ True , Fa l se ] ,

’ max_depth ’ : np . arange ( 1 , 1 1 ) . t o l i s t ( ) ,
’ max_features ’ : [ 1 ] ,
’ min_samples_leaf ’ : np . arange ( 1 , 2 1 ) . t o l i s t ( ) ,
’ min_samples_spl i t ’ : np . arange ( 2 , 2 1 ) . t o l i s t ( ) ,
’ n_es t imators ’ : np . arange ( 1 0 0 , 1500 , 1 0 0 ) . t o l i s t ( ) }

gr id_search = GridSearchCV ( f o r e s t , param_grid=param_grid ,
scor ing=" balanced_accuracy " , verbose =0 , n_jobs =−1)

gr id_search . f i t ( df1 , y )
bo ot s t r ap_ r f , max_depth_rf , max_features_rf , min_samples_leaf_rf ,

min_samples_spl i t_r f , n _ e s t i m a t o r s _ r f = gr id_search . best_params_ . values ( )

# %% C l a s s i f i c a t i o n CV
n I t e r = 1000
BA_RF_default , ROC_RF_default , BA_RF_tuned , ROC_RF_tuned = [ ] , [ ] , [ ] , [ ]
for i in range ( n I t e r ) :

# %s p l i t d a t a i n t o t r a i n and t e s t
X_train , X_test , y_tra in , y _ t e s t = t r a i n _ t e s t _ s p l i t (

df1 , y , t e s t _ s i z e =0 .33 , random_state= i )
pd . DataFrame ( y _ t e s t ) . value_counts ( )

f o r e s t = RandomForestClass i f ier ( random_state =0)
f o r e s t . f i t ( X_train , y _ t r a i n )
y_pred = f o r e s t . p r e d i c t ( X _ t es t )
y_pred_proba = f o r e s t . predict_proba ( X_ te s t )
BA_RF_default . append (

balanced_accuracy_score ( y_ tes t , y_pred ) )
ROC_RF_default . append ( roc_auc_score (

y_ tes t , y_pred_proba [ : : , 1 ] ) )

f o r e s t = RandomForestClass i f ier ( random_state =0 , boots t rap=b oot s t r ap _r f ,
max_depth=max_depth_rf , max_features=max_features_rf ,
min_samples_leaf=min_samples_leaf_rf ,
min_samples_spl i t=min_samples_spl i t_r f ,
n_es t imators= n _ e s t i m a t o r s _ r f )

f o r e s t . f i t ( X_train , y _ t r a i n )
y_pred = f o r e s t . p r e d i c t ( X _ t es t )
y_pred_proba = f o r e s t . predict_proba ( X_ tes t )
BA_RF_tuned . append (

balanced_accuracy_score ( y_ tes t , y_pred ) )
ROC_RF_tuned . append ( roc_auc_score (

y_ tes t , y_pred_proba [ : : , 1 ] ) )

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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Figure 2. Results of tuning the number of trees (ntree) and the maximum number of nodes (maxnodes)
of the random forests R implementation. The figure has been created using the R software package
(version 4.2.1 for Linux; https://CRAN.R-project.org/ (accessed on 9 October 2022) [21]); it is
the printout of the grid tuning using the “caret” library (https://cran.r-project.org/package=caret
(accessed on 9 October 2022) [24]), which calls for plotting the “lattice” package (https://cran.r-
project.org/package=lattice (accessed on 9 October 2022) [36]).

4. Discussion

In this example case, random forests unexpectedly but consistently failed across pro-
gramming environments on a seemingly simple classification problem when the default
parameters of the software implementations were used. After tuning the hyperparameters,
the expected classification success was achieved, i.e., classification performance exceeded
guessing. Failure with the default settings can become particularly relevant when super-
vised learning is used to recognize data structures rather than to create a powerful classifier.
A typical problem in biomedical data analysis is met in a set of individuals with a particular
class label, e.g., a diagnosis, and some measurements for each case. The first question is
whether these measurements have a structure that is relevant to the class structure and
can be used to classify the subjects. To answer this question, a powerful machine-learned
classifier can be trained on a subset of the data. If this classifier is able to classify the
cases not used in learning such that this classification is better than guessing, this indicates
that there is structure in the data that supports the class structure. Classification accuracy
that exceeds guessing is sufficient for this structural assessment. This was thwarted in
the present example case, where failure to classify would have led to false rejection of
the hypothesis that the data contained a structure relevant to the subjects’ sex. Only after
tuning, the hypothesis could be accepted.

