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A B S T R A C T   

Motivation: Gaussian mixture models (GMMs) are probabilistic models commonly used in biomedical research to 
detect subgroup structures in data sets with one-dimensional information. Reliable model parameterization re-
quires that the number of modes, i.e., states of the generating process, is known. However, this is rarely the case 
for empirically measured biomedical data. Several implementations are available that estimate GMM parameters 
differently. This work aims to provide a comparative evaluation of automated GMM fitting methods. 
Results and conclusions: The performance of commonly used algorithms for automatic parameterization and mode 
number determination was compared with respect to reproducing the ground truth of generated data derived 
from multiple normal distributions. Four main variants of Gaussian mode number detection algorithms and five 
variants of GMM parameter estimation methods were tested in a combinatory scenario. The combination of best 
performing mode number determination algorithms and GMM parameter estimation methods was then tested on 
artificial and real-live data sets known to display a GMM structure. None of the tested methods correctly 
determined the underlying data structure consistently. The likelihood ratio test had the best performance in 
identifying the mode number associated with the best GMM fit of the data distribution while the Markov chain 
Monte Carlo (MCMC) algorithm was best for GMM parameter estimation while. The combination of the two 
methods of number determination algorithms and GMM parameter estimation was consistently among the best 
and overall outperformed the available implementations. 
Implementation: An automated tool for the detection of GMM based structures in (biomedical) datasets was 
created based on the present results and made freely available in the R library “opGMMassessment” at https://cra 
n.r-project.org/package=opGMMassessment.   

1. Introduction 

One-dimensional Gaussian mixtures are a common distribution 
model in medicine and psychology of data obtained from individuals 
belonging to different subgroups, e.g., patients versus control subjects or 
further substratifications. Clinical or psychological scores, on which 
diagnoses are based and therapeutic decisions are made, are often uni-
dimensional variables obtained by querying or measuring a single item, 
e.g. pain intensity used to define pain requiring therapy [1], the blood 
glucose concentration used to diagnose diabetes, or the blood hemo-
globin concentration used to diagnose anemia. Unidimensional vari-
ables can also be combined scores of a few to several items, such as the 
body mass index used to diagnose obesity, or typical outcomes of clinical 

or psychological questionnaires that measure, e. g. the degree of 
depression queried with the Beck’s Depression Inventory [2], the risk of 
diabetes quantified with the “FINDRISK” score [3], or the degree of life 
impairment in fibromyalgia [4]. Further examples are sum scores of 
several different clinical tests and laboratory measurements such as the 
“MELD” score used to determine a patients’ place on a liver transplant 
waiting list [5], the TDI score on which the diagnosis of normal, 
impaired, or absent olfactory function is based [6,7], and many others. 

In most cases, these scores are translated into categories to which 
patients are then assigned. For example, the “MELD” score uses cut-offs 
at 15 to 19, 20 to 29, and ≥30 points to define mortality risk and urgency 
for liver transplantation [5], the olfactory “TDI” score uses cut-offs of 
15.5 and 30.5 points to define diagnosis or anosmia, hyposmia, or 
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Fig. 1. Automated fit of a Gaussian mixture model to 
a three-modal Gaussian distributed data set. N =
1000 instances were drawn from i = 3 normal dis-
tributions with parameters means, mi = [-10, 0, 10], 
standard deviations, si = [1–3], and weights, wi =

[0.07, 0.05, 0.88] (top panel). The data are included 
as “Mixture3” data set in the R package “opGMMas-
sessment”. The simulated data set was analyzed using 
algorithms that promise GMM evaluation “out of the 
box” without further statistical testing or parameter 
tuning, including the “densityMclust” method from 
the R package “mclust” (https://cran.r-project. 
org/package=mclust [20])), (iii) the method “nor-
malmixEM” from the R package “mixtools” (https 
://cran.r-project.org/package=mixtools [21]), and 
the method “GMM” from the R package “ClusterR” 
(https://cran.r-project.org/package=ClusterR [19]). 
For comparison, the bottom panel shows the fit ob-
tained when the methods that performed best in the 
present comparative assessments were used. The 
figure shows the density distribution of the data as a 
grey line and as a histogram. A GMM was fitted to the 
data (dark blue line), with the number of modes of M 
automatically estimated by the appropriate algo-
rithm. Estimated Bayesian boundaries between 
Gaussians are shown as magenta vertical lines, and 
the true boundaries according to the underlying 
model are indicated as blue dotted vertical lines. The 
figure was created using the software package R 
(version 4.2.0 for Linux; https://CRAN.R-project.org/ 
)[42] and the R package “ggplot2” (https://cran.r-pr 
oject.org/package=ggplot2.(For interpretation of the 
references to color in this figure legend, the reader is 
referred to the Web version of this article.)   
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normosmia, which define functionally absent, reduced, or normal ol-
factory function [8], or pain in rheumatoid arthritis is regarded as severe 
requiring therapy when rated >40 mm at a 100-mm visual analogue 
scale [9,10]. Breakpoints for subgroup assignment were often deter-
mined by experts and not defined from the data. However, breakpoints 
may not always be available, especially when measurements are used to 
categorize patients based on measurements for which no cut-off values 
are available from an established scoring system. Because patient sub-
group detection is a common task in biomedical data analysis aimed at 
stratifying patients for more individualized therapies in “precision 
medicine,” methods are needed to read subgroups from the data. Since 
the observed data in many cases result from sums of underlying pro-
cesses, the assumption that the data follow a Gaussian distribution N(m, 
s) with parameters mean m and standard deviation s is justified by the 
central limit theorem [11]. This assumes that the data are generated by a 
process that uses this “likelihood function”. In fact, the cutoff values 
resulting from the analyses of Gaussian mixture distributions seem to 
agree well with expert definitions of cutoff values, as illustrated by the 
example of pain scores in rheumatoid arthritis, where the data-driven 
approach of GMM modeling gave a cutoff value for subgroup separa-
tion at a visual analog scale score of 36 mm [12], which is close to the 
expert-defined threshold for severe pain of 40 mm mentioned above. 
Thus, unidimensional variables that serve as the basis for dividing pa-
tients into subgroups are ubiquitous in medical and related science and 
clinical practice. 

A Gaussian mixture model (GMM) is a probabilistic model that de-
scribes the probability p of observing an event x. It assumes that the 
underlying data was generated by weighted sum of a finite number M of 
normal distributions N(x|mi,si), often termed modes, with parameters 
mean mi and standard deviation si. The relative contribution of each of 
these normal distributions to the mixture is defined by the weighting wi, 
which are the prior probabilities of occurrence of x in one of the modes. 
Consequently, the sum of the weights of all M normal distributions add 
up to 1. A M-modal GMM is defined as p(x) =

∑M
i=1wiN(x|mi, si) with 

∑M
i=1wi = 1. With GMM, an assignment to the modes (process types) can 

be calculated. For a given value of x the probability with which x can be 
assigned to one of the modes can be calculated using the theorem of 
Bayes [13]. 

