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Abstract: Background: The categorization of individuals as normosmic, hyposmic, or anosmic from
test results of odor threshold, discrimination, and identification may provide a limited view of the
sense of smell. The purpose of this study was to expand the clinical diagnostic repertoire by including
additional tests. Methods: A random cohort of n = 135 individuals (83 women and 52 men, aged 21
to 94 years) was tested for odor threshold, discrimination, and identification, plus a distance test, in
which the odor of peanut butter is perceived, a sorting task of odor dilutions for phenylethyl alcohol
and eugenol, a discrimination test for odorant enantiomers, a lateralization test with eucalyptol, a
threshold assessment after 10 min of exposure to phenylethyl alcohol, and a questionnaire on the
importance of olfaction. Unsupervised methods were used to detect structure in the olfaction-related
data, followed by supervised feature selection methods from statistics and machine learning to
identify relevant variables. Results: The structure in the olfaction-related data divided the cohort into
two distinct clusters with n = 80 and 55 subjects. Odor threshold, discrimination, and identification did
not play a relevant role for cluster assignment, which, on the other hand, depended on performance
in the two odor dilution sorting tasks, from which cluster assignment was possible with a median
100-fold cross-validated balanced accuracy of 77–88%. Conclusions: The addition of an odor sorting
task with the two proposed odor dilutions to the odor test battery expands the phenotype of olfaction
and fits seamlessly into the sensory focus of standard test batteries.

Keywords: olfaction; olfactory testing; patients; data science; machine learning

1. Introduction

Clinical tests or test batteries for the sense of smell typically involve the evaluation
of the olfactory threshold for an odorant, the discrimination of different odorants, and the
identification of culturally known odors. Today’s olfactory test batteries include all of these
components [1,2] or a subset of these tests [3–6]. Efforts have even been made to minimize the
tests used, to the point of inferring the olfactory function from the ability to recognize a single
odor or a few odors only, e.g., five odors or less [7–9]. The reduction of olfactory tests to a few
odor-identification tasks reduces the burden of olfactory diagnostics and therefore facilitates
their inclusion in routine clinical assessments and screening tests of larger populations. How-
ever, such simple tests also reduce the resolution of olfactory function assessment [10] and
generally only allow assignment to a categorical diagnosis of anosmia or normosmia [7,8,11].
More comprehensive tests allow a more detailed scoring of olfactory function. For example,
for the Sniffin’ Sticks test, a score change of 5.5 points has been identified as the threshold
above which changes in olfactory function are subjectively perceived, i.e., the minimal clini-
cally significant difference [12]. Such a resolution is not available with short screening tests.
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With increasing attempts to treat olfactory dysfunction through pharmacological approaches
or sensory training [13], the three test components may still not suffice to capture all aspects
of olfactory changes. The exploration of informative extensions of standard clinical tests of
olfactory function therefore seems warranted.

The present study was designed to evaluate possible additions to a standard odor test
battery that assesses the olfactory threshold, odor discrimination, and odor identification [1,2].
This included additional sensory tests such as sorting tasks for the dilution series of odorants, the
evaluation of the olfactory threshold after prolonged exposure to an odor to assess adaptation
or habituation of the sense of smell or psychosocial aspects such as the subjective importance
of the sense of smell in everyday life. It was hypothesized that informative sensory olfactory
phenotypes are likely to be more complex than threshold, identification, and discrimination scores
allow to conclude, with no specific preference for any of the additional tests assessed. Therefore,
this exploratory study was analyzed using a data-driven approach with initial unsupervised
assessments of structures in the dataset that are indicative of odor-related phenotypes that can
subsequently be interpreted from the clinical perspective of an expert in human olfaction.

2. Methods
2.1. Patients and Study Design

The prospective cohort study was conducted in accordance with the Declaration of
Helsinki on Biomedical Studies Involving Human Subjects. It was approved by the Ethics
committee at the Dresden University Hospital (approval number EK278082019). All partic-
ipants gave informed written consent. Participants were n = 135 patients, 83 women and
52 men, aged between 21 and 94 years (mean ± standard deviation, SD: 30.5 ± 11.6 years)
and with a body mass index (BMI) between 16.3 and 41.2 kg/m2 (means SD: 23.1 ± 4 kg/m2).
They were recruited either through flyers or through the Smell and Taste Clinic at the De-
partment of Otorhinolaryngology of the TU Dresden. Inclusion criteria were age 18 years
and older and subjectively normal olfactory function in healthy controls or the presence of
olfactory disorder in patients with olfactory loss. Exclusion criteria were pregnancy, lactation,
smoking (>5 cigarettes per week), acute nasal inflammation, neurodegenerative disorder
(e.g., Parkinson’s disease), or other diseases that frequently are associated with olfactory loss.
Measurements took place between October 2019 and June 2021.

2.2. Acquisition of Olfaction Related Variables

Measurements were taken in the following sequence (abbreviations in bold in brackets):
Assessment of olfactory threshold, odor discrimination and identification performance
(Sniffin’ Sticks: olfthresh, olfdis, olfident), a distance test with peanut butter (peanut),
ordering of odor intensities for phenylethyl alcohol [PEA] and eugenol [EUG] (PEA order,
EUG order), a discrimination test for odor enantiomers (enantiomer), lateralization test
using eucalyptol (lateral), the threshold test after odor exposure using PEA-filled nose
clips (adaptation), and finally, a questionnaire on the importance of olfaction (Importance).
The entire test battery including breaks took approximately 90 min. The measurements
took place in well-ventilated, relatively quiet rooms of the same experimenter (AH). The
participants received moderate financial compensation. The tests are described in more
detail below; the names of the analyzed variables are described in the legend of Table 1.
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Table 1. Identification of the variables that were most informative in assigning a subject to the k-means clusters. Features were selected according to importance of the
variables in the PCA projection of the olfaction-related data, using univariate methods implemented as effect sizes calculated as Cohen’s d (“C’d”) and the “SelectKBest”
(SKB) method with model-based grid search to determine how many variables k to be selected, and model-based methods implemented as “SelectFromModel“ (SFM),
recursive feature elimination (RFE), and forward and backward sequential feature selection (SFS) used with linear support vector machines (SVM), random forests (RF),
and logistic regression (LogReg), in a 100-fold cross-validation scenario run on the initially drawn training data subset. All the methods provided a ranking of the variables
for their relevance to the cluster structure, which was subjected to computed ABC analyses, and category “A” containing the most important items was retained. The sum
of occurrences in category “A” is shown in the third column from the left. The selection for the final dataset is indicated in the next column to the right of the variable
name (“X”). Note that age, sex, and BMI were not used in the PCA projection and therefore could not be selected as relevant features in the PCA. Variable names, if not
self-explaining: “olfthresh“ = olfactory threshold to phenyl ethyl alcohol (PEA), “olfdis” = score in the odor discrimination task, “olfident” = score in the odor identification
task, “log Distance right/left nostril” = perception of peanut butter odor from a distance, “Score PEA/EUG” = scores in the odor sorting tasks, “Lat correct assignments
overall” score in the lateralization test.

