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Abstract: Feature selection is a common step in data preprocessing that precedes machine learning
to reduce data space and the computational cost of processing or obtaining the data. Filtering out
uninformative variables is also important for knowledge discovery. By reducing the data space to only
those components that are informative to the class structure, feature selection can simplify models
so that they can be more easily interpreted by researchers in the field, reminiscent of explainable
artificial intelligence. Knowledge discovery in complex data thus benefits from feature selection that
aims to understand feature sets in the thematic context from which the data set originates. However,
a single variable selected from a very small number of variables that are technically sufficient for AI
training may make little immediate thematic sense, whereas the additional consideration of a variable
discarded during feature selection could make scientific discovery very explicit. In this report, we
propose an approach to explainable feature selection (XFS) based on a systematic reconsideration of
unselected features. The difference between the respective classifications when training the algorithms
with the selected features or with the unselected features provides a valid estimate of whether the
relevant features in a data set have been selected and uninformative or trivial information was filtered
out. It is shown that revisiting originally unselected variables in multivariate data sets allows for the
detection of pathologies and errors in the feature selection that occasionally resulted in the failure to
identify the most appropriate variables.

Keywords: data science; machine-learning; digital medicine; artificial intelligence

1. Introduction

Feature selection (for an overview, see e.g., [1]), is a frequent step of data preprocessing
preceding machine-learning to reduce the data space and the computational load to process
it, or the costs to acquire relevant data. Feature selection thus filters the information
contained in a data set and removes uninformative variables, considering that machine
learning algorithms need examples of the relevant structures in an empirical data set.
Filtering out uninformative variables is also relevant to knowledge discovery. By reducing
the data space to its components informative for the class structure, feature selection
can simplify models to make them easier to interpret by field researchers, addressing
explainable artificial intelligence (XAI) [2].

Too much information represented in many variables can prevent field experts from
grasping the main mechanistic processes underlying a class structure in a data set. This
is consistent with an observation more than half a century old that human intelligibility
is limited, with a proposed optimum of 7 ± 2 [3]. On the other hand, too few features
resulting from rigorous selection may be sufficient for successful classification by the AI,
but insufficient for field experts to understand the key processes underlying the structure in
the data. For example, of two highly correlated variables, one may be technically better for
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the AI to function and is therefore selected, but the other would make sense in the context
of the actual research topic. Few selected variables may be functioning for an algorithm.
However, they may provide a fragmented picture of the underlying process. The additional
consideration of variables that were discarded during feature selection could make the
scientific result very clear.

Knowledge discovery in complex data thus appears to potentially benefit from feature
selection aimed at understandable feature sets in the topical research context from which
the data set originates. Knowledge discovery via feature selection for classifiers is based
on the idea that if an algorithm can be trained to assign a case to the correct class, the data
contains a structure relevant to the class structure, and the variables that the algorithm
needs to successfully perform its task are the class-relevant variables or features in the
actual data set. However, the interpretation of a feature set in a specific research context
may vary depending on whether it can be stated that only the selected features, but not
the unselected features, provide a the information necessary for correct class assignment.
This would allow the variables not selected to be discarded as uninteresting, and the
result of the analysis will be that the process studied is characterized by the variables
selected, which may represent scientific progress. For example, if the variables contained
genetic information, then the selected features will give a clear indication of the genetic
background of the biological process under study. A rigorous feature selection process that
provides the minimum amount of information required by an AI for classification might
have discarded variables that also provide class-relevant information, only to a lesser extent
than the selected variables. In this case, the interpretation of the feature set in the topical
context may differ from the one above, i.e., it cannot be claimed that the background mech-
anisms of the process of interest has been comprehensively captured when interpreting the
selected features.

Thus, while usually the interest in the variables omitted during feature selection
vanishes, they may still contain relevant information for the topical interpretation unless
proven otherwise. Specific attempts on this topic are so far limited, such as highlighting
that extracting a subset of the most important features could help researchers understand
the biological processes underlying the disease [4]. Therefore, this report shows that
classification performance obtained with the unselected features can be used to improve
the interpretation of feature sets. The evaluation of classification performance with both
the selected and unselected features provides an indication of whether informative features
have been left aside. This information can critically affect the interpretation of a feature set
if the selection process was conducted with the goal of knowledge discovery. Therefore,
this report proposes an explainable feature selection (XFS) approach based on a systematic
reconsideration of the unselected features.