Parameter optimization methods such as the expectation maximi-
zation (EM) algorithm are commonly used to fit GMMs to one- 
dimensional data. However, these methods do not guarantee correct 
results with respect to the true organization of the underlying a data set. 
Therefore, it is necessary to evaluate the accuracy of the commonly used 
GMM parameter estimation methods to assess the correctness of the 
results both in determining the number of modes in the data set and the 
correctness of the obtained GMM parameters. As an essential parameter 
of the data generation process, i.e., “nature”, the number of different 
states corresponding to the different states of data generation must be 
determined. If the data generation process is not fully understood, the 
number of states = modes must be estimated from the data. Unfortu-
nately, there is no general method for this task. Research reports use a 
variety of methods that are variants of a few main approaches. These are 
often chosen arbitrarily depending on the available software or based on 
examples in similar research areas. Given its increasing popularity, at-
tempts have been published to simplify GMM analysis for biomedical 
field experts. In addition to automated algorithmic heuristics [14], 
interactive tools [15] based on the freely available programming lan-
guage R [16] are available. 

Most implementations provide the number of modes as part of the 
results along with the GMM parameters values and he classification of 
data set instances into the different mode classes. A first test of common 
GMM construction and fitting tools on data which was generated using a 
pre given GMM. The generating GMM consisted of three modes which 
well separated modes having means mi = [− 10, 0, 10] and relatively 
small variances compared to the distances of the means, i.e., si = [1–3]). 

These modes are well separated. A reconstruction of the GMM from the 
data should therefore be an easy task. However, an experiment with 
common GMM tools shows that the parameters are estimated differently 
and often do not capture the structure of the data generating GMM 
(Fig. 1). The present comparative evaluation therefore addressed 
different implementations of algorithms for the separation of 
one-dimensional Gaussian mixtures, focusing on the correct identifica-
tion of the mode number and GMM parameter values in artificial data 
whose true values were known. From these algorithms the winning 
methods were combined and applied to sample data sets. 

2. Methods 

The formation of subgroups based on data analysis crucially depends 
on the analysis of the distribution of these data. Therefore, methods for 
GMM parameter estimation and methods for mode number de-
terminations were comparatively evaluated. After combining the best 
evaluated methods, the combination was evaluated on independent data 
sets. 

2.1. Selection of algorithms for the separation of one-dimensional 
Gaussian mixtures 

2.1.1. Algorithms for determining the GMM parameter values 
A variety of fitting algorithms for Gaussian mixtures have been 

developed, and the methods are available as R packages as well as in 
other data science environments. The present analyses considered three 
main variants, including methods based (i) on the widely used expec-
tation maximization (EM) algorithm [17] (ii) on evolutionary (genetic) 
algorithms and (ii) on the Markov chain Monte Carlo (MCMC) algorithm 
[18]. The methods are available in various R implementations as well as 
in other data science software packages. 

2.1.1.1. EM based approaches. The EM algorithm is used to find (local) 
maximum likelihood parameters of a statistical model. As a common 
approach, the EM algorithm in different facets was used as (i) the 
“GMM” method implemented in the R library “ClusterR” (https://cran. 
r-project.org/package=ClusterR [19]), (ii) the EM-based “densityM-
clust” method from the R library “mclust” (https://cran.r-project. 
org/package=mclust [20]) and (iii) the “normalmixEM” method from 
the R library “mixtools” (https://cran.r-project.org/package=mixtools 
[21]). 

2.1.1.2. Genetic algorithm-based approach. As an alternative to the EM- 
based GMM (iv) an evolutionary algorithm [22] was used. As 
described in detail previously [23], for GMM adaptation, a “population” 
of GMMs is processed through many iterations with multiple phases in 
which the GMMs are mutated, selected, and recombined. In the initial-
ization step, a population of GMMs is created with randomly drawn 
parameter values. In the selection step, GMMs with high fitness values 
are selected and judged by χ2 statistics between the observed and esti-
mated distributions and by the overlap between neighboring modes. 
During the mutation step, random individuals (GMMs) are selected and 
their parameters are changed, followed by recombination of selected 
individual GMMs. The approach was adopted from the implementation 
in our R library “DistributionOptimization” (https://cran.r-project.org/ 
package=DistributionOptimization [23]), which minimizes an overlap 
value based on the relative number of data points covered by each 
possible pair of Gaussian modes of the GMM, emphasizing maximum 
mode separation. 

2.1.1.3. Markov chain Monte Carlo based approach. A further alternative 
to EM-based approaches was implemented as a Markov chain Monte 
Carlo (MCMC) algorithm [18]. Markov Chain Monte Carlo MCMC is a 
class of algorithms from the family of Bayesian statistics that are capable 
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of drawing random samples from any mathematically defined distribu-
tions, from one-dimensional normal distributions to complex, 
high-dimensional distributions [24,25]. It combines the Monte Carlo 
method of random sampling with the sequence-generating Markov 
chain. Monte Carlo methods draw a large number of independent sam-
ples from a target distribution. This allows the estimation of a desired 
quantity by integration over a larger number of independently drawn 
samples [26]. Markov chains, on the other hand, define a sequence of 
random values, where the current value is probabilistically coupled with 
its predecessor [27]. Therefore, a Markov chain allows predictions about 
future events based solely on its present state. Such a system is called 
memoryless. The property that describes how much a system is influ-
enced by its past is called a Markov property. MCMC algorithms draw a 
sequence of autocorrelated samples from a known distribution, with the 
equilibrium of the sequence settling at the desired quantity. MCMC al-
gorithms work particularly well on high-dimensional data sets when the 
only thing known of the distribution is its likelihood [28]. In the present 
experiments, the implementation of the MCMC algorithm for GMM 
fitting was taken as the “NMixMCMC“ function of the R library “mixAK” 
(https://cran.r-project.org/package=mixAK [29]). 

2.1.2. Algorithms for determining the number of modes 
Several approaches exist to determine the optimal number of modes 

for one-dimensional data. The present analyses considered four main 
variants summarized elsewhere [30], including (i) GMM-based ap-
proaches with goodness-of-fit tests, (ii) kernel-based approaches with 
critical bandwidth tests, (iii) kurtosis measures with excess mass tests, 
and (iv) approaches based on the analysis of the within-group dispersion 
compared to a reference dispersion implemented as a so-called gap 
statistic [14]. The methods are available in various R implementations 
as well as in other data science software packages, occasionally as 
methods for determining cluster numbers in multidimensional data sets 
that can be adapted to determine the number of modes in the distribu-
tion of one-dimensional data. 