Variable Final Sum PCA Univariate Feature Selection Model Based Feature
Selection

C’ d SKB SFM RFE SFS forward SFS backward

SVM RF LogReg SVM RF LogReg SVM RF LogReg SVM RF LogReg SVM RF LogReg

Age

BMI−2 3 1 1 1

Importance of evaluation 3 1 1 1

Importance of application X 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Importance of consequence 6 1 1 1 1 1 1

log olfthresh 3 1 1 1

olfdis 4 1 1 1 1

olfident 4 1 1 1 1

log Distance right nostril X 12 1 1 1 1 1 1 1 1 1 1 1 1

log Distance left nostril

Score PEA X 11 1 1 1 1 1 1 1 1 1 1 1

Score PEA time corrected X 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Score EUG X 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Score EUG time corrected X 11 1 1 1 1 1 1 1 1 1 1 1

Lat correct assignments overall

Correct enantiomer discriminations 5 1 1 1 1 1

log PEA threshold after PEA clip 2 1 1

Sex
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2.2.1. Assessment of Olfactory Threshold, Odor Discrimination, and Identification Performance

The functional performance of subjects’ sense of smell was assessed by evaluating
olfactory threshold and performance in odor discrimination and identification tasks. To-
day’s test batteries include all or a subset of the components [3–6], and in the present study,
the “Sniffin’ Sticks” test battery (Burghart Instruments, Wedel, Germany) was used, in
which odors are presented in felt-tip pens approximately 14 cm long with a 1.3 cm inside
diameter at 20 s intervals [1,2]. The olfactory threshold (olfthresh) was determined for
phenylethanol dissolved in propylene glycol in 16 dilution steps in a geometric series
starting with a 4% odor solution. Triples of pens were presented, one of which contained
the diluted odor, while the other two were blanks. Subjects had to identify the odorous pen
in a three-alternative forced-choice paradigm (3-AFC). Using a staircase paradigm, two
consecutive correct identifications triggered the transition to the next higher dilution, while
one incorrect identification triggered the return to the next lower dilution. After seven
turning points, the threshold was calculated as the arithmetic mean of the dilution steps
of the last four turning points. Odor discrimination (olfdis) was also assessed in a 3-AFC
design using 16 triplets with two pens with the same odorant and one pen with a different
odor, with the task being to identify the pen with the different odor. Odor identification
(olfident) was assessed in a 6-AFC design in which subjects had to name 16 odors from
6 alternatives given with each odorant. This expansion of the standard version employs a
4-multiple forced-choice paradigm as proposed in [14]. The final TDI score was the sum
of the scores for the threshold, discrimination, and identification subtests with a range
between 1 and 48 points. Using the TDI score, olfactory function diagnosis was determined
as either functional anosmia (further referred to as “anosmia”; score < 16.5), hyposmia
(16.5–30.5), or normosmia (>30.5) [15].

2.2.2. Distance Test with Peanut Butter

The “Peanut test” is based on the lateralized measurement of the distance at which
an odor is perceived. It was first introduced by Stamps et al. [16], similarly to the alcohol
sniff test first published by Davidson and Murphy [17]. The idea of the test is to assess
the ability of individuals to perceive odors from a distance, which also reflects olfactory
sensitivity. To this end, an odor source (brown glass jars of 50 mL volume, round opening,
opening diameter 32 mm, filled with 14g peanut butter: “American Creamy Peanut Butter”,
CMC The Food Company GmbH, Mühlheim, Germany) is moved towards the nostril,
beginning at a distance of 30 cm [16]. In the sitting participant, the odor source is slowly
moved upwards along a ruler parallel to the body axis, in 1 cm steps per exhalation.
During the measurements, participants closed their eyes and gently closed one nostril
with their finger. Care was taken not to deform the nasal anatomy on the contralateral
side. Participants continue to breathe calmly and evenly with their mouths closed. They
signaled as soon as they smelled the peanut butter. At that moment, the experimenter read
the distance between the nostril and the opening of the jar [16]. This process was repeated
three times per nostril. The mean value was used as an estimate of the distance. Intervals
of approximately 90 s were kept between these trials. The side of the first measurement
was randomized across participants. The tested nostril changed with each measurement.

2.2.3. Ordering of Odor Intensities for Phenylethyl Alcohol and Eugenol

The order tasks for phenylethyl alcohol (PEA) and eugenol (EUG) (“PEA order test”,
“EUG order test”, respectively) were meant to address olfactory skills that are needed in
the daily functioning of the sense of smell (Figure 1). This task involved several skills, e.g.,
odor memory, sensitivity to odorous sensation, and olfactory adaptation. A similar test
had been proposed earlier [18]. Five dilutions each were prepared for the fragrances PEA
and EUG, starting from a 1% concentration using the solvent propylene glycol, in dilution
steps of 1:2 (2PEA, order number 77861; EUG, order number W246700; propylene glycol,
order number W294004; Sigma-Aldrich, Taufkirchen, Germany). Odors were presented
in brown glass jars of 50 mL volume, with a round opening of 32 mm diameter. The jars
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had screw-on caps. Participants were not limited in time to organize the 5 concentrations
in ascending order. As soon as an order had been established, the participant notified the
experimenter who noted down the time required for the task. The score was the absolute
difference between the assigned rank and the actual rank, e.g., if a subject placed the third
dilution in the second position, the difference was 1, or if instead of the last position, the
most concentrated odor was placed in position 1, the difference was 4. Thus, a higher score
indicated poorer performance, whereas a perfect sorting yielded zero difference.
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Figure 1. Photographs showing details of the administration of olfactory tasks. Top left–nasal
clip (see also insert) filled with phenylethylalcohol to provide continuous olfactory background
stimulation. Top right—distance test with an opened jar with peanut butter slowly moved upwards
towards the nose of the blinded participant with a meter to measure the distance from the nares.
Bottom left—lateralization task using a hand-held squeezing device (see also inserts), which allows
to administer the same amount of air to the left and right nostrils of the blinded participant with
one bottle containing eucalyptus. Bottom right—odor-sorting task with the participant arranging
odor-containing bottles according to the different odor intensities with odor concentrations indicated
at the bottom of the bottle (see also insert).

2.2.4. Discrimination Test for Odor Enantiomers

Like the odor discrimination task of the Sniffin Sticks, the enantiomer test was meant
to be a challenge for participants with a good sense of smell. To this end, the test was based
on pairs of enantiomers with similar smells presented within 3-alternative forced-choice
tasks. The following pairs were used: S-(−)-limonene/R-(+)-limonene, (−)-fenchone/
(+)-fenchone, L-carvone/ R-(−)-carvone, and (R)-(−)-2-butanol/ (L)-(+)-2-butanol with
R/(+)-enantiomers presented twice (substance: order number: dilution in propylene glycol;
S-(−)-limonene: 62130: 17%; R-(+)-limonene: 62120: 100%; (−) fenchone: 46200: 100%;
(+)-fenchone: 46210: 100%; L carvone: W224908: 17%; R-(−)-carvone: 124931: 100%;
(R)-(−)-2-butanol: 236691: 100%; (L)-(+)-2-butanol: 237698: 100%; all odors from Sigma-
Aldrich). The task was performed similarly to the odor discrimination task presented with
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Sniffin’ Sticks (see above) with the exception that odors were presented in glass jars of
50 mL volume, with a round opening of 32 mm diameter. Prior to testing, odor intensities
had been matched by a group of 16 healthy participants in order to establish isointense
stimuli (12 women and 4 men, age 24-55 years, mean age 27.8 years, SD 7.5 years). Based
on their ratings, L-carvone and S-limonene were diluted at 1:5.

2.2.5. Lateralization Test Using Eucalyptol

The lateralization test is used to assess nasal trigeminal sensitivity, which has been
shown to be closely associated with olfactory function [19,20]. To this end, lateralization
abilities were quantified with the use of a mechanically operated stimulation device. The
trigeminal stimulus eucalyptol was presented (15 mL of 50% eucalyptol solved in propylene
glycol; eucalyptol order numberC80601; Sigma-Aldrich, Taufkirchen, Germany) to either
nostril, while the other received air from a bottle filled with 15 mL of propylene glycol
(compare [21,22]). The compressible polypropylene bottles had a volume of 250 mL each.
Stimuli with a volume of 15 mL each were released from the left and the right bottles
during each stimulation. The bottles had a spout, which was fitted with disposable, soft
silicon tubing (inner diameter 5 mm) so that possible irritation at the nares was minimized.
For each stimulus presentation, subjects were instructed to hold onto the outlets so that
the tubing reached inside the nares for approximately 1 cm beyond the nasal valve area.
Following each stimulus presentation, participants raised their left or right hand to indicate
the side of stimulation. First, two test runs were carried out so that participants could
familiarize themselves with the procedure. A total of 40 stimuli (20 at each side of the
nose) were then applied in pseudo-randomized order to the blindfolded participants,
with an interval of approximately 30 s between trials. The score was the sum of correct
lateralizations [23].

2.2.6. Threshold Test after Odor Exposure Using PEA-Filled Nose Clips

The adaptation test was meant to provide a challenge for healthy individuals with a
good sense of smell. Because adaptation is typically seen after exposure to odors [24,25],
we measured the degree to which the PEA odor threshold is affected by previous exposure
to PEA. To this end, participants received a nose clip (Aspuraclip, Schönefeld, Germany).
The clips were filled with a total of 0.3 mL PEA. They were made of an elastic silicone tube,
in a horseshoe-like shape (18 mm length of legs of the U-shape, 3 mm diameter of tubing),
which allowed insertion of the clip into the left and right nostril, attached to the nasal
septum. The clip was worn for 10 min during which participants were breathing calmly
and evenly, with their mouths closed. Wearing the clips did not cause any discomfort.
Following removal of the clip, the PEA odor threshold was determined using the Sniffin’
Sticks test kit as described above.