2. Methods
2.1. Algorithm

Three criteria are proposed that a set of features should satisfy in order to both capture
the background mechanisms of the process in terms of the explainable feature selection
(XFS) and to have identified the most appropriate variables for the class assignment.

1. Classification performance of algorithms trained with the selected features should be
satisfactory, which is routinely checked. Ideally, it should not drop significantly from
the performance obtained with all features. The classification performance must be at
least better than chance, including the lower bound of the 95% confidence interval
of classification performance measures, which should be higher than the level of
guessing of the class assignment.

2. Classification performance with the selected features should be better than classifica-
tion performance when the training is conducted with the unselected features. This
is not routinely checked. The difference between the respective classifications when
training the algorithms with the selected features and when training the algorithm
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with the unselected features should be positive, e.g., with a lower bound of the 95%
confidence interval > 0.

3. If the difference in point 2 above is not satisfactorily greater than zero, but the classi-
fier trained with the full set of features has satisfactory accuracy, then the unselected
features should be reconsidered. If variables are omitted that are very strongly corre-
lated with selected features, an assessment should be triggered of whether correlated
variables might add relevant information that improves the (domain expert’s) in-
terpretation of the feature set. In a new feature selection pass, the features already
selected from the first pass are omitted. The final feature set is then the union of the
two feature sets, provided that the second pass did not fail criterion 1.

2.2. Evaluations
2.2.1. Quantification of Feature Importance

Several different methods of feature selection have been proposed. Overviews on
feature selection methods are available in the literature, e.g., [1,5]. Feature selection meth-
ods [1] are typically presented in three classes: filter, wrapper and embedded methods.
Filter methods suppress the least interesting variables, where interestingness is typically
measured as a correlation to the variable to predict [6]. In wrapper methods, subsets
of variables are evaluated for an overview, see for example [7]. Ensemble methods try
to combine wrapper and filter methods [8]. Implementations include “brute force” ap-
proaches limited only by computational power, and various unsupervised and supervised
methods. Supervised methods aim at identifying the variable importance via classification
performance. Among supervised methods, both univariate and multivariate methods
are available in which informative features can be obtained by, for example, recursive
feature elimination or sequential feature selection. Particular implementations include the
regression-based least absolute shrinkage and selection operators (LASSO [9]), or make use
of usually well-performing machine learning methods such as random forests [10,11] and
combine them with statistical tests as in the “Boruta” method [12].

Among popular multivariate supervised methods figures selecting features based on
the variable importance in random forests classifiers. This can be obtained via permutation
weighting [11] from out-of-bag (OOB) cases as the decrease in classification accuracy when
the respective feature is omitted from the class assignment, as implemented in the R
package “randomForest” (https://cran.r-project.org/package=randomForest (accessed on
3 September 2022) [13]), and callable via “importance=TRUE” in the random forest model
constructor and “type=1” in the “importance()” read out function. Of note, the default
method of the mentioned R libary, which measures how effective the feature is at reducing
theuncertainty when constructing decision trees based on the mean reduction in impurity
(or “Gini importance”), was not used because its use has been discouraged, as it has been
demonstrated to occasionally produce biased results with inflated importance of numerical
features not predictive for unseen data [14,15].

2.2.2. Computation of the Set Size of the Selected Features

Most feature selection methods, including the OOB permutation importance used in
the present analyses, do not immediately provide a decision of how many “best” features
to select but just a measure of the importance of each feature. Therefore, the size k of the
final feature set is often determined arbitrarily.

Typically, feature importance has a highly skewed distribution, i.e., a few variables
have high importance, but many have a low importance. This kind of distribution can be
addressed with the computed ABC analysis (cABC) [16]. This is an item categorization
method that aims to identify the most relevant items by dividing a set of non-negative
numeric elements into subsets named “A”, “B” and “C”, such that subset “A” contains
the “important few” items while subset “C” contains the “trivial many” items [17]. The
algorithmic computation of the set sizes from the data has been described in detail previ-

https://cran.r-project.org/package=randomForest
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ously [16]. Combining random forests with cABC analysis for feature selection has recently
been proposed [18].