2.1.2.1. GMM-based approaches. In GMM-based approaches to modal 
distribution, for a data set consisting of n instances, the possible number 
of Gaussian modes is M. The determination of the optimal number of 
modes M must be statistically supported. Options such as the mean 
squared error or its root, comparisons of the shape of the original and 
fitted distributions using Kolmogorov-Smirnov or comparable tests (for 
a summary, see, e.g., Ref. [31]) that do not penalize a greater complexity 
of the GMMs were not considered because they tend toward larger 
number of modes. Goodness-of-fit criteria used in the present analyses 
include (i) the Akaike information criterion (AIC) [32], (ii) the Bayesian 
information criterion (BIC) [13], and (iii) the likelihood ratio test. They 
were available in our R library “AdaptGauss” (https://cran.r-project.org 
/package=AdaptGauss [15]). 

2.1.2.2. Critical bandwidth-based approaches. Tests of critical band-
width apply use kernel smoothing to model the probability density 
function (PDF) of the data and analyze the kernel parameters. Small 
bandwidths tend to undersmooth data regions with low structure, with 
the number of modes eventually equaling the number of unique obser-
vations. Large bandwidths tend to oversmooth regions with high struc-
ture, eventually reducing the number of modes toward one. The critical 
bandwidth is the infimum of possible kernel widths accommodating k or 
more than k modes [33]. Several different variants of these test princi-
ples have been proposed [30]. In the present analyses, the variant pro-
posed by Silverman from the R library “multimode” (https://cran. 
r-project.org/package=multimode [34]) was used. 

2.1.2.3. Excess mass-based approaches. Tests of the excess mass [35,36] 
base on measurement of the kurtosis of a distribution and analyze the 
amount of probability mass not fitting a given statistical model that is 

usually the uniform distribution or the class of all unimodal distribu-
tions. A mode is present where an excess of probability mass is 
concentrated. Several different approaches have been prosed such as 
implementations of Hartigan and Hartigan [37], of Fisher and Marron 
[38], of Cheng and Hall [39] and of Ameijeiras-Alonso [30]. Some tests 
were available only to test unimodality versus multimodality without 
further specifying the optimal number of modes M > 1 and were 
therefore inappropriate for the present purpose. In the present analyses, 
the variant proposed by Fisher and Marron was taken from the R library 
“multimode". 

2.1.2.4. Gap criterion-based approach. The gap criterion [14] is a sta-
tistical procedure that formalizes a heuristic to determine the optimal 
number of modes in clustered data. The idea of the approach is to 
standardize the cluster-wise pooled sums of pairwise distances between 
the events within M clusters (Wdata

M ) by comparing it to the cluster-wise 
pooled sums of pairwise distances within clusters of an equally sized 
data set randomly drawn from a reference distribution (Wref

M ) whereas 
the events of the reference data set are assigned to clusters by the same 
model. For a reference distribution a uniform distribution was proposed. 
For the case of one-dimensional data xi, i=1,2, …n with n being the 
number of observed events the Euclidian distance between two events i 
and í is given by di,í.If the data is clustered into M modes, Dr =

∑

i,i∈́Cr

di,í is 

the sum of distances between all events of cluster Cr and the pooled sums 
of pairwise distances within all M clusters calculates to WM =

∑M
r=1

Dr
2nr

. 
The gap between the data drawn from the reference distribution and the 
original data is given by g(M) = 1

B
∑B

b=1log(Wref
M,b) − log(Wdata

M ). Here, B 
denotes the number of times the experiment is being repeated with a 
different set of reference data drawn from the reference distribution. The 
optimal number of clusters Mopt is the smallest M that fulfills 
g(M) ≥ g(M + 1) − SM+1. Here, SM is a quantity that corrects for the 

simulation error. It is given by SM = σM

̅̅̅̅̅̅̅̅̅̅̅

1 + 1
B

√

with σM denoting the 
standard deviation of the cluster-wise pooled sums of pairwise distances 
within clusters of the B sampling repeats of the reference data. The 
gap-criterion was included using the “clusGap” implementation from the 
R library “cluster” (https://cran.r-project.org/package=cluster [40]), 
modified for parallel processing. 

2.1.2.5. Combined approach. Finally, a majority vote among several, 
including above-mentioned, methods for determining the number of 
modes, was included as provided by the R package “NbClust” (https://cr 
an.r-project.org/package=NbClust [41]). 

2.2. Experimentation 

The programming work was performed in the R language [16] using 
the R software package [42], version 4.2.0 for Linux, which is available 
free of charge in the Comprehensive R Archive Network (CRAN) at 
https://CRAN.R-project.org/. Experiments were performed on 1–64 
cores (threads) of an AMD Ryzen Threadripper 3970X (Advanced Micro 
Devices, Inc., Santa Clara, CA, USA) computer with 256 gigabytes of 
random-access memory (RAM) running on Ubuntu Linux 22.04 LTS 
(Canonical, London, UK)). Parallel processing was programmed using 
the implementation of the “parallel” R library provided with the R base 
environment [42]. 

2.2.1. Combination of algorithms for mode number detection and GMM 
parameter estimation 

The goal of GMM fitting is to infer the parameters of the data gen-
eration process from the data generated by drawing a sample data set 
from multiple normal distributions. An automated, optimized assess-
ment of the number and parameters of Gaussian mixtures in one- 
dimensional data should yield (i) GMMs with parameter values as 
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close as possible to the true underlying mixture, and (ii) the correct 
number of modes in the modally distributed data set. Both are interde-
pendent but were initially addressed sequentially. 

2.2.1.1. Selection of algorithms for estimating the parameters of a GMM. A 
simulation study was performed with the goal of selecting the most 
appropriate GMM fitting algorithm from the above options. Therefore, 
in three analyses, multimodal data were simulated, changing one of the 
simulation parameters m, s, or w at a time. GMMs with the true number 
of modes were then fitted to the data using different optimization al-
gorithms and the resulting GMM parameters were compared to the 
simulation parameters to evaluate the performance of the algorithms. 

2.2.1.2. Selection of algorithms for determining the number of mixtures. In 
a second simulation study, the reliability of different methods for 
determining the number of modes was evaluated. It should be noted that 
the actual number of modes for performance evaluation was determined 
based on the number of modes present in the generated datasets and not 
on the probability of drawing a sample from a particular mode used 
during the data generation process. This was done to account for the 
situation where a very low weight of a mode combined with a certain 
number of simulated instances (n = 1000 presently) may result in zero 
instances actually being drawn from that mode. Based on the results of 
the simulation experiments, promising combinations of the optimization 
and mode-determining algorithms were compiled. 

