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Recursive computed ABC (cABC) 
analysis as a precise method 
for reducing machine learning 
based feature sets to their 
minimum informative size
Jörn Lötsch 1,2* & Alfred Ultsch 3

Selecting the k best features is a common task in machine learning. Typically, a few features have 
high importance, but many have low importance (right-skewed distribution). This report proposes 
a numerically precise method to address this skewed feature importance distribution in order to 
reduce a feature set to the informative minimum of items. Computed ABC analysis (cABC) is an 
item categorization method that aims to identify the most important items by partitioning a set 
of non-negative numerical items into subsets "A", "B", and "C" such that subset "A" contains the 
"few important" items based on specific properties of ABC curves defined by their relationship to 
Lorenz curves. In its recursive form, the cABC analysis can be applied again to subset "A". A generic 
image dataset and three biomedical datasets (lipidomics and two genomics datasets) with a large 
number of variables were used to perform the experiments. The experimental results show that 
the recursive cABC analysis limits the dimensions of the data projection to a minimum where the 
relevant information is still preserved and directs the feature selection in machine learning to the most 
important class-relevant information, including filtering feature sets for nonsense variables. Feature 
sets were reduced to 10% or less of the original variables and still provided accurate classification in 
data not used for feature selection. cABC analysis, in its recursive variant, provides a computationally 
precise means of reducing information to a minimum. The minimum is the result of a computation 
of the number of k most relevant items, rather than a decision to select the k best items from a list. 
In addition, there are precise criteria for stopping the reduction process. The reduction to the most 
important features can improve the human understanding of the properties of the data set. The cABC 
method is implemented in the Python package "cABCanalysis" available at https:// pypi. org/ proje ct/ 
cABCa nalys is/.

Selecting a few relevant items from a ranked list is a common task in data analysis and the key task in feature 
selection for machine  learning1. Feature selection can be seen, first, as the calculation of the importance of each 
feature (variable) of a multivariate dataset and, second, as the selection of the "important few". The feature impor-
tance calculation should be performed by a problem specific method, such as correlations (PCS), non-normality 
(ICA), methods that read the feature importance from trained classifiers, and many others.

Typically, the distribution of feature importance is highly skewed, i.e., a few variables have high importance, 
but many have low importance. Reducing a data set to the most relevant variables can be a goal of the analysis in 
several ways: to reduce computational cost, to reduce the cost of data acquisition, to increase statistical power, 
to eliminate non-informative variables that reduce the performance of the algorithms, or to reduce the number 
of variables in knowledge discovery to a number that enhances human understanding of the relevant items, to 
the point of highlighting the key process responsible for the class structure in a data set.
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In the context of knowledge discovery by feature selection, the underlying assumption is that if an algorithm 
can be trained with information (variables) to assign a case to the correct class, then the variables needed for this 
success contain relevant information about the class structure being addressed. However, too much information 
in too many variables can prevent domain experts from grasping the main mechanistic processes underlying a 
class structure in a data set, and they will tend to lose the interpretation in the vast knowledge of many details 
of the research domain that is abundantly available to specialized experts.

This report therefore addresses a reductionist approach to feature selection and knowledge discovery, i.e., 
reducing a problem as close as possible to a key question or a main causal reason. A numerically precise method 
is proposed for reducing a feature set to its informative minimum of items. It is based on item or inventory cat-
egorization by the so-called computed ABC (cABC) analysis  method2 and aims at reducing a feature set to its 
minimum informative size, which provides sufficient information for successful training of a classifier.

Methods
Ambiguous meaning of the term "ABC analysis”. A search of the PubMed database using the web 
interface at https:// pubmed. ncbi. nlm. nih. gov/ on May 31, 2022 for "ABC analysis" (with quotation marks) 
returned 103 hits. However, the term "ABC analysis" is used ambiguously in the biomedical literature. "ABC 
analysis" is used for: (i) "Ap-proximate Bayesian Computation" (e.g.,3,4), (ii) "Antecedent-Behavior-Conse-
quence", which is a method for analyzing behavior and comes from the field of  psychology5, and (iii) an inven-
tory categorization method originating in economics, where ABC occasionally stands for "Always Better Con-
trol", used in inventory control and management (e.g.,6–9).