2.3. Experimental Setup

Programming was performed in the R language [19] using the R software pack-
age [20], version 4.2.1 for Linux, available free of charge from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/ (accessed on 3 September
2022). Experiments were performed on 1 – 64 cores/threads on an AMD Ryzen Thread-
ripper 3970X (Advanced Micro Devices, Inc., Santa Clara, CA, USA) computer with
256 GB random access memory (RAM) running Ubuntu Linux 22.04.1 LTS (Canonical,
London, UK)). The main R packages used for the experiments were “randomForest”
(https://cran.r-project.org/package=randomForest (accessed on 3 September 2022) [13]),
“caret” (https://cran.r-project.org/package=caret (accessed on 3 September 2022) [21] and
our package “ABCanalysis” (https://cran.r-project.org/package=ABCanalysis, (accessed
on 3 September 2022) [16]). The computational requirements could be met by parallel
processing using the “parallel” library included in the R base environment.

Twenty percent of the original data was separated as a validation data set, which was not
further touched during feature selection. To obtain a representative subsample, our R package
“opdisDownsampling” (https://cran.r-project.org/package=opdisDownsampling (accessed
on 3 September 2022)) was used for this task. The package selects from 10,000–100,000 random
samples the one in which the distributions of the variables are most similar to those of the
original data. The details of this sampling procedure have been described previously [22].

Random forests were tuned with respect to hyperparameters, as reported previ-
ously [23], in order to ensure that the performance of the classifier during feature selection
and classification was optimized for the actual data sets. Specifically, tuning was performed
via a grid search and using a 100-fold cross-validation precluding each feature selection
run. For example, tuning the hyperparameters indicated that for the iris data set (see next
chapter) the classifier should be run with ntree = 1100 trees,

√
nvariables = 2 features per

tree and nodesize = 4. For the wine properties data set (see next chapter), the respective
hyperparameter settings were ntree = 100, nvariables = 1, nodesize = 1.

All feature selection experiments were performed in a 1,000 cross-validation scenario.
In each run, from the 80% of the full data sets available for this task after having separated
the 20% validation sample (see above), 2/3 were randomly drawn as training data subset
using Monte Carlo resampling [24] implemented in the R library “sampling” (https://cran.
r-project.org/package=sampling (accessed on 3 September 2022) [25]). The permutation
variable importance was calculated directly using the OOB samples created during training
with these 2/3 randomly drawn cases.

After feature selection, classification performance was evaluated after training random
forests with 2/3 randomly drawn cases from the 80% of the data using only the selected
or unselected features, and classification performance was tested with random samples
of 80% of the 20% validation sample that were not touched during feature selection or
classifier training. Classification performance was measured using balanced accuracy [26]
implemented in the R library “caret”.

2.4. Data Sets
2.4.1. Iris Flower Data Example

The iris flower data set set [27,28] contains measurements of the four variables, sepal
length and width or petal length and width in centimeters, for 50 flowers of each of the
three species, Iris setosa, versicolor, and virginica, providing a 150× 4 data matrix. The data
set was expanded by repeating variables to obtain very strongly correlated variables, or
by adding variables as their permuted versions to obtain nonsense variables or by adding
trivial information using the class information as the variable. Previous analyses indicated
that petal dimensions were the most informative for species separation [29].

https://CRAN.R-project.org/
https://cran.r-project.org/package=randomForest
https://cran.r-project.org/package=caret
https://cran.r-project.org/package=ABCanalysis
https://cran.r-project.org/package=opdisDownsampling
https://cran.r-project.org/package=sampling
https://cran.r-project.org/package=sampling
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2.4.2. Wine Quality Data Set