2.2.2. Comparative evaluation of automated GMM assessment algorithms 
on independent datasets 

The classifications in real data sets do not necessarily reflect the true 
class structure in the data. For example, unawareness of a subgroup 
structure beyond the known main structure of patients and controls, e.g., 
with subgroups within patients, would call into question the detection of 
more subgroups than expected, although the projection method may 
have worked correctly. This problem is well known in unsupervised data 
analysis and methods need therefore to be tested on datasets where 
hidden structures can be excluded as the process of data generation is 
fully known. Another example is clustering, where cluster methods oc-
casionally fail and point either at subgroups not existing or disrupt a 
known group structure. Examples for this are provided, e.g., in Refs. [43, 
44]. Nevertheless, unsupervised data analysis such as GMM or clustering 
are often a starting point for discovering additional subgroups, such as 
relevant subtypes of diseases that were previously considered as a single 
entity. In the problem addressed in the present paper, it is not the GMM 
calculation for known subgroups, which can be easily done based on the 
means, standard deviations and weights for each subgroup, but the aim 
is to detect such subgroups in unidimensional data by fitting GMMs to 
the data. It is therefore difficult to judge whether a discovered modal 
distribution is correct, making it difficult to compare automated GMM 
fitting methods on real-life data when the true structure of the under-
lying data generating process is not precisely known. However, an 
emphasis in this step of the experiments was that the data sets were 
created independently of the experiments at hand up to this set. 

To evaluate the performance of the presently proposed GMM 
assessment approach on real data in comparison to alternative imple-
mentations that also promise “out of the box” GMM assessment without 
further statistical testing or parameter tuning, experiments were con-
ducted. This assesses the clustering accuracy between the GMM-based 
classification according to the Bayesian boundaries using the opti-
mized parameters of the models, and the available prior classification. 

Alternatives to the present GMM assessment approach, called (i) 
“opGMMassessment”, included (ii) the “densityMclust” method from the 
R package “mclust” (see above) without specifying the number of 
modes, (iii) the “normalmixEM” method from the R package “mixtools” 
with the parameters “arbmean” and “arbvar” set to “TRUE”, triggering 
an automatic determination of appropriate initial values including the 
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number of mixes, and (iv) the “GMM” method from the R package 
“ClusterR” in combination with “Optimal_Clusters_GMM” for mode 
number detection from the same library. 

2.3. Implementation 

The methods used in the present comparative assessments were 
assembled in an R package “opGMMassessment”, freely available at http 
s://cran.r-project.org/package=opGMMassessment. The GMM evalua-
tion can be called with opGMMassessment(Data, FitAlg = “MCMC”, 
Criterion = “LR”, MaxModes = 8, MaxCores = getOption(“mc.cores”, 
2L), PlotIt = FALSE, KS = TRUE, Seed). For the fitting algorithm 
(“FitAlg”), “Markov chain Monte Carlo” was selected as the default, and 
for the mode number detection method (“Criterion”), the likelihood 
ratio test (“LR”) was selected as the default, according to the results of 
the present comparative evaluations (Table 1 and Table 3). The 
parameter “PlotIt” creates a GMM plot, and “KS” provides a 
Kolmogorov-Smirnov test [45] of the final fit compared to the original 
data. The library imports functions for GMM fitting and mode number 
determination from the above R libraries. The M modes of the GMM are 
fitted simultaneously using parallel processing unless (vii) the param-
eter “MaxCores” is set at a value of 1. Parallel computing is implemented 
from the “parallel” library provided with the R base environment, which 
provided faster operation on Linux systems than packages “doParallel” 
(https://cran.r-project.org/package=doParallel [46]) and “foreach” 
(https://cran.r-project.org/package=foreach [47]), which needed to be 
used on systems running on Windows™ (Microsoft Corporation, Red-
mond, WA, USA). More detailed hyperparameter settings are beyond the 
scope of this report and are available through the R library help 
function. 

3. Results 

3.1. Simulation studies 

The simulation study was designed to compare various methods for 
either GMM parameter estimation or mode number determination. One- 
dimensional data sets with 1000 instances were drawn from three 
normal distributions with different probabilities resulting in a three 
modal data set (M = 3 modes). Each of the three normal distributions is 
characterized by its mean value mi and standard deviation si. and a 
weighting parameter wi. The simulated data sets are therefore based on 
3*M-1=8 simulation parameters (w3 = 1-w1-w2). The parameters of five 
different fitting algorithms were optimized on the simulated data and 
compared to the simulation parameters to evaluate the performances of 
the different algorithms. 

In three simulation studies data sets were generated by Monte Carlo 
simulations with modified simulation parameters. Here, only one of the 
three simulation parameters was varied during each of the three simu-
lation studies, while the other two were kept fix. In detail, the following 
scenarios were investigated:  

1. Variation of the mean values: The values of mi were varied from 
m1-3 = [-10, 0, 10] in 48 steps to [0, 0, 0] by decreasing or increasing, 
respectively, m1 and m3 in equal steps. The values of si and wi were 
kept fix at s1-3 = [3,1,3] and w1-3 = [0.2, 0.1, 0.7] (Fig. 2 A).  

2. Variation of the standard deviation: The values of si were varied 
from s1-3 = [2, 0.2, 4] in 48 steps to [2, 9.6, 4] by increasing s2 by 0.2 
during each step. The values of mi and wi were kept fix at m1-3 = [-10, 
0, 10] and w1-3 = [0.1,0.05,0.85] (Fig. 2C).  

3. Variation of weights: The values of wi were varied from equal 
weights w1-3 = [0.33, 0.33, 1-(w1+w2]. The values of mi and si were 

Table 2 
Ranking of fit algorithms for their correct capture of the true parameters of GMMs, using either the median of the differences to the true GMM parameters or their 
modes to accommodate the right-skewed distribution (Fig. XXX). Lower ranks indicate smaller differences, i.e., better precision in estimating the GMM parameters. 
Ranking has been done using the R command “rank” without further switches.  

Type of algorithm  Changing means   Changing SD   Changing weights   Sum of ranks   

mi si wi mi si wi mi si wi  

Rank order of median of differences to true values 
EM based ClusterR::GMM 4 2 3 5 4 4 5 5 5 37 

densityMclust 5 4 5 3 5 5 3 3 4 37 
normalmixEM 2 3 4 2 2 2 1 2 2 20 

Genetic DO 3 5 2 4 3 3 4 4 3 31 
MCMC NMixMCMC 1 1 1 1 1 1 2 1 1 10 
Rank order of modes of differences to true values 
EM based ClusterR::GMM 4 4 5 5 4 2 2 2 2.5 30.5  

densityMclust 5 5 4 3 5 4 5 4 5 40  
normalmixEM 2 1 1 2 1 1 1 1 2.5 12.5 

Genetic DO 3 3 3 4 3 5 4 3 2.5 30.5 
MCMC NMixMCMC 1 2 2 1 2 3 3 5 2.5 21.5  

Table 3 
Ranking of the criteria for determining the number of mixtures. Lower ranks indicate smaller differences between the determined number of modes and the actual 
number of modes, i.e., better estimation of the model underlying the data. Ranking has been done using the R command “rank” without further switches. AIC: Akaike 
information criterion; BIC: Bayesian information criterion, EM: expectation maximization algorithm, FM: Fisher and Marron method [38], GMM: Gaussian mixture 
modeling, LR: likelihood ratio test, MCMC: Markov chain Monte Carlo (MCMC) algorithm, SI: Silverman method [34].  