2.2.7. Questionnaire—Importance of Olfaction

The questionnaire on the importance of olfaction (Importance test) is comprised of
18 statements on the importance of smells in everyday situations (Croy et al., 2010). Each
question is scored with a four-point self-assessment scale, ranging from “completely agree”,
corresponding to a numerical value of three, to “do not agree at all”, corresponding to a nu-
merical value of zero. Six of the statements are combined into scores for three subcategories.
The elements of the scale “association” refer to the ability of scents to evoke emotions or
memories. The “application” scale relates to the conscious use of the olfactory system
in everyday situations. The “consequence” scale reflects the extent to which individual
decisions are influenced by olfactory information. In addition, the questionnaire contains
two further statements, which are recorded under the term aggravation or lie score. They
provide conclusions about the tendency to overestimate—these were disregarded for the
present study. Based on the 6 statements in each of the 3 main categories, a maximum of
18 points could be received. In general, higher scores imply greater individual importance
of olfaction and vice versa [26].
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2.3. Data Analysis

Data analysis was performed using unsupervised methods to detect correlation and
cluster structures in the olfaction-related data, followed by a supervised analysis of differ-
ences between detected subgroups. The necessary programming work was performed in
the Python language [27] using Python version 3.8.12, which is available free of charge at
https://www.python.org (accessed on 28 January 2022). Experiments were performed in
the Anaconda data science environment (Anaconda Inc., Austin, TX, USA), freely avail-
able at https://www.anaconda.com, accessed on 28 January 2022), on an AMD Ryzen
Threadripper 3970X (Advanced Micro Devices, Inc., Santa Clara, CA, USA) computer,
running on Ubuntu Linux 20.04.4 LTS (Canonical, London, UK)). The main packages used
for the data analysis were the numerical Python package “numpy” (https://numpy.org,
accessed on 28 January 2022 [28]), “pandas” (https://pandas.pydata.org, accessed on
28 January 2022 [29,30]), fundamental algorithms for scientific computing in Python “SciPy”
(https://scipy.org [31]), and “scikit-learn” (https://scikit-learn.org/stable/, accessed on
28 January 2022 [32]).

2.3.1. Data Preprocessing

Data preprocessing included examination of the distribution of the variables, including
evaluation of possible transformations along Tukey’s ladder of powers [33,34], supported
by visualizing the data using quantile–quantile plots and assessing the normal distribution
using D’Agostino and Pearson tests [35,36] implemented in the “SciPy” Python package.
This suggested logarithmic transformation of olfactory thresholds, consistent with the
geometric scaling of odorant dilutions applied during their assessment and of the dis-
tances from odor to nostril measured in the Peanut butter test. Reciprocal square root
transformation was indicated for BMI. Imputation of missing values was performed for
the olfaction-related variables using random forests [37,38] implemented in the Python
package “miceforest” (https://pypi.org/project/miceforest/, accessed on 28 January 2022).
Only variables or cases with less than 20% missing values were retained.

2.3.2. Unsupervised Analysis of Olfaction-Related Data

Following transformation and imputation of the variables, unsupervised analyses for
identifying structures in the olfaction-related data comprised the calculation of Pearson’s
product-moment correlation coefficients [39] and the projection of the z-standardized vari-
ables onto uncorrelated planes by means of principal components analysis (PCA) [40,41].
There, the number of relevant components to retain was selected via the Kaiser–Guttman
criterion of eigenvalues > 1 [42,43]. The importance of the relevant olfaction-related vari-
ables for each principal component was estimated from the loadings of each variable on the
PCs weighted by the contribution of the PCs to the explanation of the total variance. There-
fore, the dot product of the original (z-transformed) variables and the obtained principal
components (PCs) was calculated, and the z-transformed resulting matrix was multiplied
by the proportion of variance explained by each PC.

The row sums over the relevant PCs for each variable yielded the variables’ impor-
tance. To access the most relevant variables for the PCA projection, this importance measure
was submitted to compute ABC analysis [44], an item categorization technique adopted
from economic sciences that aims to divide a set of positive numerical data into three
disjoint subsets labeled “A”, “B”, and “C”. Set “A” should contain the “important few”
elements, i.e., the elements that make it possible to obtain maximum return with mini-
mum effort [45]. The Python code “ABCanalysis” for this method is freely available at
https://github.com/JornLotsch/ABCanalysis (accessed on 28 January 2022).

Cluster structures in the olfaction-related data were sought in the retained principal
components (PCs) by k-means clustering [46,47] using the Euclidean distance between
projected data points. The number of clusters was determined among k = 2, ..., 5 possible
clusters using the mean silhouette width as the main criterion [48]. The quality and stability
of the final clustering solution were evaluated by calculating the silhouette widths and the

https://www.python.org
https://www.anaconda.com
https://numpy.org
https://pandas.pydata.org
https://scipy.org
https://scikit-learn.org/stable/
https://pypi.org/project/miceforest/
https://github.com/JornLotsch/ABCanalysis
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adjusted Rand index [49] in 20-fold cross-validation runs using bootstrap [50] resampling
from the original data. Alternative clustering methods such as Ward’s agglomerative
clustering [51] (see Supplementary Figures S1 and S2) or partitioning around medoids [52]
provided lower silhouette values were therefore discarded.

2.3.3. Supervised Analysis to Identify Olfactory Variables Relevant to the Structure
of the Dataset

Supervised analyses for interpreting subgroups of subjects included statistical group
comparisons using Mann–Whitney U [53] and χ2 tests [54]. Alpha correction for multiple
testing was applied as suggested by Bonferroni [55]. In these analyses, age and BMI were
included in addition to the olfaction-related variables used for clustering.

To further determine the relevant variables for the identified cluster structure, sev-
eral feature selection methods were used [56]. These included (i) PCA-based variable
importance described above and univariate feature selection methods implemented as
(ii) calculation of effect sizes expressed as Cohen’s d [57] and (iii) F-value based selection
as implemented in the “SelectKBest” method available in the “sklearn.feature_selection”
module of scikit-learn. The number of k features to be selected as best was determined by
a grid search of [1, ..., 18] variables in analyses based on the algorithms specified below.
Further feature selection methods were based on the assignment of an importance measure
to each variable following training of classification algorithms. Specifically, support vec-
tor machines (SVM [58]), implemented as “linearSVC”, and random forests [37,38] were
selected as two commonly used classification algorithms of different types, i.e., class sepa-
ration using hyperplanes in data projected to higher dimensions, or class separation using
an ensemble of simple decision trees (for an overview of machine algorithms suitable for
olfactory data, see [59]). In addition, logistic regression was included as a classical method
for class assignment [60]. Following the training of the algorithms, the most relevant
variables were selected using methods available in the “sklearn.feature_selection” module
of scikit-learn, including (iv) “SelectFromModel” (SFM), which selects features based on
importance weights in the trained algorithm, (v) recursive feature elimination (RFE), which
selects features by recursively considering smaller and smaller feature sets and generating
a feature ranking, and (vi) forward and backward sequential feature selection (SFS), which
iteratively finds the best features by adding features to a set of initially zero and all features,
respectively.

Algorithm-based feature selection was performed after 20% of the members of each
cluster had been put aside as a validation sample, which was not further touched during
algorithm training and feature selection. Subsequently, hyperparameter tuning was per-
formed for the selected algorithms including using a 5-fold cross-validated grid search
scenario as default in the “GridSearchCV” method of the “sklearn.model_selection” mod-
ule of scikit-learn, during which the penalty measure was also chosen from the regu-
larization methods (i) least absolute shrinkage and selection operator (LASSO) [61,62]
or (ii) Ridge regression [63]. The feature selection methods were applied in a 100-fold
cross-validation scenario provided with the “RepeatedStratifiedKFold” method from the
“sklearn.model_selection” module of “scikit-learn”, setting the parameters “n_splits” = 5
and “n_repeats” = 20. From each cross-validation run, the selected variables were retained.
The final feature sets for each selection method were determined by applying computed
ABC analysis to the number by which each variable was selected in the set of 100 runs,
from which the variables assigned to ABC category “A” were then retained. The tuning
of the algorithms led to the selection of LASSO and Ridge regression as regularization
methods for SVM and logistic regression, respectively. Other hyperparameter settings
include d = 200 trees with a maximum depth of 10 decisions for random forests or the
selection of the “newton-cg” solver for logistic regression.