A second data set was a wine data set from https://www.kaggle.com/datasets/
shelvigarg/wine-quality-dataset (accessed 2 November 2022). It contains physicochemical
properties of a collection of white and red wines and consists of 4898 samples of white
wine and 1599 samples of red wine. Eleven variables on chemical properties are solid
acidity, volatile acidity, citric acidity, residual sugar, chlorides, free sulfur dioxide, total
sulfur dioxide, density, pH, sulfates, and alcohol. A 12th variable, quality, contains the
median of at least three ratings from wine experts who ranked the wine quality of each
sample between 0 (very poor) and 10 (very good). The wine data set was used for method
development in feature selection for regression problems [30,31]. This provided the relevant
features to be identified in the present analysis. Fuzzy techniques were used to identify
the variables that had the greatest causal relationship with wine quality: Alcohol, fixed
acidity, free sulfur dioxide, residual sugar and volatile acidity, while citric acid and sulfates
were also variables that show a causal relationship with wine quality, but not in the same
strength as the previous ones [31]. For the present experiments, the regression problem
with the normally distributed wine quality variable was transferred into a classification
problem via a median split into "low" and "high" quality wines.

3. Results
3.1. Iris Flower Data Set

Several modifications of the iris data set were assessed, including (i) the omission of
very strongly correlated variables, (ii) the addition of more variables that are perfectly cor-
related with the existing variables, (iii) the addition of nonsense variables, (iv) the addition
of perfect class discriminators, i.e., of the class membership as a variable. Experiments
using these modifications allowed for four main conclusions, which are highlighted under
the following subheadings.

3.1.1. Default Feature Selection Often Suffices and Removing Strongly Correlated Variables
Is Not Necessary

In the iris data set, feature selection identified the two petal dimensions as the most
informative for the training of a random forests classifier (Figure 1A(a–c)). Training with
these two variables allowed the algorithm to classify the validation data set better than
training with the unselected features, i.e., sepal dimensions, as indicated by the 95%
confidence interval of the differences in the balanced accuracy located to the right of the zero
difference. The median classification performance was even slightly better than when all
variables were used for training. Reconsidering the unselected variables in a second round
of feature selection added the sepal length to the set of selected features. However, the
positive difference in classification performance between selected and unselected features
had already indicated that this was unnecessary, and indeed the now larger feature set did
not provide a better basis for training the classifier than the two variables selected first.

The petal dimensions were correlated very strongly [32] at a rank correlation [33]
coefficient of ρ > 0.9. Petal width was selected as their prototype. In the feature selection
among the remaining three variables (Figure 1), it was selected in the first round, while
sepal length was added in a second round. However, both sets provided a poorer basis for
random forest training than the sets obtained from the full data set without the removal
of very strongly correlated variables (see above). The balanced accuracy of the class
assignment was not better than with the full data set. When the four variables of the iris
data set were added again to the data set (Figure 1 feature selection among the now eight
variables remained unaffected and consistent by first referring to the petal dimensions and
adding the sepal length in a second round.

https://www.kaggle.com/datasets/shelvigarg/wine-quality-dataset
https://www.kaggle.com/datasets/shelvigarg/wine-quality-dataset
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Figure 1. Feature selection and classification performance evaluation with different feature sets in
the iris data set [28]. The graph is divided into subgraphs a–c from top to bottom. Experiments
were performed (a) with the original data, (b) with the iris data set omitting one highly correlated
variable, and (c) with the data set adding all variables twice. Each subgraph is organized in three
further subgraphs, showing from top to bottom (i) the results when using the features selected in the
default feature selection, (ii) the features added when performing a second feature selection on the
unselected features from the first selection, and (iii) when training the algorithm with the full feature
set. The boxes show the 25th, 50th (blue vertical line), and 75th percentiles of balanced accuracies
obtained in 1000 repeated runs with a random selection of 67% from the training data set and 80%
from a validation data set separated from the data set before feature selection. Whiskers span the
95% confidence interval from the 2.5th to the 97.5th percentiles. (A): Balanced accuracy obtained
with a random forests classifier trained with (i) the selected features, (ii) the unselected features,
and (iii) the unselected features that were not highly correlated with the selected features, with the
correlation threshold set at a very strong correlation of ρ > 0.9. (B): Difference in balanced accuracy
when algorithms were trained with the selected versus unselected features. (C): Selected features
(blue) and unselected features (white). Features excluded from the experiments due to very strong
correlation are shown in gray.