Type of algorithm  Changing 
means  

Changing SD  Changing 
weights  

Sum of ranks   

MCMC normalmixEM MCMC normalmixEM MCMC normalmixEM  

GMM-based with goodness-of-fit 
testing 

AIC 2 2 2 3 1 3 13  

BIC 4 4 4 4 3 2 21  
LR 3 3 3 2 2 1 14 

Critical bandwidth SI 7 7 7 7 7 7 42 
Excess mass FM 6 6 6 6 6 6 36 
Gap GAP 5 5 5 5 5 5 30 
Combined NbClust 1 1 1 1 4 4 12  
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kept fix at m1-3 = [-10, 0, 10] and si at s1-3 = [1,2,3], [wi,wi,1- 
(w1+w2)] changing w1 from 0.33 to wf = 0.000811333728939 and 
changing w2 from 0.33 to wf = 9.11255966255118 ⋅ 10− 5, both in 48 
steps (Fig. 2 E). 

Each of the experiments was conducted in 20 samples of size n =
1000 drawn from the 48 different distributions, each created as 
described above, resulting in a total of 960 runs per scenario for the 
respective 48 parameter sets. Different values for the seed parameter 
were set for each replicate run. 

3.1.1. Comparative evaluation of the methods for GMM parameter 
estimation 

The fitting algorithms were comparatively evaluated for their ability 
to determine from a one-dimensional data set the simulation parameters 
that had been used for data-generating. In these evaluations, methods 
from each of the three families mentioned above were included, i.e., 
methods based (i) on the EM algorithm (methods “GMM” from the R 
library “ClusterR”, “densityMclust” from the R library “mclust”, and 
“normalmixEM” from the R library “mixtools”), an evolutionary (ge-
netic) algorithm (“DistributionOptimization”) and on the MCMC algo-
rithm (“NMixMCMC” from the R library “mixAK”) were tested. 

The results of these experiments showed that one of the imple-
mentations of the EM algorithm, i.e., the modified EM method provided 
as “normalmixEM” in the R library “mixtools” and the MCMC-based 
GMM fitting algorithm “NMixMCMC” implemented in the R library 
“mixAK”, estimated GMM parameters with the least differences from the 
true parameter values used for the data simulations (Table 1 and Fig. 3). 
This can be seen by the ranking of the absolute differences between the 

estimated values of mi, si, and wi and the true values used to create the 
respective datasets (Table 2), with lower ranks indicating smaller dif-
ferences, and summing these ranks for each fitting algorithm yielded the 
lowest ranks. “NormalmixEM” and “NMixMCMC” showed the best per-
formance indicators, both when using the either the median of the dif-
ferences or the mode as criteria. 

3.1.2. Comparative evaluation of methods for the determination of the 
mode number 

Based on above results, “NormalmixEM” and “NMixMCMC” were 
selected for the evaluations performed to select the best method for 
determining the number of modes. They were used for the same data sets 
as above in the three scenarios, but with the task of determining the 
number of modes. In these evaluations, methods from each of the five 
types of approaches to mode number detection were included, i.e., 
GMM-based approaches where the number of modes was determined via 
the best fit, assessing goodness-of-fit with including (i - iii) AIC, BIC, and 
likelihood ratio (LR) tests, critical bandwidth-based methods including 
(iv) the Silverman criterion, excess mass-based methods including (v) 
the Fisher and Marron criterion, and (vi) the GAP criterion were eval-
uated. A collection of cluster number detection methods (vii) was added 
from the “NbClust” R package, which uses above or similar methods for 
cluster number determination and makes the final decision as a majority 
vote among them. 

Based on the results of these experiments on the three scenarios 
mentioned above, the algorithms were ranked according to their ability 
to determine the actual number of modes in the simulated data sets 
(Tables 3 and i.e., 

∑
i,j
⃒
⃒Mdetermined,i.j − Mtrue,i,j

⃒
⃒ for i = 2 fitting algorithms 

and j = 7 criteria for the determination of M). The lowest ranks, 

Fig. 2. Comparative evaluation of methods for the determination of the number of modes in the mixture. Mode number detection was performed in 10 repetitions 
each using seven different methods, including goodness-of-fit-based selection criteria using AIC, BIC, or the likelihood ratio test, critical bandwidth-based methods 
implemented as the Silverman criterion, excess mass-based methods implemented as the Fisher and Marron criteria, the GAP criterion, and majority voting of several 
criteria from the R package “NbClust” (https://cran.r-project.org/package=NbClust [41]). Experiments were performed with 48 iterations of each data set, changing 
either the means, standard deviations, or weights of the three normal distributions that underlay the data generating process (parameter values in Results section). 
The number of modes detected was compared to the true number of modes read from the data generating process. The number of modes is presented as dot plots, 
with the dots jittered to allow identification of all 10 values. The colors are arbitrary and are used only to improve the association of the results with the iteration 
count. They were taken from the “colorblind_pal” palette” provided with the R library “ggthemes” (https://cran.r-project.org/package=ggthemes [62]). A and G: Dot 
plots of the actual number of modes in the experimental scenario, where the mean values change in 48 equal steps from mi = [-10,0,10] to mi = [0,0,0], the 
MCMC-based GMM fitting method. The true number of modes was always M = 3. H: Bar plots of the sum of the absolute deviations of the detected number of modes 
from the true number of modes, sorted in descending order for the different mode detection methods. The upper panel shows the result of fitting the GMM with the 
MCMC-based method, and the lower panel shows the result of fitting the GMM with the modified EM-based method. I: Bar graphs of the errors in the experimental 
scenario where the standard deviation was changed stepwise. J: Bar plots of the errors in the experimental scenario where the widths were changed stepwise. The 
figure was created using the software package R (version 4.2.0 for Linux; https://CRAN.R-project.org/)[42] and the R package “ggplot2” (https://cran.r-project.or 
g/package=ggplot2 [61]). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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indicating the lowest error rates, were obtained when using majority 
voting under a collection of mode number methods such as those pro-
vided by the “NbClust” command of the R package of the same name, or 
when using GMM-based approaches to determine the mode number and 
assessing the goodness of fit by the likelihood ratio test or the AIC. By 
contrast, the critical bandwidth, excess mass, or GAP criteria led to more 
errors, up to markedly poor results with the Silverman or Fisher and 
Marron criteria, which always indicated unimodality, for example, in 
the experiments with successive changes in the weights of the GMM 
(Fig. 2). 