Finally, a reduced feature set was determined from the sum count at which the vari-
ables had been selected in the 17 different approaches (Table 1), including PCA variable
importance, effect size calculation via Cohen’s d, and the 15 machine-learning-based analy-
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ses that result from using five different selection methods and three different algorithms.
The sum score across the selections was subjected to an ABC analysis. Finally, it was
assessed whether this set of variables provided sufficient information for cluster separation
in a sample not available during feature selection. The included algorithms were there-
fore trained with the full and reduced feature sets in a 100-fold cross-validation, using
randomly selected subsets of 80% of the original training dataset for algorithm training,
and applying the trained algorithms to random subsets comprising 80% of the validation
dataset separated from the full original dataset before feature selection and classifier tun-
ing. The balanced accuracy was used as the main parameter to evaluate the classification
performance [64].

3. Results

None of the variables or cases had to be excluded as the 20% cut-off for missing
values was not exceeded. Outliers were not detected. After imputation of a total of
79 missing values, the olfaction-related data comprised a 135 × 15 matrix with d = 15
variables recorded from n = 135 patients (Figure 2).

3.1. Differences on Olfaction Related Parameters with Respect to the Olfactory Diagnosis

According to the clinical olfactory diagnosis, based on the TDI score of the Sniffin’
Sticks test battery, n = 117 participants (73 women, 44 men) had a normal olfactory function
and n = 18 (10 women, eight men) had impaired but partially preserved function (hypos-
mia). Only the olfactory threshold to PEA, odor discrimination, and identification, which
defines the clinical olfactory diagnosis, differed statically significantly when α correction
for multiple testing was applied (d = 18 variables including the d = 15 olfaction-related
variables in addition to age, sex, and BMI; details not shown). In addition, normosmic
subjects performed better in the discrimination task (mean score = 2.35) than hyposmic
subjects (mean score = 1.78; Mann–Whitney U = 685.5, p = 0.013), had slightly higher values
of the errors made in the PEA sorting task when corrected for the time required for this test
(0.061631 versus 0.047442; U = 1364.5, p = 0.0438), and were younger (mean age = 29.5 years)
than the latter (mean age 37 years; U=1424.0, p = 0.016). Both did not pass α correction, and
the sexes were equally distributed between olfactory diagnoses (χ2 = 0.0869, p = 0.768).
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Figure 2. Raw non-transformed and non-imputed olfaction-related data acquired from n = 135 individuals. Single data points are plotted as dots on violin
plots showing the probability density distribution of the variables, and in addition, boxplots provide basic descriptive statistics. Variable names, if not self-
explaining: “olfthresh“ = olfactory threshold to phenyl ethyl alcohol (PEA), “olfdis” = score in the odor discrimination task, “olfident” = score in the odor
identification task. Higher values indicate better olfactory performance. “log Distance right/left nostril” = perception of peanut butter odor from a distance,
“Score PEA/EUG” = scores in the odor sorting tasks, “Lat correct assignments overall” score in the lateralization test. Lower values indicate better olfactory
performance. The figure has been created using Python version 3.8.12 for Linux (https://www.python.org, accessed on 28 January 2022) and Seaborn Python data
visualization library (https://seaborn.pydata.org, accessed on 28 January 2022 [65]).
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3.2. Variance and Covariance Structure of Olfaction-Related Variables

Correlations between olfaction-related variables (Figure 3) were statistically significant
within the items of the tests of the importance of olfaction and within the items of the
distances of the odors to the nostrils measured during the peanut butter test. Subtests
of the Sniffin’ Sticks test battery also correlated, excluding the olfactory threshold. This
is consistent with the somewhat different position of the olfactory threshold repeatedly
observed previously within the three subtests of this test battery [66,67]. The variable “Score
EUG” (for variable names, see legend of Table 1) had the largest number of significant
correlations with variables recorded in test batteries other than the one to which the
particular variable belongs.

PCA yielded d = 7 components with eigenvalues >1, which together explained 72.9%
of the total variance of the olfaction-related variables (Figure 4). Variables contributing
most to the relevant PCs comprised “Score PEA“, “Score PEA time corrected”, “Score
EUG“, “Score EUG time corrected”, “Correct enantiomer discriminations“, and “log PEA
threshold after PEA clip“.
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matrix is color-coded according to the strength and direction of the correlation. Each cell is labeled
with the value of Pearson’s r in black numbers. If the correlation is significant, the p-value is indicated
in red numbers below the correlation coefficient. The diagonal of the correlations of each variable with
itself has been omitted. Variables belonging to the same subtest are highlighted by black rectangles
to increase distinction of intra- and intertest correlations. Olfactory variables are outlined in red.
Variable names, if not self-explaining: “olfthresh“ = olfactory threshold to phenyl ethyl alcohol (PEA),
“olfdis” = score in the odor discrimination task, “olfident” = score in the odor identification task, “log
Distance right/left nostril” = perception of peanut butter odor from a distance, “Score PEA/EUG” =
scores in the odor sorting tasks, “Lat correct assignments overall” score in the lateralization test. The
figure has been created using Python version 3.8.12 for Linux (https://www.python.org, accessed
on 28 January 2022) and Seaborn Python data visualization library (https://seaborn.pydata.org,
accessed on 28 January 2022 [65]).
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subjects onto the first two principal component levels. Data points originating from subjects with
normosmia or hyposmia are colored red and blue, respectively. (b) Line plot of cumulative explained
variance with increasing number of principal components (PCs). (c) Bar graph of the eigenvalues
of each of the 15 PCs. Seven PCs had an eigenvalue > 1 and were selected for further data analysis
such as clustering. The overlaid biplot (red lines) shows the variables as vectors in the PC projection
space. (d) Contribution of each variable to the principal components, normalized for the contribution
of each PC to the explanation of the total variance. The lighter blue bars show the significance
of the variables across the entire PC space, while the darker blue bars overlaying them show the
contribution when only the relevant 7 PCs are considered. The 6 dark blue bars indicate those
selected by item categorization using computed ABC analysis as the most informative variables
placed in ABC set “A”. The bar chart shows the column sums of the heat map shown below in
panel (e) Z-normalized correlation matrix between the original z-transformed dataset and the PC
space, normalized by the explained variance. The figure has been created using Python version
3.8.12 for Linux (https://www.python.org, accessed on 28 January 2022) and Seaborn Python data
visualization library (https://seaborn.pydata.org, accessed on 28 January 2022 [65]).

3.3. Cluster Structure of Olfaction-Related Variables

For the olfactory data projected on the seven retained PCs, the calculation of the
average silhouette widths of k = 2 to 5 clusters resulted in the best cluster solution with
k = 2 k-means clusters (Supplementary Figures S1 and S2). The resulting two clusters,
comprising n = 80 (“cluster 0”) and n = 55 (“cluster 1”) subjects (Figure 5), showed a
moderate average silhouette width of 0.227 in 20 random resampling runs and an average
adjusted Rand index = 0.55.

Other than observed with the different olfactory diagnoses (see above), the clusters dif-
fered statistically significantly in most olfaction-related parameters (Figure 6). Differences
were statistically significant for d = 7 variables when applying a correction; the p-values
are shown in Figure 6b. The subtest of the Sniffin’ Sticks test battery failed α correction
but provided p < 0.05. Subjects assigned to cluster 0 had higher olfactory subtest scores,
were slightly younger (mean age 28 ± 9.7 years versus 34 ± 13.2 years in cluster 1) and
made fewer errors in the PEA and eugenol sorting tasks. Accordingly, cluster 0 included
significantly fewer subjects with hyposmia (Figure 6c). Cluster 0 also contained more
women (56 and 24 men, cluster 1: n = 27 women and 28 men, χ2 = 5.166, p = 0.023). This
needs to be regarded in the above-mentioned context that men and women did not differ
with respect to the assignment to olfactory diagnostic groups.