This report refers only to the idea underlying the latter meaning of ABC analysis, i.e., the item or inventory 
categorization method that aims to identify the most relevant items by dividing a set of non-negative numerical 
items into subsets "A", "B", and "C"10. However, the term "Always Better Control" for "ABC", which was never 
used by Juran, should not be associated with the present method. Instead, "ABC" refers to an analogy with U.S. 
school grades, where the grade "A" is the best, which is consistent with the present meaning, where the items 
assigned to the subset "A" can be considered the best, i.e., "A grade" items. ABC analysis deals with skewed 
distributions and exploits their properties rather than trying to normalize them. Specifically, ABC analysis as 
inventory or item categorization is concerned with the unequal importance of individual inventory items, where 
a few important items account for most of the total inventory, while many other items are of such low value that 
they have little impact on the results.

ABC analysis can be represented graphically by plotting the (positive) importance values sorted from largest 
to smallest. The cumulative sum of the largest values is plotted against the fraction of values that are summed 
(see, for example, Fig. 1D or Fig. 3B). If the order of the values is reversed to least to greatest, the ABC curve is 
identical to the Lorentz curve. Many ABC curves appear to pass through a point where 80% of the cumulative 
sum of the largest values has been achieved with 20% of the items. This is often incorrectly referred to as the 
"Pareto 80/20" principle. However, the cutoffs are not clearly specified in the literature on ABC analysis. One of 
the proposals assigns the 20% of the items that make up 70% of the total value to the subset "A"11, others propose 
the 10% of the items that make up 2/3 of the total  value12, or the classical "Pareto" cut-off (80/20) is used. Com-
mon to all these approaches is the arbitrary definition of the cut-off value for the boundaries between subsets 
"A" and "B" and between subsets "B" and "C".

Computed ABC (cABC) analysis. Recently, the term "computed ABC analysis" has been introduced for an 
item categorization technique that replaces the arbitrary definition of the set limits by a well-founded algorith-
mic calculation from the  data2. The details can be summarized as follows. The graphical presentation of the 
cumulative item contributions, sorted from the most contributing to the least contribution item, on a xy-coor-
dinate system is an “ABC curve” where non-negative values  xi are sorted in decreasing order: (for all i) xi ≥ xi+ 1. 
The fraction of the first i items to n, Ei = i/n, represents costs or “efforts”, Ei. The fraction of the cumulative sum of 
the xi, relative to the total sum, is called the “yield”, Yi, of x1, …xi obtained as Yi =

∑
i

k=1
xk∑

n

k=1
xk

 . The items x1, …, xk 
denote a set of n positive values (xi > 0). The points  (Xi,  Yi) are interpolated using  splines13. ABC curves are par-
ticularly meaningful when the distribution of the values xi is uneven, i.e., few xi have very large values while 
many xi have only small values. The ABC curve, originally called the Lorenz  curve13, is a special form of a 
graphical representation of cumulative  distributions14,15.

The "Pareto" point [x, y] = [0, 1] is the ideal point where no effort (x = 0) delivers all the yield (y = 1). The 
point on the ABC curve, which lies nearest to this point (“Juran” point) is then a real existing combination of 
effort and yield that comes as close as possible to the ideal “Pareto” point. In cABC analysis, the “Juran” point 
 (Jx,  Jy) is calculated as the point with the smallest distance from points on the ABC curve to the “Pareto” point. 
From these considerations it follows that  Jx is well suited to mark the boundary between subsets "A" and "B". 
Furthermore, the so-called "break-even increment" is calculated via the first derivative of the ABC curve, where 
the slope dydx ABC = 1. At this point, an increase in effort invested is equivalent to an increase in profit earned. 
The boundary between subsets "B" and "C" (BC boundary) is calculated in the same way on the ABC curve as 
for the AB point, where the ABC curve starts at the AB boundary. Thus, computed ABC (cABC) analysis is a 
classification technique for asymmetric, positive-valued distributions.

Recursive computed ABC analysis. Motivation. In some contexts, the goal of feature selection is to 
reduce the size of the most important items (subset "A") to very few. For example, in knowledge discovery, it may 
be desirable to reduce the number of relevant variables to a human-understandable set to facilitate interpretabil-
ity. A suggestion for the size of such a set was made about 70 years ago by Miller, who proposed a size of 7 ± 2 as 

https://pubmed.ncbi.nlm.nih.gov/
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the optimal number for human  understanding16. Algorithmically, this can be achieved by performing the cABC 
analysis recursively. This means that the cABC analysis is applied to the items that were assigned to subset "A" 
in a previous cABC analysis, creating set A within set A. The recursively computed ABC analysis creates smaller 
and smaller subsets of items consisting of more and more important items.