3.1.3. Combination of mode number determination and GMM parameter 
estimation methods 

In the above results, the likelihood ratio test was among the top- 
performing tests for mode number de-termination, while the Markov 
chain Monte Carlo (MCMC) algorithm was among the top-performing 
tests for GMM parameter estimation. The combination of the two 
methods was applied to one-dimensional sample data sets for which a 
modal distribution was known or could be reasonably assumed from the 
topical context of their creation. 

3.2. Application on independent data sets 

In the above results, the likelihood ratio test was among the top- 
performing tests for mode number de-termination, while the Markov 
chain Monte Carlo (MCMC) algorithm was among the top-performing 
tests for GMM parameter estimation. The combination of the two 
methods was applied to one-dimensional sample data sets for which a 
modal distribution was known or could be reasonably assumed from the 
topical context of their creation. Comparative evaluations were 

performed involving R implementations of algorithms promising auto-
matic GMM assessment, i.e., the present combination assembled in the 
above-mentioned R package “opGMMassessment”, and additionally the 
method “densityMclust” from the R package “mclust”, the method 
“normalmixEM” from the R package “mixtools”, and the method “GMM” 
from the R package “ClusterR”. Since “out-of-the-box” results were 
desired, all methods were run with the respective default hyper-
parameter settings. The experiments were performed in 20 replicates as 
above and setting the maximum number of modes at M + 3. 

Comparative evaluations were performed involving R implementa-
tions of algorithms promising automatic GMM assessment, i.e., the 
present combination assembled in the above-mentioned R package 
“opGMMassessment”, and additionally the method “densityMclust” 
from the R package “mclust”, the method “normalmixEM” from the R 
package “mixtools”, and the method “GMM” from the R package 
“ClusterR”. Since “out-of-the-box” results were desired, all methods 
were run with the respective default hyperparameter settings. The ex-
periments were performed in 20 replicates as above and setting the 
maximum number of modes at M + 3. 

3.2.1. One-dimensional three-modal data set from a machine-learning 
textbook 

A first example data set was taken from a textbook on machine 
learning [48] where it served as an example for GMM modeling with 
Python (e.g., https://www.astroml.org/book_figures/chapter4/fig 
_GMM_1D.html). The GMM is defined as m1-3 = [− 1, 0, 3], s1-3 = [1.5, 
1, 0.5] and w1-3 = [0.35, 0.5, 0.15]. N = 2000 data points were gener-
ated for the present tests. The combination of Markov chain Monte Carlo 
fitting with a likelihood ratio test proposed here and the mclust:densi-
tyMclust method were able to detect that the data were trimodally 

Fig. 3. Comparative evaluation of methods for fitting 
Gaussian mixture models to multimodally distributed 
data. GMM fitting was performed in 10 repetitions 
each using five different methods, including the 
“GMM” method implemented in the R library “Clus-
terR”, the genetic “DistributionOptimization” algo-
rithm (DO), the EM-based “densityMclust” method 
from the R library “mclust”, the “normalmixEM” 
method from the R library “mixtools”, and the MCMC 
based “NMixMCMC” algorithm from the R library 
“mixAK”. Experiments were performed with 48 iter-
ations of each data set, changing either the means, 
standard deviations, or weights of a Gaussian model 
with M = 3 modes (original parameter values in Re-
sults section). The obtained parameters of the GMM 
(means, standard deviations, weights) were compared 
with the values used for data set generation. Three 
scenarios were assessed, with either changing means 
(panel A), standard deviation (panel C) or weights 
(panel E) of the GMM. Panels B, D and F show the 
differences of the obtained GMM parameters to the 
original parameters in descending order of magni-
tude. The data are shown as violin plots, overlaid 
with box plots where the boxes were constructed 
using the minimum, quartiles, median (solid line in-
side the box) and maximum of these values. The 
whiskers add 1.5 times the interquartile range (IQR) 
to the 75th percentile or subtract 1.5 times the IQR 
from the 25th percentile. The figure was created 
using the software package R (version 4.2.0 for Linux; 
https://CRAN.R-project.org/)[42] and the R package 
“ggplot2” (https://cran.r-project.org/package=ggpl 
ot2 [61]).   
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distributed (Fig. 4), the latter providing higher cluster assignment ac-
curacy, but the former providing GMM parameters closer to the truth. 
The mclust:densityMclust method occasionally provided better cluster 
accuracies, likely due to the low weight of a third cluster; however, it 
could not detect trimodality and thus failed at the task, as did ClusterR: 
GMM by detecting four modes. 

3.2.2. One-dimensional five-modal data set from “Atmosphere” journal 
In a report on the development of a cluster sampling filter for geo-

science data [49], a prior distribution approximated by a Gaussian 
mixture model (GMM) was used as a starting point for further elabora-
tion of the method. This independently constructed Gaussian mixture 
was used here to test the automatic GMM fitting tools under the name 
“Atmosphere data,” which is derived from the name of the journal in 
which the report was published. Specifically, the authors of the cited 
paper had defined a five-modal problem for their experiments (equation 

26 in https://www.mdpi.com/2073-4433/9/6/213/htm) with GMM 
parameters m1-5 = [− 2.4, − 1.0, 0, 1.0, 2.4], s1-5 = [0.05, 0.07, 0.02, 
0.06, 0.1] and w1-5 = [0.2, 0.1, 0.1, 0.3, 0.3]. As by the authors of the 
cited paper, n = 100 data set instances were generated. The five-modal 
distribution of this dataset was detected only by the currently proposed 
combination of Markov chain Monte Carlo fitting with a likelihood ratio 
test to detect the modal number (Fig. 4). The worst performance was 
provided by mixtools:normalmixEM, which suggested a bimodal 
distribution. 