Thus, when random forests is used for supervised structure discovery in data sets
and for feature selection [37], classification performance better than chance is the first
requirement. Knowledge discovery by applying feature selection techniques assumes that
if a classifier can be trained to assign a case to the correct class better than by guessing,
the variables needed by the classifier to accomplish this task contain relevant information
about the class structure being addressed. However, this depends on the success of the
classification. It is not of interest in this context with which feature an unsuccessful classifier
attempted its classification task. In this case study, tuning provided exactly the required
classification success of the random forests classifier.

https://CRAN.R-project.org/
https://cran.r-project.org/package=caret
https://cran.r-project.org/package=lattice
https://cran.r-project.org/package=lattice
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The most important parameter for tuning the random forests seemed to be the tree
depth in the present data, which had to be limited to a few decisions of maxnodes = 3 and
max_depth = 1 for the R and Python implementations, respectively. Both refer to a limit on
tree growth. In contrast, the number of trees seemed less important (Figure 2). Changing
the number of trees between 100 and 1500 had indeed little effect in additional cross-
validated tuning attempts (not shown). This is consistent with previous results of assessing
the impact of the number of trees in the forest [7]. However, with only one variable, this
observation cannot be generalized from present experiments. Using random forests for
only one variable seems unusual, but it is not discouraged, and it may well be that a single
variable remains in a data set after feature selection.

In the present analyses, standard implementations of random forests in the R and
Python programming languages were used with consistent results. This is the common
data science environment. However, less frequently used modifications of random forests
might be less affected, but were not tested here. An example is the combined use of
the Kolmogorov–Gabor polynomial [38] and the random forests algorithm to increase
classification accuracy [39]. There, each variable vector is represented as polynomial
members and random forests are used to find the coefficients. However, the Python code
mentioned by the authors is not freely available, and reimplementing the method would
far exceed the purpose of this case report. Further modifications of random forests can
also better avoid the present case of initial classification failure, such as several proposals
summarized in [40]. However, the present work has highlighted a pitfall in standard
data analysis when default parameters of common implementations of random forests
are used for data exploration. The use of sophisticated modifications likely implies that
parameters are carefully chosen rather than left at default values, so the problem presented
here may not arise in these particular applications of random forests. However, for default
implementations, the problem seems to occur with other implementations as well. Using the
R package “ranger” (https://CRAN.R-project.org/package=ranger (accessed on 9 October
2022) [41]) instead of the package “randomForest”, the default parameters provided a
balanced accuracy of only 0.56 (95% confidence interval: 0.43–0.69). This underlines the
relevance of the present observation performed with this case.

5. Concluding Remarks

The present case study showed that random forests occasionally need hyperparameter
tuning. While tuning is implemented in data science workflows, encouraged by the
reputation of random forests for being a robust classifier that does not require complicated
parameter settings, tuning may be omitted to save time or when in a supervised approach
to data structure exploration high classification performance is not the main goal while
it is sufficient to prove that the data contain information relevant to the class structure
if the classification is better than guessing. In this case study, tuning made more than a
quantitative difference in terms of slightly better classification accuracy. In contrast, it made
a qualitative difference in the interpretation of the data set, namely the difference between
judging the input data structure as supporting or not supporting the class structure of the
data set. This is especially relevant for data sets where classification performance is low
and where a small improvement will increase balanced accuracy to over the 50% guessing
limit. In the present case, tuning the R implementation of random forests increased the
balanced accuracy of assigning subjects to their correct sex from 56% to 65%, and in the
Python implementation the change was from 55% to 67%; however, the 95% confidence
intervals in the tuned versions were to the right of the value of 50% that characterizes
guessing-level classification. The tuning effect goes beyond quantitative improvement in
classification performance but affects the interpretation of a data set based on supervised
learning fundamentally. Therefore, the present report addresses the use of supervised data
analysis for knowledge discovery, highlighting that tuning of random forests when used
for supervised knowledge discovery in biomedical data can decide about the acceptance or
the rejection of a research hypothesis.

https://CRAN.R-project.org/package=ranger
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