3.1.2. Reconsidering Unselected Features Captures Information When Bad or Trivial
Features Were Initially Selected

If the data set contained a variable that is the class membership information, either by
mistake or by accidental coincidence, the feature selection will identify that the variable is
sufficient to train a perfect classifier (Figure 2) However, there are reasons that renamed
class information, or variables identical to class information by any reason, can be a banality
in the specific research domain from which the data set originates, and reconsidering the
unselected features leads to petal dimension selection as described above, which allows the
selected features to be interpreted in the current research field context.
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Figure 2. Feature selection and classification performance evaluation with different feature sets in
the iris data set [28]. The graph is divided into subgraphs a–b from top to bottom. Experiments were
performed (a) with the original data but sepal length was defined to be selected in a first run of feature
selection, (b) with the iris data set where the class information was added as a numerical variable. Each
subgraph is organized in three further subgraphs, showing from top to bottom (i) the results when
using the features selected in the default feature selection, (ii) the features added when performing a
second feature selection on the unselected features from the first selection, and (iii) when training the
algorithm with the full feature set. The boxes show the 25th, 50th (blue vertical line), and 75th percentiles
of balanced accuracies obtained in 1000 repeated runs with a random selection of 67% from the training
data set and 80% from a validation data set separated from the data set before feature selection. Whiskers
span the 95% confidence interval from the 2.5th to the 97.5th percentiles. (A): Balanced accuracy obtained
with a random forests classifier trained with (i) the selected features, (ii) the unselected features, and
(iii) the unselected features that were not highly correlated with the selected features, with the correlation
threshold set at a very strong correlation of ρ > 0.9. (B): Difference in balanced accuracy when algorithms
were trained with the selected versus unselected features. (C): Selected features (blue) and unselected
features (white).

3.1.3. Reconsidering Unselected Features Does Not Tend to Add Uninformative Variables

When permuted versions of the four variables were added to the data set (Figure 3),
none of them were selected in either the first or second round of feature selection. In the
extreme case, when all variables were permuted (Figure 3 the unsuitability of the then
seemingly random selection could be observed immediately from the poor performance of
the trained classifiers, with confidence intervals of balanced accuracy 50%. In this case, the
difference around zero between the performance of classifiers trained with selected and
unselected features clearly indicated that no relevant information had been overlooked in
the feature selection.
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Figure 3. Feature selection and classification performance evaluation with different feature sets in
the iris data set [28]. The graph is divided into subgraphs a - b from top to bottom. Experiments
were performed (a) with doubling each variable and randomly permuting all variables, (b) doubling
the data set and randomly permuting the second version of each variable while leaving the first
versions in their original stage. Each subgraph is organized in three further subgraphs, showing from
top to bottom (i) the results when using the features selected in the default feature selection, (ii) the
features added when performing a second feature selection on the unselected features from the first
selection, and (iii) when training the algorithm with the full feature set. The boxes show the 25th, 50th
(blue vertical line), and 75th percentiles of balanced accuracies obtained in 1000 repeated runs with
a random selection of 67% from the training data set and 80% from a validation data set separated
from the data set before feature selection. Whiskers span the 95% confidence interval from the 2.5th
to the 97.5th percentiles. (A): Balanced accuracy obtained with a random forests classifier trained
with (i) the selected features, (ii) the unselected features, and (iii) the unselected features that were
not highly correlated with the selected features, with the correlation threshold set at a very strong
correlation of ρ > 0.9. (B): Difference in balanced accuracy when algorithms were trained with the
selected versus unselected features. (C): Selected features (blue) and unselected features (white).

3.1.4. Reconsidering Unselected Features Indicates Relevant Information That May Have
Been Missed in The Knowledge Discovery Process