3.2.3. Chromatogram one-dimensional five-modal data set 
Chromatographic separation of substance mixtures is carried out 

prior to the concentration determination of the individual components. 
The substance mixture passed through a stationary phase that is tra-
versed at a different speed by the individual components. The resulting 
chromatogram is a representation of the frequency with which 

Fig. 4. Fits and classifications obtained with four alternative automatic algorithms applied on different data sets. Data sets are shown in the for rows, from to bottom 
consisting of (i) a one-dimensional three-modal data set with n = 2000 points generated according to an example given in a textbook on machine learning [48], with 
m1-3 = [-1, 0, 3], s1-3 = [1.5, 1, 0.5] and w1-3 = [0.35, 0.5, 0.15] (panels A – F), on a one-dimensional five-modal data set prosed in the “Atmosphere” journal [49], 
with n = 100 data points drawn from a mixture with GMM parameters m1-5 = [-2.4, − 1.0, 0, 1.0, 2.4], s1-5 = [0.05, 0.07, 0.02, 0.06, 0.1] and w1-5 = [0.2, 0.1, 0.1, 
0.3, 0.3] (panels G – L), on a data set created from a chromatogram (Fig. 5) with five different lysophosphatidic acids (LPA 16:0, 18:0, 18:3, 20:0, and 20:4) (panels 
M – R), and to the first independent component obtained from the Iris flower data set [50,51] (panels S – X). Automatic GMM fitting and subsequent class 
assignment of instances after calculating Bayesian boundaries from the obtained GMM parameter values was performed in 20 replications using different values of 
seed. The alternatives tested included the present proposal “opGMMassessment” (framed in green), “densityMclust” from the R package “mclust”, “normalmixEM” 
from the R package “mixtools” and “GMM” from the R package “ClusterR”. The default parameter settings of the respective R packages were used. In the first four 
panels in each row from the left (i.e., panels A, B, C, D, G, H., I, J, M, N, O, P, S, T, U, V, see also above), the empirical distribution of the data, estimated using the 
Pareto density estimation (PDE [63]; black lines), is shown along with the GMM fits (red line) and the single Gaussians (differently colored lines). Bayesian 
boundaries between Gaussians are shown as magenta vertical dashed lines. In the second lest panels to the right (i.e., panels E, K, Q, W, see also above), ranks of 
classification accuracies against the prior classification are shown as individual dots, overlaid with a violin plot. Algorithms are presented in descending order of 
ranks achieved; higher ranks indicate better performance in assigning an instance to its original class. The statistical significance of differences to the presently 
proposed “opGMMassessment” method, assessed by means of Wilcoxon-Mann-Whitney U tests [64, 65], is indicated at the top line as stars: *: p < 0.05, **: p < 0.01, 
***: p < 0.001. In the right panels in each row (i.e., panels F, L, R, X, see also above) the absolute differences of the obtained GMM parameters to the original 
parameters in descending order of magnitude. The data are shown as violin plots, overlaid with box plots where the boxes were constructed using the minimum, 
quartiles, median (solid line inside the box) and maximum of these values. The whiskers add 1.5 times the interquartile range (IQR) to the 75th percentile or subtract 
1.5 times the IQR from the 25th percentile. The figure was created using the software package R (version 4.2.0 for Linux; https://CRAN.R-project.org/) [42] and the 
R package “ggplot2” (https://cran.r-project.org/package=ggplot2 [61]). (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 

J. Lötsch et al.                                                                                                                                                                                                                                   

https://www.mdpi.com/2073-4433/9/6/213/htm
mailto:https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2


Informatics in Medicine Unlocked 34 (2022) 101113

10

individual components hit a detector at a given time. For the present 
experiments, a chromatogram with five different lysophosphatidic acids 
(LPA 16:0, 18:0, 18:3, 20:0, and 20:4) was taken from the local in-house 
analytics laboratory. This substance mixture was prepared for calibra-
tion of laboratory assays in lipidomics. Hit information per lipid was 
available separately, which provided the modes information. A one- 
dimensional data set was generated (Fig. 4) from the time and peak 
height (counts per second) information by repeating each time point as 
many times as the peak height, weighted by a factor of 0.0001 to limit 
the size of the data set (n = 1166), and after setting a high-pass filter to 
peak height = 50,000. The dataset is available as “Chromatogram” 
sample data in the above R library “opGMMassessment”. Correct GMM 
estimates in terms of mode number detection were obtained only with 
the combination of Markov chain Monte Carlo fitting with a likelihood 
ratio test proposed here and with the mclust:densityMclust, the latter 
providing slightly better parameter estimates (Fig. 4). 

3.2.4. One-dimensional three-modal data derived from iris flower 
measurements 

The widely known Iris flower data set [50,51] contains measure-
ments in centimeters of four variables, sepal length and width or petal 

length and width, acquired from 50 flowers of each of three species, Iris 
setosa, versicolor, and virginica. The class information is mainly reflected 
in this multidimensional data space, where it was used to develop the 
method of linear discriminant analysis [50]. To obtain a 
one-dimensional three-class data set consistent with the species classi-
fication, independent component analysis (ICA) [52] was performed on 
the iris data set. The resulting first component, IC1, showed the desired 
three-modal distribution reflecting the flower species (Fig. 4). The M = 3 
modes were recognized by all GMM algorithms except mixtools: 
normalmixEM. 

4. Discussion 

GMMs are often used to analyze structures in biomedical data, as 
evidenced by their increasing mentions in the PubMed database. That is, 
a search for “Gaussian mixture” at https://pubmed.ncbi.nlm.nih.gov on 
May 27, 2022, yielded 1757 hits, with the earliest article dating from 
1983 [53]. Mentions in PubMed steadily increased over the past two 
decades. GMMs are commonly used for subgroup detection in biomed-
ical data, including in one-dimensional variables, with subsequent 
subject assignment [54] or for classification of biological signals in the 
generation of diagnostic markers [55]. Many clinical diagnoses are 
based on cutoff values in one-dimensional variables. Examples are an 
11-point numerical rating Scale (NRS) for pain intensity that triggers 
therapeutic interventions when NRS >4 [56], a 100-mm visual analogue 
scale for assessment of pain in rheumatoid arthritis where scores >40 
mm indicate persistent pain as a clinically accepted cutoff [9], or a 
diabetes risk score [3] called “FINDRISK” [57], from which five cate-
gories of diabetes risk are derived, from “low risk” of 1% of developing 
diabetes in the next 10 years at values < 7 to, “slightly increased” of 4% 
diabetes risk at values [7, …,11], “moderate risk” of 17% risk of diabetes 
at scores [12, …,14], “high risk” of 33% risk of diabetes at scores [15, 
…,20], and “very high” risk of 50% of developing diabetes at scores 
>20. Many other similarly constructed scores that are either unidi-
mensional in that they contain only one measurement or are scores 
composed of multiple measurements of different items that are even-
tually reduced to a single dimension. 

GMM analyses often constitute only a small part of data analysis, 
addressing subgroup structure in simple signals such as the rating of a 
clinical symptom on a visual analog scale (for further example, see 
motivation section in this report), while the main interest is in subse-
quent analyses that relate more complex information to the identified 
subgroup structure. The correctness of the target of classifier tuning, i.e., 
the subgroup structure in a data set, is often taken for granted. This is 
facilitated by the apparent simplicity of a GMM. The validity of subse-
quent analyses, however, depends critically on the validity of the GMM 
result. For research environments that rely on pre-packaged software 
solutions without comparing approaches or tuning hyperparameters, as 
is often standard in clinical biomedical laboratories, it is critical to 
obtain a reliable estimate of the underlying GMM in an automated 
manner. The combination of methods proposed here most often yielded 
the correct number of mixtures, i.e., it is least likely to miss subgroups or 
identify incorrect subgroups in one-dimensional data. Since subgroup 
identification is often the preliminary unsupervised part of a data 
analysis where a class structure is created as a target for subsequent 
supervised analysis (e.g., Refs. [12,58]), reliability on this point is crit-
ical. A visual review of the results is strongly recommended and there-
fore implemented in the presented R package “opGMMassessment”. 