Termination criteria for recursive cABC analysis. Three criteria are defined for stopping the repetition of the 
cABC analysis on the previous "A" subset of features:

1. A first criterion is the classification performance of the algorithms trained with the selected features, which 
should be satisfactory. It should not drop significantly from the performance achieved with all features and 
should at least be better than chance.

2. A second criterion is a theoretical limit for selecting the best items from a set. The recursive ABC analysis 
ends when the distribution of the items is uniform. Any compact subset (consecutive sequence of items) 
of a uniform distribution is also uniformly distributed. Therefore, the uniform distribution is a fixed point 
of ABC analysis. Note that in the uniform distribution, all values that xi can take have the same probability 
of having a value in the interval from a = min(X) to b = max(X). The uniform distribution is different from 
the identity distribution, where all items have the same numerical value. However, the latter is sometimes 
confused with the former, even in some data science tutorials. The ABC curve ABCuniform(p) of a uniform 
distribution within the limits [0, b] is given as ABCuniform(p) = − p2 + 2p. For the uniform distribution, the AB 
limit can be calculated analytically as 41% of the items (details not shown). Therefore, reducing the number 
of features with uniform distribution of their importance measure results in the top 41% to be selected, which 
can be done manually without the need to calculate a cABC analysis.

Figure 1.  Comparison of information reduction performance between cABC analysis and Kaiser-Guttman 
criterion (eigenvalues > 1) for correlation-based PCA weighting of features in pixel gray values of 8 × 8 images of 
handwritten digits. The image gray value information was taken from the dataset collection provided with the 
"scikit-learn" package (https:// scikit- learn. org/ stable/ 40). (A) 16 example images of handwritten digits using (i) 
the original 8 × 8 pixels, (ii) reproduction based on the d = 47 PCs with eigenvalues > 1, (iii) reproduction based 
on the d = 14 PCs selected as “important few” by the first cABC analysis, (iv) reproduction based on the PCs 
that had not been selected by the cABC analysis, and (v) reproduction based on the d = 5 PCs selected by the 
recursive 2nd cABC analysis. (B) line plot of cumulative explained variance with increasing number of principal 
components (PCs). (C) Bar graph of the eigenvalues of the individual PCs. Bar colors indicate selection in 
different repeated selection steps using cABC analysis, from light blue = "not selected" to dark blue and black for 
features selected in the first and second cABC analysis. (D) and (E) Results of the cABC analysis of the mean 
variable importance. The ABC plots (blue lines) show the cumulative distribution function of the importance 
variables together with the identity distribution,  xi = constant (magenta line), and the uniform distribution, 
i.e., as a stopping criterion for the repetitions of the cABC analysis. The red lines show the boundaries between 
the ABC subsets "A", "B" and "C". The figure has been created using Python version 3.8.13 for Linux (https:// 
www. python. org) and Seaborn Python data visualization library (https:// seabo rn. pydata. org 22) and our Python 
package "cABCanalysis" (https:// pypi. org/ proje ct/ cABCa nalys is/).

https://scikit-learn.org/stable/
https://www.python.org
https://www.python.org
https://seaborn.pydata.org
https://pypi.org/project/cABCanalysis/
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3. A third criterion is contextual. If the feature set is considered sufficiently reduced, even though criteria 1 
or 2 for termination do not yet apply, the selection can be terminated. Recursive cABC analysis can also be 
used to reduce any set of items to the size of the above-mentioned "Miller optimum" of 7 ± 2.

Implementation in Python. The implementation in the Python programming  language17 was done as 
the Python package "cABCanalysis", which is available at https:// pypi. org/ proje ct/ cABCa nalys is/. The Python 
package imports parts of the Python packages "pandas" (https:// pandas. pydata. org 18,19), the numerical Python 
package "numpy" (https:// numpy. org 20), basic algorithms for scientific computing in Python "SciPy" (https:// 
scipy. org 21), and the graphical frameworks of the Python data visualization package "Seaborn" (https:// seabo rn. 
pydata. org 22) and the graphics package "matplotlib" (https:// matpl otlib. org 23).