Assembling the data set from similarly informative variables by just repeating the petal
width 12 times led to an arbitrary selection of some of the same features (Figure 4), since
all features are similarly informative and there is no better feature pick. The classification
accuracy was satisfactory because feature selection came at no cost, allowing similar
accuracy as when training was conducted with all features. However, training the classifier
with the selected features was no better than with the unselected features, and the difference
between the balanced accuracies was zero. This clearly indicated an error in feature
selection and a need to re-examine the feature set, since it cannot be assumed that the
best features were selected from the set of variables. While this may be irrelevant for
training classifiers, it is likely relevant for knowledge discovery. Examination of the data
set, as indicated by the zero-difference signal, would likely prevent biased interpretation of
the selected features that would have gone unnoticed without assessing the classification
performance with unselected features.
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Figure 4. Feature selection and classification performance evaluation with different feature sets in
the iris data set [28]. Experiments were performed only on petal width, added 12 times to the data
set. The graph is organized in three subgraphs, showing from top to bottom (i) the results when
using the features selected in the default feature selection, (ii) the features added when performing a
second feature selection on the unselected features from the first selection, and (iii) when training
the algorithm with the full feature set. The boxes show the 25th, 50th (blue vertical line), and
75th percentiles of balanced accuracies obtained in 1000 repeated runs with a random selection
of 67% from the training data set and 80% from a validation data set separated from the data set
before feature selection. Whiskers span the 95% confidence interval from the 2.5th to the 97.5th
percentiles. (A): Balanced accuracy obtained with a random forests classifier trained with (i) the
selected features, (ii) the unselected features, and (iii) the unselected features that were not highly
correlated with the selected features, with the correlation threshold set at a very strong correlation of
ρ > 0.9. (B): Difference in balanced accuracy when algorithms were trained with the selected versus
unselected features. (C): Selected features (blue) and unselected features (white).

3.2. Wine Quality Data Set
Comparison Of Classification Performance with Selected and Unselected Features Can
Reveal Feature Selection Problems

When not re-tuning the hyperparameters for the actual data set, feature selection
using random forest permutation importance identified alcohol, free sulfur dioxide, and
volatile acidity as the best variables for training the algorithm to discriminate between low-
and high-quality wines (Figure 5). All of them were included in the result of the fuzzy
logic techniques-based identification of relevant predictors of wine quality [31]. Moreover,
these are also the variables that were found to be important predictors of wine quality
for both wine types in a regression analysis, where red and white wines were evaluated
separately [30]. This could have been accepted as a satisfactory result.

However, evaluation of the classification performance obtained when the unselected
features were used for training demonstrated that a negative difference (Figure 5A(b)), i.e.,
it was not better than with the full feature set and, importantly, also not better than with
the unselected features. This was indicated by the inclusion of the value zero in the 95%
confidence intervals of the differences between the classification performance measures
obtained with the selected features versus the full feature set or the non-selected features
(Figure 5A(a,b)). The median difference in balanced class assignment accuracy was even
smaller than for the unselected characteristics, although it was not significant because the
95% bootstrap confidence interval included the difference of zero.

Following the re-tuning of the random forests for the wine quality data set
(see Section 2), the feature selection in the first round already resulted in a larger fea-
ture set that was closer to those identified in [30,31] and provided better classification
results than the unselected features. This was further improved in the second round when
the selected features. The resulting combined feature set thus met both the criterion of
achieving classification performance as high as with all features and of selecting those
features known from independent evaluations to be relevant to the target.
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Figure 5. Feature selection and classification performance evaluation with different feature sets
in the wine quality data set from https://www.kaggle.com/datasets/shelvigarg/wine-quality-
dataset (accessed 2 November 2022). The graph is divided into subgraphs a–b from top to bottom.
Experiments were performed (a) with non-tuned (a) and tuned (b) hyperparameters. The two
subgraphs show from top to bottom (i) the results when using the features selected in the default
feature selection, (ii) the features added when performing a second feature selection on the unselected
features from the first selection, and (iii) when training the algorithm with the full feature set. The
boxes show the 25th, 50th (blue vertical line), and 75th percentiles of balanced accuracies obtained
in 1,000 repeated runs with a random selection of 67% from the training data set and 80% from
a validation data set separated from the data set before feature selection. Whiskers span the 95%
confidence interval from the 2.5th to the 97.5th percentiles. (A): Balanced accuracy obtained with a
random forests classifier trained with (i) the selected features, (ii) the unselected features, and (iii) the
unselected features that were not highly correlated with the selected features, with the correlation
threshold set at a very strong correlation of ρ > 0.9. (B): Difference in balanced accuracy when
algorithms were trained with the selected versus unselected features. (C): Selected features (blue)
and unselected features (white).