The different feature selection techniques (Table 1) pointed to d = 6 variables
(Figure 7) as most informative for the detected cluster structure in the olfaction-related
data. According to the sum score of the selection by the different techniques, the variables
“Score PEA time corrected”, “Score EUG“, “Importance of application“, “log Distance
right nostril”, “Score EUG time corrected”, and “Score PEA“ were placed in the ABC
category “A”. With these variables, the algorithms could be trained to assign a subject
from the initially separated validation dataset to the correct cluster as accurately as with
the full feature set (Table 2). Even when using only “Score EUG“ and “Score PEA“, cluster
assignment remained similarly good. In contrast, when tuning the algorithms for olfac-
tory diagnosis instead of cluster assignment, class assignment was still possible with the
full feature set with median balanced accuracy well above guessing level, while the re-
duced feature sets failed and did not provide a better cluster assignment than by guessing,
as shown by the balanced accuracies close to 50%. However, the small sample of only
n = 18 subjects with hyposmia pushed the algorithms to their limits, as suggested by the
large confidence intervals of the performance measures, which spanned 50% even with
the full feature set. With due caution in interpreting these results, rerunning the feature
selection for the olfactory diagnoses and subtracting the obtained sum scores from those
obtained when clusters were selected allowed to evaluate the variables according to their
relevance to the olfaction-related clusters compared with the olfactory diagnoses, which

https://www.python.org
https://seaborn.pydata.org
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was fully consistent with the expectations that the components of the olfactory test were
most relevant to the diagnosis while highlighting that the clusters provided a different type
of olfaction-related subgrouping (Figure 8).
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Figure 5. Clustering of the d = 15 olfaction-related parameters. (a) Factorial plot of the individual
data points on a principal components map, obtained following k-means clustering. The colored
areas visualize the cluster separation. The cluster members are connected by straight lines with
their respective cluster centers. (b) Silhouette plot associated with the cluster solution presented in
panel (a). The horizontal bars show the average distance of each data point in a cluster is to points in
neighboring cluster(s), scaled in the range of [−1, 1] [48]. The figure has been created using Python
version 3.8.12 for Linux (https://www.python.org, accessed on 28 January 2022) and Seaborn Python
data visualization library (https://seaborn.pydata.org, accessed on 28 January 2022 [65]).
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Figure 6. Differences of the d = 15 olfaction-related variables between the two k-means clusters. (a) Effect size calculated as Cohen’s d for the parameters used for
clustering, and age and the reciprocal square transformed BMI as demographic parameters of known or possible interest of an olfactory context. The effect size of
Cohen’s d > 0.2, > 0.5 or > 0.8 generally regarded as small, medium, or large effects are indicated as horizontal dotted lines. Positive values indicate larger values in
cluster 1 than in cluster 0. The variables with the most relevant effect sizes according to item categorization (see panel d) are plotted in darker blue color. Variable
names, if not self-explaining: “olfthresh“ = olfactory threshold to phenyl ethyl alcohol (PEA), “olfdis” = score in the odor discrimination task, “olfident” = score
in the odor identification task. Higher values indicate better olfactory performance. “log Distance right/left nostril” = perception of peanut butter odor from a
distance, “Score PEA/EUG” = scores in the odor sorting tasks, “Lat correct assignments overall” score in the lateralization test. Lower values indicate better olfactory
performance. (b) Z Individual data points, z-transformed to enhance visualization of group differences across different original scales of the values, plotted as dots
on violin plots showing the probability density distribution of the variables, and in addition, boxplots provide basic descriptive statistics. Statistical significance of
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the differences between the clusters for each variable was analyzed by performing Mann–Whitney U-tests. The obtained p-values are shown above the respective
variables, with color coding for black = “not significant”, p > 0.05), blue = “significant but not passing α correction”, red = “significant with α correction”. (c) Mosaic
plot of the contingency table of cluster membership (x-axis) versus olfactory diagnosis of hyposmia or normosmia (y-axis). (d) ABC analysis plot (blue line) showing
the cumulative distribution function of the absolute effect sizes, along with the identity distribution, xi = constant (magenta line), i.e., each variable has the same
effect in terms of inter-cluster differences, and the uniform distribution, i.e., each variable had the same chance to distinguish between cluster (for further details
about computed ABC analysis, see [44]). The red lines indicate the borders between ABC subsets “A”, “B”, and “C”. Subset “A” containing d = 6 variables is
regarded as containing the most relevant variables for cluster distinction (marked in darker blue in panel a). The figure has been created using Python version
3.8.12 for Linux (https://www.python.org, accessed on 28 January 2022) and Seaborn Python data visualization library (https://seaborn.pydata.org, accessed on
28 January 2022 [65]) and our Python package “ABCanalysis” (https://github.com/JornLotsch/ABCanalysis, accessed on 28 January 2022)

.

https://www.python.org
https://seaborn.pydata.org
https://github.com/JornLotsch/ABCanalysis
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Figure 7. Identification of the variables that were most informative in assigning a sub-
ject to the k-means clusters. Feature selection by 17 different methods listed in Table 1.
(a) The sum score of selections of each variable across the methods was subjected to a
computed ABC analysis to identify the most informative variables for all methods of fea-
ture selection (row sums in Table 1). The darker blue bars indicate the variables se-
lected for the reduced feature set resulting from ABC analysis-based item categorization.
(b) ABC analysis plot (blue line) showing the cumulative distribution function of the sums of
occurrences in ABC category “A” in the ABC analyses previously performed with each feature
selection method separately. The red lines show the boundaries between the ABC subsets “A”, the
sums of occurrences in ABC category “A” in the ABC analyses previously performed with each
feature selection method separately. The red lines show the boundaries between the ABC subsets “A”,
“B” and “C”. Category “A” with d = 6 variables is considered to include the most relevant variables
for cluster discrimination (marked in darker blue in panel a). The figure was created using Python
version 3.8.12 for Linux (https://www.python.org, accessed on 28 January 2022), with the seaborn
statistical data visualization package (https://seaborn.pydata.org, accessed on 28 January 2022 [65])
and our Python package “ABCanalysis” (https://github.com/JornLotsch/ABCanalysis, accessed on
28 January 2022). Variable names, if not self-explaining: “olfthresh“ = olfactory threshold to phenyl
ethyl alcohol (PEA), “olfdis” = score in the odor discrimination task, “olfident” = score in the odor
identification task, log Distance right/left nostril” = perception of peanut butter odor from a distance,
“Score PEA/EUG” = scores in the odor sorting tasks, “Lat correct assignments overall” score in the
lateralization test.
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SVM 
Balanced 

accuracy 
0.96 (0.91–1) 1 (0.91–1) 0.88 (0.82–0.94) 0.77 (0.46–1) 0.5 (0.47–0.5) 0.5 (0.5–0.5) 

Random forests  0.87 (0.77–0.98) 
0.86 (0.78–

0.96) 
0.77 (0.72–0.9) 0.63 (0.5–0.75) 0.5 (0.47–0.5) 0.47 (0.47–0.5) 

Logistic 

regression 
 1 (0.95–1) 1 (1–1) 0.88 (0.82–0.94) 0.75 (0.5–0.88) 0.5 (0.47–0.5) 0.5 (0.5–0.5) 

Figure 8. Differences in sum scores of selections of each variable across 17 feature selection methods
when the target was the olfaction-related cluster versus the target defined as the olfactory diagnosis
of normosmia or hyposmia. The variables selected as informative for the cluster structure are plotted
in darker blue. The figure has been created using Python version 3.8.12 for Linux (https://www.
python.org, accessed on 28 January 2022) and Seaborn Python data visualization library (https:
//seaborn.pydata.org, accessed on 28 January 2022 [65]) and our Python package “ABCanalysis”
(https://github.com/JornLotsch/ABCanalysis, accessed on 28 January 2022). Variable names, if not
self-explaining: “olfthresh“ = olfactory threshold to phenyl ethyl alcohol (PEA), “olfdis” = score in
the odor discrimination task, “olfident” = score in the odor identification task, log Distance right/left
nostril” = perception of peanut butter odor from a distance, “Score PEA/EUG” = scores in the odor
sorting tasks, “Lat correct assignments overall” score in the lateralization test.