Validation of the Python package. The present Python implementation "cABCanalysis" of the computed ABC 
analysis (https:// pypi. org/ proje ct/ cABCa nalys is/) was compared with the R implementation in our R library 
"ABCanalysis" (https:// cran.r- proje ct. org/ packa ge= ABCan alysis), using the same examples as in the publication 
of the raw method and its R  implementation2. Selected common data distributions were analyzed (Table 1). 
Differences between the Python and R implementations in the number of items assigned to the ABC subset "A" 
or to the fixed point of the cABC analysis for the uniform distribution of 41% of the items were analyzed using 
Wilcoxon–Mann–Whitney U  tests24,25. This showed that the sizes of subset "A" did not differ significantly for the 
current selection of χ2, lognormal, exponential, Pareto, and uniformly distributed data; however, for the Gauss-
ian distribution, the Python implementation always assigned 41% of the data to subset "A", while the R imple-
mentation produced set sizes slightly below this value, and the difference was statistically significant (Table 2). 
However, the differences were mostly less than 1%. However, the percentage of items in subset "A" depended 
on the total number of items. For a small number of n = 10 or n = 100 items, the sizes of subset "A" between the 
Python and R implementations were perfectly or largely matched (Table 2), but the percentage of total items 

Table 1.  The cABC analysis was applied to data sets with n = 1000 instances generated with selected popular 
distributions. Comparison of the sizes of the ABC subset "A" obtained with the Python or R implementations 
of the computed ABC (cABC) analysis, available as packages "cABCanalysis" (https:// pypi. org/ proje ct/ cABCa 
nalys is/) and "ABCanalysis" (https:// cran.r- proje ct. org/ packa ge= ABCan alysis 2), respectively. In addition, the 
difference of the obtained values is compared to the value of 41% assigned in the subset "A" from the whole 
sample, as a fixed point of the ABC curve for the uniform distribution. The p-values of the differences between 
the two implementations are the results of Wilcoxon–Mann–Whitney U  tests24,25 against each other or against 
a fixed value of 41%, which is the fixed point for ABC analysis.

Distribution

Size of subset A 
(mean ± SD [%]

Difference Python—R p-value of difference Python—R

p-value of the 
difference to 
41%

Python R Python R

χ
2
1

28.4 ± 0.7 28.4 ± 0.5 0.03 ± 0.27 0.85 0.005 0.006

Log-normal N (0, 3) 7.2 ± 2.1 7.1 ± 2.4 0.09 ± 0.36 0.97 0.006 0.002

Exponential (β = 1) 33.1 ± 0.5 33.1 ± 0.5 0.04 ± 0.38 0.7 0.004 0.006

Pareto (α = 1.18) 14.5 ± 4 14.3 ± 3.7 0.2 ± 0.31 0.85 0.006 0.006

Uniform [0, 100] 41 ± 0.5 40.9 ± 0.3 0.08 ± 0.32 0.73 1 0.413

Gaussian N (5, 1) 46.6 ± 0 46.5 ± 0.2 0.14 ± 0.15 0.012 0.002 0.006

Table 2.  The cABC analysis was applied to data sets with n = [10, 100, 1000, 10,000] instances generated 
with selected distributions. The set sizes of the ABC subset "A" obtained using either the Python or R 
implementations of the computed ABC analysis (cABC), available as packages "cABCanalysis" (https:// pypi. 
org/ proje ct/ cABCa nalys is/) and "ABCanalysis" (https:// cran.r- proje ct. org/ packa ge= ABCan alysis 2), are 
given as a function of the number of instances. The mean percentages of items assigned to subset "A" and the 
standard deviations of these percentages are given.

Distribution

n = 10 n = 100 n = 1000 n = 10,000

Python R Python R Python R Python R

χ
2
1

34 ± 5.2 33 ± 4.8 29.3 ± 1.5 28.6 ± 1.4 28.4 ± 0.7 28.4 ± 0.5 28.4 ± 0 28.1 ± 0.2

Log-normal N (0, 3) 25 ± 9.7 23 ± 8.2 10.3 ± 4.7 9.3 ± 4.7 7.2 ± 2.1 7.1 ± 2.4 6.5 ± 2.54 6.6 ± 2.1

Exponential (β = 1) 34 ± 5.2 33 ± 6.7 34.3 ± 1.8 33.2 ± 1.6 33.1 ± 0.5 33.1 ± 0.5 33.4 ± 0 33.2 ± 0.1

Pareto (α = 1.18) 28 ± 6.3 28 ± 6.3 21.6 ± 4.9 20.6 ± 4.9 14.5 ± 3.9 14.3 ± 3.7 14.8 ± 2.32 14.7 ± 2.3

Uniform [0, 100] 43 ± 6.7 42 ± 7.9 41.3 ± 1.2 40.5 ± 1.3 41 ± 0.5 40.9 ± 0.3 41.5 ± 0 41.1 ± 0.1