4. Discussion

This report addresses a typical problem in the analysis of multivariate biomedical
data, usually consisting of a set of individuals (cases) belonging to a particular diagnosis
(class) and for which multiple measurements have been made (multivariate data). The
first question that arises is whether there is any structure in these measurements that is
relevant to the class structure and can be used to diagnose (classify) the subjects. To answer
this question, a powerful machine-learned classifier can be trained on a subset of the data.
If this classifier is able to classify the cases not used in learning (OOB data) such that
this classification is close to the true class membership (e.g., a medical diagnosis), this
indicates that there is structure in the multivariate data that supports the class structure.
This structure could be used to assign future cases to the correct class, e.g., to make an
(almost) accurate medical diagnosis for a person about whom the same type of information
is available as that on which the algorithm was trained.

However, there are several pitfalls in this context. For example, the diagnosis may
be accidentally coded in one or more variables. A typical example is the inclusion of a
patient number in the data that contains a numeric code that already indicates the diagnosis.
Then, the algorithm is trained on trivial information and is rather useless on future data.
Other pitfalls include the problem of correlations and dealing with strongly correlated
data. Filtering out correlated variables before machine learning fixes technical sensitivities
of algorithms to avoid redundant information. However, this is not necessarily ideal
for knowledge discovery. It also requires setting an arbitrary threshold above which the

https://www.kaggle.com/datasets/shelvigarg/wine-quality-dataset
https://www.kaggle.com/datasets/shelvigarg/wine-quality-dataset
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variables are considered highly correlated. A prototypical variable formally selected as
the most strongly correlated feature of a group of features may be topically uninformative.
On the other hand, selecting a topically meaningful prototype variable may disrupt the
data-driven approach to information extraction because it introduces prior assumptions.
Intermediate or latent variables computed from the original ones, such as projections onto
principal component planes, may be difficult to interpret.

The basic idea presented here is to use the classifier not only for the selected features
but also for the unselected features. If the performance of the classifier used is the same for
both sets of features, there is no gain in information if only the selected features are used.
Moreover, the selected features cannot be claimed to capture the nature of the mechanisms
underlying the class structure of the data set. The selected features qualify for valid topical
interpretation, if the performance of the classifier is better for the selected features. This is
the case if the difference between the performance measures obtained when the algorithm
was trained with either the selected features or the unselected features is positive and its
95% confidence interval in cross-validation runs does not include the difference of zero. In
such a case, the feature selection can also be considered successful for knowledge discovery
or explainable AI. The selected features qualify for valid topical interpretation.

Thus, this report emphasizes that there can be two different goals for feature selection
(Figure 6). First, the technical goal of looking for the smallest number of features with which
an algorithm can be trained to classify the data with sufficient accuracy (“technical feature
selection” (TFS)). Second, the goal of knowledge discovery or XAI, where the features
required for successful AI training are also interpreted in the topical context of the research
data. In this scenario, the set of features must allow the, e.g., medical, field expert to
understand how a machine system for class assignment, e.g., diagnosis, proceeds in order
to arrive at a sufficiently accurate diagnosis. (“explainable feature selection” (XFS)). This
might require more features than are technically necessary for a successful classification to
enable a logical chain of reasoning that explains the class assignment within the particular
research area. Thus, there can be different solutions for feature selection depending on the
topical context and final aim of the analysis. The proposed approach facilitates explainable
AI [2] because experts in the field will better understand an AI’s decision if the key features
on which the decision is based make sense to them in the context of their expertise, rather
than simply accepting that the “black box” algorithm can use the information to make a
diagnosis, to remain in the medical example.

Moreover, as demonstrated with the wine quality data set, the proposed method
implicitly provides a signal for pathologies in feature selection that might escape attention
without the reexamination of the unselected features. In machine learning reports, usually
only the performance of the classifiers trained with the selected features is compared to the
performance obtained when all variables were used for training. Given that feature selection
methods can produce biased results [14,15], the proposed method provides a signal to
identify missing informative variables and ensure that the most appropriate features were
indeed selected for classifier training. To ensure that the best features were selected, the
classifier performance when the unselected features were used for training should also be
reported. There are valid reasons why performances may not be different, e.g., strongly
correlated variables across selected and unselected features. However, this can be easily
identified and interpreted to provide a complete picture of the information contained
in the selected features compared to all variables. Moreover, the present example with
the wine quality data set reemphasizes that random forests benefit from hyperparameter
tuning, despite the suggestions to the contrary cited above and consistent with a recent
case, published separately [23].
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Is there a structure in the 
data, that can predict the 

diagnosis?