4.1. Limitations 

The present experiments aimed at an automated out-of-the-box tool 
for GMM estimation in R. No new methods were developed for mode 
number detection in GMM parameter estimation, but the goal was to 
combine available methods based on extensive comparative testing. The 
results and implementations are limited to the implementations in the R 

Fig. 5. Chromatogram data set of five different lysophosphatidic acids (LPA 
16:0, 18:0, 18:3, 20:0, and 20:4). This substance mixture was prepared for 
calibration of laboratory assays in lipidomics. Hit information per lipid was 
available separately, which provided the modes information. A one- 
dimensional data set was generated from the time and peak height informa-
tion by repeating each time point as many times as the peak height, weighted 
by a factor of 0.0001 to limit the size of the data set (n = 1166). The dataset is 
available as “Chromatogram” sample data in the above R library 
“opGMMassessment". 
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programming language. Implementations of the methods used available 
in other popular data science programming languages may achieve 
different performances and final scores and must therefore be tested 
separately before implementing an analogous tool in another program-
ming language. 

It should also be noted that for empirical data with skewed distri-
butions such as exponential or lognormal distributions, the present 
combination of methods and the associated implementation in the R 
programming language do not replace general data preprocessing re-
quirements, such as data transformation or outlier removal. This is 
demonstrated on a simple artificial data set consisting of a mixture of 
two lognormal distributed modes with m1,2 = [2,4], s1,2 = [1, 0.3] and 
w1,2 = [0.5, 0.5] (Fig. 6). Without appropriate transformation, the 
bimodal distribution was recognized by mixtools:normalmixEM but not 
by other fitting tools. After transformation, regardless of whether the 
Box-Cox transformation [59] was used or a log transformation was 
applied the presently proposed method gave the best results. The mix-
tools:normalmixEM algorithm showed a tendency to favor a smaller 
number of modes in the experiments in this report. Its correct result on 
this skewed data may be more due to this behavior than reflecting a true 
advantage. 

Among the methods used to determine the number of mixtures in the 
GMM, representative members were selected for each major method 
family. However, this was not complete as underlined by the large 
number of methods included in the R library “NbClust”. In addition, 
some of the methods mentioned in the theoretical part of the method 
description were not included because they either did not run on 

univariate data, which precluded their use for the present purpose, or 
the calculations were stopped after hours without any progress in the 
calculations as observed with the implementation of the Ameijeiras- 
Alonso [30] in the “multimode” R library despite that being the 
default of that package. However, the good ranking of the composite 
approach for determining the number of mixes provided in the R library 
“NbClust” underscores that majority voting is probably a reasonable 
approach here. 

The comparatively more reliable GMM adaptation in the present 
software implementation came already at the cost of computational 
overhead. Although systematic benchmarking was not intended in the 
present experiments, the observation of RAM usage of up to 200 giga-
bytes during the experiments suggests a cost of parallel processing 
implementation. However, this was necessary considering that the three 
experiments in the simulation study each lasted 6 h when parallel 
computing on 60 cores. It should also be noted that the application of 
GMM for substructure determination assumes that the generative pro-
cess of the underlying data set is based on sampling from a superposition 
of multiple normal distributions. If this prior assumption is not met by 
the data GMM-based analyses may deliver a false result. However, for 
RNAseq data, whose underlying generative process is most likely not a 
multimodal normal distribution, it has already been shown that GMM 
analysis can still reconstruct the true data structure to an acceptable 
extent [60]. 

Fig. 6. Demonstration of the need for appropriate 
data transformation prior to GMM fitting. A one- 
dimensional log-normal distributed data set with n 
= 1000 points for each mode and means m1,2 = [2,4] 
and standard deviations s1,2 = [1, 0.3]. This 
lognormal data could only be reliably fitted with 
correct detection of the M = 2 modes by the presently 
proposed method when it was log-transformed: A and 
C: Empirical distribution of the data estimated using 
the Pareto density estimation (PDE [63]; black lines), 
along with the GMM fits (red line) and the single 
Gaussians (differently colored lines). Bayesian 
boundaries between Gaussians are shown as magenta 
vertical dashed lines before and after log trans-
formation (panel A and C, respectively). B and D: 
Ranks of classification accuracies against the prior 
classification are shown as individual dots, overlaid 
with a violin plot. Algorithms are presented in 
descending order of ranks achieved; higher ranks 
indicate better performance in assigning an instance 
to its original class. The statistical significance of 
differences to the presently proposed “opGMMas-
sessment” method, assessed by means of Wilcoxon- 
Mann-Whitney U tests [64, 65], is indicated at the 
top line as stars: *: p < 0.05, **: p < 0.01, ***: p <
0.001. Automatic GMM fitting and subsequent class 
assignment of instances after calculating Bayesian 
boundaries from the obtained GMM parameter values 
was performed in 20 replications using different 
values of seed. The alternatives tested included the 
present proposal “opGMMassessment”, “densityM-
clust” from the R package “mclust”, “normalmixEM” 
from the R package “mixtools” and “GMM” from the 
R package “ClusterR”. The default parameter settings 
of the respective R packages were used. The figure 
was created using the software package R (version 
4.2.0 for Linux; https://CRAN.R-project.org/)[42] 
and the R package “ggplot2” (https://cran.r-project. 
org/package=ggplot2 [61]). (For interpretation of 
the references to color in this figure legend, the 
reader is referred to the Web version of this article.)   
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5. Conclusions 

An automated approach for fitting Gaussian mixtures to one- 
dimensional data was developed, with the goal of providing reliable 
information about the number of modes and GMM parameters “out of 
the box”. After comparative analyses, the best-performing GMM fitting 
algorithms were combined with criteria for determining the mode 
number that provided the closest results to the known mode number. 
The performance of this combination was compared with common al-
ternatives for “out of the box” assessment of GMM parameters. However, 
it should be noted that none of the methods always indicated the un-
derlying class structure correctly; the presented method was neverthe-
less most consistently placed among the top-ranked approaches. The 
results of the assessments led to the technical contribution of an R 
package freely available at https://cran.r-project.org/package=op 
GMMassessment. It can be advised for fitting GMM in real-world data 
where a Gaussian distribution can be expected and the fitting is per-
formed in an automated manner, as is often the standard in biomedical 
research environments. 
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