Table 2. Validation of the feature sets by training three different classifiers (linear support vector
machine, SVM, random forests, and logistic regression) with subsets of the training dataset with all
variables (d = 15 olfaction-related features and age, sex, and BMI) as “full” feature set and with the d = 6
variables that had resulted from the feature selection steps shown in Table 1 as “reduced” feature set.
In addition, the classification task was repeated using only the variables “Score PEA“ and “Score EUG“
to test the hypothesis that these provide an informative addition to the olfactory test. The classification
task was designed for the cluster assignment. In addition, after re-tuning the algorithms, the task
was repeated with the olfactory diagnosis as target. Shown are the medians and nonparametric 95%
confidence intervals (2.5th to 97.5th percentiles) from 100-fold cross-validation runs.

Classifier Performance
Measure

Olfaction-
Related
Clusters

Olfactory
Diagnoses

Feature set Feature set

Full Reduced Sparse Full Reduced Sparse

SVM Balanced
accuracy 0.96 (0.91–1) 1 (0.91–1) 0.88 (0.82–0.94) 0.77 (0.46–1) 0.5 (0.47–0.5) 0.5 (0.5–0.5)

https://www.python.org
https://www.python.org
https://seaborn.pydata.org
https://seaborn.pydata.org
https://github.com/JornLotsch/ABCanalysis
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Table 2. Cont.

Classifier Performance
Measure

Olfaction-
Related
Clusters

Olfactory
Diagnoses

Random
forests 0.87 (0.77–0.98) 0.86 (0.78–0.96) 0.77 (0.72–0.9) 0.63 (0.5–0.75) 0.5 (0.47–0.5) 0.47 (0.47–0.5)

Logistic
regression 1 (0.95–1) 1 (1–1) 0.88 (0.82–0.94) 0.75 (0.5–0.88) 0.5 (0.47–0.5) 0.5 (0.5–0.5)

4. Discussion

Evaluation of several potential additions to the standard paradigm of odor threshold,
discrimination, and identification clinical olfactory testing supported the hypothesis that
informative sensory olfactory phenotypes are likely to be more complex. Clusters of subjects
that emerged in the pattern formed by various parameters of olfaction did not simply
reproduce the grouping by the olfactory diagnosis. Four of the six variables identified as
most relevant to the detected cluster structure were the results of sorting tasks of odors
at different dilutions. Thus, the accepted grouping of olfactory function into normosmic
subjects or subjects with impaired function, based on the three accepted sensory dimensions
of olfaction, seems to be modified by the addition of a simple further sensory olfactory task.

The sorting tasks for ascending dilutions of PEA and eugenol would provide a well-
fitting extension of the clinical test of olfactory function, assessing olfactory threshold, odor
discrimination, and odor identification, by maintaining the sensory focus of the test battery
while providing additional phenotypic information. The sorting task requires numerous
olfactory skills, including the ability to discriminate odors, memorize olfactory information,
and separate odors of various intensities. The closely related time-corrected performances
were highly correlated with the latter but have the disadvantage that they do not penalize
premature termination of the test. Therefore, a preference of the time-corrected variables
to raw errors in the sorting regardless of the time required would have needed further
modification of these variables or a redesign of the present sorting task with the setting
of a time limit. In contrast, the items assessing the importance of the sense of smell to the
person’s life, scored as “Importance of application“, which was also among highly ranked
variables, would add another facet of the sense of smell to the test battery that would
interfere with its focus of the sensory function of smell.

The present approach to feature selection for cluster explanation followed the stan-
dard workflow of classifier creation in machine learning, including sample splits into
training/test/validation, cross-validation, and final performance testing. Supervised anal-
yses used for cluster explanation were implemented with different methods to avoid the
results reflecting certain properties of a single feature selection method. The final goal of
supervised machine learning was not the creation of a well-performing classifier suitable
as a diagnostic tool, but to explain the structure in the data to provide a description that
provides better knowledge about the dataset. This knowledge-discovery approach assumes
that if a classifier can be trained to recognize a subject’s membership in a subgroup or
cluster better than by guessing, the features, i.e., the olfactory relevant variables in the data
set at hand plus age, sex, and BMI, that the classifier needs to perform this task will contain
relevant information about the cluster structure being addressed.

The present subgroup structure in relation to the classical olfactory diagnoses was
unbalanced with a significantly larger proportion of subjects with normal olfactory function.
This was considered when exploring which variables were informative for the detected
cluster structure but less for the subgrouping for olfactory diagnosis. However, the present
cohort was closer to a random sample that was considered more appropriate for studying
relevant phenotypes related to olfaction beyond the classic clinical odor diagnoses than
a balanced cohort containing all odor diagnosis groups in a balanced proportion, which
would have required a strong enrichment of the cohort with subjects with impaired olfactory
function, who are underrepresented in the general population. Specifically, up to 15% of
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the general population exhibit olfactory loss with an additional 3–5% showing functional
anosmia [68,69]. The composition of the present cohort of n = 117 subjects with normal
olfactory function and 18 subjects with impaired function did not differ significantly from
the composition of the general population of 82 and 18 persons, respectively (χ2 = 0.964,
p = 0.3261). In addition, clusters based on olfaction-related information could be found in
a group where most subjects had normal olfactory function, which rather reinforces the
present results of a more complex olfactory phenotype than reflected by the three subtests
of a standard clinical test of the sense of smell.

5. Conclusions

The group structures that emerge from olfactory test data in subjects with normal or
impaired sense of smell are more complex than the three accepted sensory dimensions
of smell. A cluster structure resulting from various different tests of olfactory function
could not be explained by the results of the three subjects of a standard clinical test alone.
Moreover, the grouping of olfactory function into normosmic subjects or subjects with im-
paired function, based on the three accepted sensory dimensions of olfaction, was disrupted
by the addition of a simple further sensory olfactory task. The present analysis ended
with the proposal of a specific addition to the sensory olfactory test battery established in
clinical practice. Expanding the olfactory test battery to include the two proposed odor
dilutions sorting tasks now requires a prospective evaluation using larger sample sizes and
systematically including the classic olfactory diagnoses, i.e., the inclusion of a balanced
sample in terms of clinical olfactory diagnoses allowing to capture both hyposmia and
anosmia, as well as normal olfactory function, which was prevalent in the present cohort. In
addition, any expansion of an established olfactory test would need to address the specifics
of including additional scores, such as the direction of the measurements or their final
scaling, to fit within the so-far consistent 0 or 1 to 16 scaling of the current Sniffin’ Sticks
test battery.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11144012/s1, “SupplementaryFigures.docx” (Microsoft Office
Open XML format as a Microsoft Word®document), which includes silhouette plots with [2, . . . , 5]
k-means and hierarchical clusters. Figure S1. k-means based clusters, using the Euclidean distance
between the retained principal components. The figure has been created using Python version 3.8.12
for Linux (https://www.python.org, accessed on 28 January 2022) and Seaborn Python data visual-
ization library (https://seaborn.pydata.org, accessed on 28 January 2022). Figure S2. Hierarchical
(Ward) based clusters using the Euclidean distance between the retained principal compo-nents. The
figure has been created using Python version 3.8.12 for Linux (https://www.python.org, accessed
on 28 January 2022) and Seaborn Python data visualization library (https://seaborn.pydata.org,
accessed on 28 January 2022).

Author Contributions: J.L., conceptualization of data analysis, programming, writing of the manuscript,
data analyses, and creation of the figures. A.H., development of study design, recruiting the study
participants, performing the data acquisition. T.H., conceptualization of the project, supervision of the
project, patient recruitment, initial data review, writing of the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: J.L. was supported by the Deutsche Forschungsgemeinschaft (DFG LO 612/16-1). T.H.
was supported by the grant EXU-tanscelerator (B3: Tele-Taste) by SMWK/TUD (EXUN2019). These
public funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Institutional Review Board Statement: The prospective cohort study was conducted in accordance
with the Declaration of Helsinki on Biomedical Studies Involving Human Subjects. It was approved
by the Ethics committee at the Dresden University Hospital (approval number EK278082019).