What is a sufficient set of 
features that can predict the 

diagnosis? 
(Complexity reduction)

What is a minimal set of 
features that can predict the 

diagnosis?
(explainability)

TFS XFS

Figure 6. Flowchart showing the proposed feature selection workflow, with a distinction of the
final goal into (i) “technical feature selection” (TFS), where the goal can be defined as training a
powerful classifier, and (ii) “explainable feature selection” (XFS), where the goal can be defined that
the selected features should be interpretable by a domain expert. Based on the evaluation of whether
the entire input data space has a structure that matches the class structure of the output data space,
for TFS the selected features are sufficient if the classifier computes the classification with the same
accuracy as with all features in the data set. However, relevant information that makes the feature
sets interpretable by the expert in the field may be lost in the process. For XFS, the selected features
should therefore be interpretable by an expert in the field, i.e., they should contain relevant variables
that provide information about the processes underlying the class structure. This can be facilitated
by including the initially unselected features in the interpretation, as proposed in this report, or
alternatively by reducing the data set to a bare informative minimum.

Limitations of the present assessments include the limited choice of machine-learning
methods. While the proposed method should be generally suitable for the machine learning-
based feature selection, here it was tested only with the OOB permutation feature impor-
tance of random forests. In addition, only one measure of classification performance was
used, namely balanced accuracy. In the present experiments, the area under the receiver
operating characteristic [34] was calculated in parallel, but it did not provide any additional
insight, but merely repeated the observations based on the balanced accuracy, and there-
fore, for brevity, it is not included in the report. It is advisable to test the utility of further
classification performance measures in the present XFS context separately when needed.

It should be noted that the present evaluations did not aim at benchmarking feature
selection procedures for classification problems, but mainly at the importance of re-testing
unselected features before declaring a machine learning-based analysis of a data set com-
plete. In a review of feature selection methods for bioinformatics, especially for disease risk
prediction [4], a classification was proposed according to which the approach proposed
in the present report, especially to consider the unselected features, would belong to the
class of feature selection algorithms that are independent of the details of the particular
classifier algorithm. The other methods, on the other hand, depend on the details of the
classifier algorithm. In particular, the approach presented here does not depend on the
details of a particular feature selection algorithm or on a particular method for computing
feature importance. In [35], different methods for evaluating the performance of different
algorithms are compared with the result that none of them has a clear advantage. Moreover,
the present experiments were conducted with classification problems. The re-evaluation of
unselected features in regression problems has not been explicitly addressed. This would
require the specification of modified signals, since balanced accuracy addresses classifi-
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cation, while an analogous measure must be found for regression before extending the
currently proposed method to regression problems.

5. Conclusions

This work is particularly concerned with the features that are discarded by feature
selection algorithms. When a classification task is attempted with such features omitted,
there are two possible outcomes: The task fails or the task is possible even with the features
not considered. If the task fails with the features not considered, then the conclusion is valid
that the feature selection has chosen the best features for the task. If the classification is still
possible, then either other features can be selected or the feature selection algorithm is not
working correctly. If the algorithm is working correctly, then feature set can be extended to
features that well describe the data generation process from an expert’s point of view. Thus,
the present proposal makes a distinction between whether the feature set can be described
as containing relevant information for class assignment or whether as containing the only
relevant information for class assignment. The former allows the unselected features to
be included in the mechanistic interpretation, while the latter excludes them, i.e., adds a
logical “NOT” to the argument in the sense of “these features are relevant, but not those”.
Thus, we propose, in line with [4], that extracting a subset of the most relevant features
(through feature selection) could help researchers to understand the biological process(es)
that underlie the disease.

Reconsideration of originally unselected items in multivariate data sets is proposed
as a method to enhance the topical interpretation of variables emerging from feature
selection aimed at knowledge discovery or explainable machine learning. This can be
useful to filter out uninformative or trivial information or to add relevant topical infor-
mation from variables originally overlooked in the feature selection. In addition, it can
help to detect pathologies and errors in the feature selection that occasionally fail to iden-
tify the most appropriate variables. The method is generic to feature selection methods
based on the supervised machine learning-based and can be implemented in the feature
selection workflows.
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