Informed Consent Statement: All participants gave informed written consent.

https://www.mdpi.com/article/10.3390/jcm11144012/s1
https://www.mdpi.com/article/10.3390/jcm11144012/s1
https://www.python.org
https://seaborn.pydata.org
https://www.python.org
https://seaborn.pydata.org


J. Clin. Med. 2022, 11, 4012 21 of 23

Data Availability Statement: Data available on request from the senior author. Parts of the Python
code created for data analysis are available at https://github.com/JornLotsch/OdorSortingReport
(accessed on 28 January 2022).Acknowldedgment: We would like to thank aspUraclip, Berlin-
Schönefeld, Germany, for providing the nasal clips. We also would like to thank Yling Mai, shown
in Figure 1, who consented orally and in writing to the publication of the photographs within the
context of this publication.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kobal, G.; Hummel, T.; Sekinger, B.; Barz, S.; Roscher, S.; Wolf, S.R. “Sniffin’ Sticks”: Screening of olfactory performance. Rhinology

1996, 34, 222–226.
2. Hummel, T.; Sekinger, B.; Wolf, S.R.; Pauli, E.; Kobal, G. ‘Sniffin’ sticks’: Olfactory performance assessed by the combined testing

of odor identification, odor discrimination and olfactory threshold. Chem. Senses 1997, 22, 39–52. [CrossRef] [PubMed]
3. Cain, W.S.; Gent, J.F.; Goodspeed, R.B.; Leonard, G. Evaluation of olfactory dysfunction in the Connecticut Chemosensory Clinical

Research Center (CCCRC). Laryngoscope 1988, 98, 83–88. [CrossRef] [PubMed]
4. Thomas-Danguin, T.; Rouby, C.; Sicard, G.; Vigouroux, M.; Farget, V.; Johanson, A.; Bengtzon, A.; Hall, G.; Ormel, W.; De Graaf,

C.; et al. Development of the ETOC: A European test of olfactory capabilities. Rhinology 2003, 41, 142–151. [PubMed]
5. Lam, H.C.; Sung, J.K.; Abdullah, V.J.; van Hasselt, C.A. The combined olfactory test in a Chinese population. J. Laryngol. Otol.

2006, 120, 113–116. [CrossRef]
6. Doty, R.L.; Agrawal, U. The shelf life of the University of Pennsylvania Smell Identification Test (UPSIT). Laryngoscope 1989, 99,

402–404. [CrossRef]
7. Jackman, A.H.; Doty, R.L. Utility of a three-item smell identification test in detecting olfactory dysfunction. Laryngoscope 2005,

115, 2209–2212. [CrossRef]
8. Mueller, C.; Renner, B. A new procedure for the short screening of olfactory function using five items from the “Sniffin’ Sticks”

identification test kit. Am. J. Rhinol. 2006, 20, 113–116. [CrossRef]
9. Lötsch, J.; Ultsch, A.; Hummel, T. How Many and Which Odor Identification Items Are Needed to Establish Normal Olfactory

Function? Chem. Senses 2016, 41, 339–344. [CrossRef]
10. Doty, R.L.; McKeown, D.A.; Lee, W.W.; Shaman, P. A study of the test-retest reliability of ten olfactory tests. Chem. Senses 1995, 20,

645–656. [CrossRef]
11. Hummel, T.; Pfetzing, U.; Lötsch, J. A short olfactory test based on the identification of three odors. J. Neurol. 2010, 257, 1316–1321.

[CrossRef] [PubMed]
12. Gudziol, V.; Lötsch, J.; Hahner, A.; Zahnert, T.; Hummel, T. Clinical significance of results from olfactory testing. Laryngoscope

2006, 116, 1858–1863. [CrossRef] [PubMed]
13. Hummel, T.; Whitcroft, K.L.; Andrews, P.; Altundag, A.; Cinghi, C.; Costanzo, R.M.; Damm, M.; Frasnelli, J.; Gudziol, H.; Gupta,

N.; et al. Position paper on olfactory dysfunction. Rhinol. Suppl. 2017, 54, 1–30. [CrossRef] [PubMed]
14. Negoias, S.; Troeger, C.; Rombaux, P.; Halewyck, S.; Hummel, T. Number of descriptors in cued odor identification tests. Arch.

Otolaryngol. Head Neck Surg. 2010, 136, 296–300. [CrossRef]
15. Oleszkiewicz, A.; Schriever, V.A.; Croy, I.; Hahner, A.; Hummel, T. Updated Sniffin’ Sticks normative data based on an extended

sample of 9139 subjects. Eur. Arch. Otorhinolaryngol. 2019, 276, 719–728. [CrossRef]
16. Stamps, J.J.; Bartoshuk, L.M.; Heilman, K.M. A brief olfactory test for Alzheimer’s disease. J. Neurol. Sci. 2013, 333, 19–24. [CrossRef]
17. Davidson, T.M.; Murphy, C. Rapid clinical evaluation of anosmia. The alcohol sniff test. Arch. Otolaryngol. Head Neck Surg. 1997,

123, 591–594. [CrossRef]
18. Kruggel, F. Die Untersuchung des Olfaktorischen Systems Bei Patienten Mit Fokalen Hirnschädigungen. Ph.D. Dissertation,

Ludwig-Maximilians-Universität, München, Germany, 1989.
19. Doty, R.L.; Brugger, W.E.; Jurs, P.C.; Orndorff, M.A.; Snyder, P.J.; Lowry, L.D. Intranasal trigeminal stimulation from odorous

volatiles: Psychometric responses from anosmic and normal humans. Physiol. Behav. 1978, 20, 175–185. [CrossRef]
20. Hummel, T.; Frasnelli, J. The intranasal trigeminal system. In Handbook of Clinical Neurology; Doty, R.L., Ed.; Elsevier: Amsterdam,

The Netherlands, 2019.
21. Kobal, G.; Van Toller, S.; Hummel, T. Is there directional smelling? Experientia 1989, 45, 130–132. [CrossRef]
22. Frasnelli, J.; Hummel, T.; Berg, J.; Huang, G.; Doty, R.L. Intranasal localizability of odorants: Influence of stimulus volume. Chem.

Senses 2011, 36, 405–410. [CrossRef]
23. Hummel, T.; Futschik, T.; Frasnelli, J.; Huttenbrink, K.B. Effects of olfactory function, age, and gender on trigeminally mediated

sensations: A study based on the lateralization of chemosensory stimuli. Toxicol. Lett. 2003, 140–141, 273–280. [CrossRef]
24. Oleszkiewicz, A.; Rambacher, L.; Whitcroft, K.L.; Hummel, T. The confounding effect of background odors on olfactory sensitivity

testing. J. Neurosci. Methods 2018, 306, 88–91. [CrossRef] [PubMed]
25. Pellegrino, R.; Sinding, C.; de Wijk, R.A.; Hummel, T. Habituation and adaptation to odors in humans. Physiol. Behav. 2017, 177,

13–19. [CrossRef] [PubMed]

https://github.com/JornLotsch/OdorSortingReport
http://doi.org/10.1093/chemse/22.1.39
http://www.ncbi.nlm.nih.gov/pubmed/9056084
http://doi.org/10.1288/00005537-198801000-00017
http://www.ncbi.nlm.nih.gov/pubmed/3336267
http://www.ncbi.nlm.nih.gov/pubmed/14579654
http://doi.org/10.1017/S0022215105003889
http://doi.org/10.1288/00005537-198904000-00008
http://doi.org/10.1097/01.mlg.0000183194.17484.bb
http://doi.org/10.1177/194589240602000121
http://doi.org/10.1093/chemse/bjw006
http://doi.org/10.1093/chemse/20.6.645
http://doi.org/10.1007/s00415-010-5516-5
http://www.ncbi.nlm.nih.gov/pubmed/20232208
http://doi.org/10.1097/01.mlg.0000234915.51189.cb
http://www.ncbi.nlm.nih.gov/pubmed/17003712
http://doi.org/10.4193/Rhino16.248
http://www.ncbi.nlm.nih.gov/pubmed/29528615
http://doi.org/10.1001/archoto.2009.231
http://doi.org/10.1007/s00405-018-5248-1
http://doi.org/10.1016/j.jns.2013.06.033
http://doi.org/10.1001/archotol.1997.01900060033005
http://doi.org/10.1016/0031-9384(78)90070-7
http://doi.org/10.1007/BF01954845
http://doi.org/10.1093/chemse/bjr001
http://doi.org/10.1016/S0378-4274(03)00078-X
http://doi.org/10.1016/j.jneumeth.2018.05.012
http://www.ncbi.nlm.nih.gov/pubmed/29782885
http://doi.org/10.1016/j.physbeh.2017.04.006
http://www.ncbi.nlm.nih.gov/pubmed/28408237


J. Clin. Med. 2022, 11, 4012 22 of 23

26. Croy, I.; Buschhüter, D.; Seo, H.S.; Negoias, S.; Hummel, T. Individual significance of olfaction: Development of a questionnaire.
Eur. Arch. Otorhinolaryngol. 2010, 267, 67–71. [CrossRef]

27. Van Rossum, G.; Drake, F.L., Jr. Python Tutorial; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995;
Volume 620.

28. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,
N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef]

29. McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference,
Austin, TX, USA, 28 June–3 July 2010; pp. 56–61.

30. Pandas Development Team. Pandas-Dev/Pandas: Pandas. 2020. Available online: https://pandas.pydata.org/ (accessed on
28 January 2022).

31. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]

32. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

33. Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Reading, MA, USA, 1977.
34. Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Society. Ser. B 1964, 26, 211–252. [CrossRef]
35. D’Agostino, R.; Pearson, E.S. Tests for Departure from Normality. Empirical Results for the Distributions of b2 and

√
b1. Biometrika

1973, 60, 613–622. [CrossRef]
36. D’Agostino, R.B. An omnibus test of normality for moderate and large size samples. Biometrika 1971, 58, 341–348. [CrossRef]
37. Ho, T.K. Random decision forests. In Proceedings of the Third International Conference on Document Analysis and Recognition,

Montreal, QC, Canada, 4–16 August 1995; Volume 1, p. 278.
38. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
39. Pearson, K. Note on Regression and Inheritance in the Case of Two Parents. Proc. R. Soc. Lond. Ser. I 1895, 58, 240–242.
40. Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 498–520. [CrossRef]
41. Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2,

559–572. [CrossRef]
42. Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [CrossRef]
43. Guttman, L. Some necessary conditions for common factor analysis. Psychometrika 1954, 19, 149–161. [CrossRef]
44. Ultsch, A.; Lötsch, J. Computed ABC Analysis for Rational Selection of Most Informative Variables in Multivariate Data. PLoS

ONE 2015, 10, e0129767. [CrossRef]
45. Juran, J.M. The non-Pareto principle; Mea culpa. Qual. Prog. 1975, 8, 8–9.
46. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, Volume 1: Statistics; University of California: Berkeley, CA, USA, 1967;
pp. 281–297.

47. Steinhaus, H. Sur la division des corps matériels en parties. Bull. Acad. Polon. Sci. 1956, 1, 801.
48. Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. Comp. Appl. Math. 1987, 20,

53–65. [CrossRef]
49. Rand, W.M. Objective Criteria for the Evaluation of Clustering Methods. J. Am. Stat. Assoc. 1971, 66, 846–850. [CrossRef]
50. Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman and Hall: San Francisco, CA, USA, 1995.
51. Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [CrossRef]
52. Kaufman, L.; Rousseeuw, P.J. Partitioning Around Medoids (Program PAM). In Finding Groups in Data; Wiley Series in Probability

and Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 68–125.
53. Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math.

Stat. 1947, 18, 50–60. [CrossRef]
54. Pearson, K. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is

such that it can be reasonably supposed to have arisen from random sampling. Philos. Mag. Ser. 5 1900, 50, 157–175. [CrossRef]
55. Bonferroni, C.E. Teoria statistica delle classi e calcolo delle probabilita. Pubbl. R Ist. Super. Sci. Econ. Commer. Firenze 1936, 8, 3–62.
56. Guyon, I.; Elisseeff, E. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.
57. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
58. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
59. Lotsch, J.; Kringel, D.; Hummel, T. Machine learning in human olfactory research. Chem. Senses 2018, 44, 11–22. [CrossRef]
60. Cramer, J.S. The Origins of Logistic Regression; Tinbergen Institute Working Paper No. 2002-119/4; Tinbergen Institute: Amsterdam,

The Netherlands, 2002.
61. Santosa, F.; Symes, W.W. Linear Inversion of Band-Limited Reflection Seismograms. SIAM J. Sci. Stat. Comput. 1986, 7,

1307–1330. [CrossRef]
62. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Society. Ser. B (Methodol.) 1996, 58, 267–288. [CrossRef]
63. Hilt, D.E.; Seegrist, D.W.; United States Forest Service; Northeastern Forest Experiment Station. Ridge, a Computer Program for

Calculating Ridge Regression Estimates; Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Upper
Darby, PA, USA, 1977; Volume 236.

http://doi.org/10.1007/s00405-009-1054-0
http://doi.org/10.1038/s41586-020-2649-2
https://pandas.pydata.org/
http://doi.org/10.1038/s41592-019-0686-2
http://doi.org/10.1111/j.2517-6161.1964.tb00553.x
http://doi.org/10.1093/biomet/60.3.613
http://doi.org/10.1093/biomet/58.2.341
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1037/h0070888
http://doi.org/10.1080/14786440109462720
http://doi.org/10.1007/BF02289233
http://doi.org/10.1007/BF02289162
http://doi.org/10.1371/journal.pone.0129767
http://doi.org/10.1016/0377-0427(87)90125-7
http://doi.org/10.1080/01621459.1971.10482356
http://doi.org/10.1080/01621459.1963.10500845
http://doi.org/10.1214/aoms/1177730491
http://doi.org/10.1080/14786440009463897
http://doi.org/10.1177/001316446002000104
http://doi.org/10.1007/BF00994018
http://doi.org/10.1093/chemse/bjy067
http://doi.org/10.1137/0907087
http://doi.org/10.1111/j.2517-6161.1996.tb02080.x


J. Clin. Med. 2022, 11, 4012 23 of 23

64. Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M. The Balanced Accuracy and Its Posterior Distribution. In Proceedings
of the Pattern Recognition (ICPR), 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August
2010; pp. 3121–3124.

65. Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [CrossRef]
66. Lötsch, J.; Hummel, T. A machine-learned analysis suggests non-redundant diagnostic information in olfactory subtests. IBRO

Rep. 2019, 6, 64–73. [CrossRef] [PubMed]
67. Lötsch, J.; Reichmann, H.; Hummel, T. Different odor tests contribute differently to the evaluation of olfactory loss. Chem. Senses

2008, 33, 17–21. [CrossRef]
68. Landis, B.N.; Hummel, T. New evidence for high occurrence of olfactory dysfunctions within the population. Am. J. Med. 2006,

119, 91–92. [CrossRef] [PubMed]
69. Kern, D.W.; Wroblewski, K.E.; Schumm, L.P.; Pinto, J.M.; McClintock, M.K. Field Survey Measures of Olfaction: The Olfactory

Function Field Exam (OFFE). Field Methods 2014, 26, 421–434. [CrossRef]

http://doi.org/10.21105/joss.03021
http://doi.org/10.1016/j.ibror.2019.01.002
http://www.ncbi.nlm.nih.gov/pubmed/30671562
http://doi.org/10.1093/chemse/bjm058
http://doi.org/10.1016/j.amjmed.2005.07.039
http://www.ncbi.nlm.nih.gov/pubmed/16431204
http://doi.org/10.1177/1525822X14547499

	Introduction 
	Methods 
	Patients and Study Design 
	Acquisition of Olfaction Related Variables 
	Assessment of Olfactory Threshold, Odor Discrimination, and Identification Performance 
	Distance Test with Peanut Butter 
	Ordering of Odor Intensities for Phenylethyl Alcohol and Eugenol 
	Discrimination Test for Odor Enantiomers 
	Lateralization Test Using Eucalyptol 
	Threshold Test after Odor Exposure Using PEA-Filled Nose Clips 
	Questionnaire—Importance of Olfaction 

	Data Analysis 
	Data Preprocessing 
	Unsupervised Analysis of Olfaction-Related Data 
	Supervised Analysis to Identify Olfactory Variables Relevant to the Structure of the Dataset 


	Results 
	Differences on Olfaction Related Parameters with Respect to the Olfactory Diagnosis 
	Variance and Covariance Structure of Olfaction-Related Variables 
	Cluster Structure of Olfaction-Related Variables 

	Discussion 
	Conclusions 
	References