Gaussian N (5, 1) 50 ± 4.7 49 ± 3.2 47 ± 0.5 46.5 ± 0.7 46.6 ± 0 46.5 ± 0.2 46.7 ± 0 46.5 ± 0.1

https://pypi.org/project/cABCanalysis/
https://pandas.pydata.org
https://numpy.org
https://scipy.org
https://scipy.org
https://seaborn.pydata.org
https://seaborn.pydata.org
https://matplotlib.org
https://pypi.org/project/cABCanalysis/
https://cran.r-project.org/package=ABCanalysis
https://pypi.org/project/cABCanalysis/
https://pypi.org/project/cABCanalysis/
https://cran.r-project.org/package=ABCanalysis
https://pypi.org/project/cABCanalysis/
https://pypi.org/project/cABCanalysis/
https://cran.r-project.org/package=ABCanalysis
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converges to a fixed value per sample distribution only for larger set sizes, e.g., 1000 or 10,000. A likely explana-
tion for the slight differences in the results is the use of spline interpolation routines imported from different 
packages, i.e. "scipy.interpolate.CubicSpline" from the Python package "SciPy" or the R base package "stats". It is 
known that results obtained with different software packages often do not agree  slightly26.

Experimentation. Programming was done using Python version 3.8.13, freely available at https:// www. 
python. org (accessed June 2, 2022). Experiments were performed in the Anaconda data science environment 
(Anaconda Inc., Austin, TX, USA), freely available at https:// www. anaco nda. com), on an AMD Ryzen Thread-
ripper 3970X (Advanced Micro Devices, Inc., Santa Clara, CA, USA) computer running Ubuntu Linux 22.04.1 
LTS (Canonical, London, UK).

For the present experiments, random  forests27,28 were used as the basis for feature weighting. It reportedly 
outperformed other machine learning based  methods29 and offers some advantages over alternatives. Random 
forest classifiers inherently allow feature importance estimation through permutation  weighting28 of out-of-bag 
(OOB) cases, as the classification accuracy decreases when the particular feature is omitted from the class assign-
ment. Random forests are considered to be powerful classifiers, on tabular numerical data even compared to 
deep learning neural  networks30,31, and have been shown to outperform logistic  regression32 and does not require 
sophisticated variable transformations or scaling. Possible supervised alternatives have more drawbacks, e.g. 
the k-nearest neighbors classifier (kNN)33 requires a valid distance measure, which can be difficult to  define34, 
support vector machines (SVM)35) have a critical and difficult to set hyperparameter,  regularization36, which 
should be set by experts and therefore makes SVM inappropriate for the current focus of feature selection, and 
deep learning layered artificial neural networks (ANN), while being universal  classifiers37, have two parameters 
that are difficult to set, namely the number of layers and the number of neurons in each layer.

Random forests and feature selection based on cABC analysis of their importance for classifier training were 
performed after setting aside 20% of the subjects, proportional to the classes of patients and controls, as a valida-
tion sample that was not touched until classifier training was complete. The data of the remaining 80% of the cases 
were used to train the classifier using the RandomForestClassifier method from the sklearn.ensemble module 
of the scikit-learn Python package. After hyperparameter tuning of the  classifier38 (for code details, see Table 3), 
the feature selection methods were applied in a 5 × 20 nested cross-validation scenario provided by the method 
"RepeatedStratifiedKFold" from the module "sklearn.model_selection" of "scikit-learn", with the parameters 
"n_splits" = 5 and "n_repeats" = 20. During each cross-validation run, feature importance was computed using 
the generic permutation importance provided by the "permutation_importance" method of the "sklearn.inspec-
tion" package, with the number of permutations set to n_repeats = 50. The cABC analysis was then performed 
on the average of the feature importance measures calculated in each run. Note that the classifiers were always 
retuned to the actual data sets.

To evaluate the usefulness of the selected features for classification, as well as to estimate the consequences of 
reducing the number of variables for training/validation, random forest classifiers were trained on the training 
data subset, using the full and reduced feature sets obtained from the recursive cABC analyses, using a 5 × 20 
nested cross-validation scenario. During these nested cross-validation runs, classifier performance was quantified 
by calculating the balanced class assignment accuracy in randomly drawn 80% of the 20% validation data set 
separated at the beginning of the data  analysis39. The bounds of the non-parametric 95% confidence interval of 
the balanced accuracy were set as the 2.5th and 97.5th percentiles of the values obtained in the cross-validation 
runs. This interval should not include the value of 0.5 (50%) balanced accuracy, because then the class assign-
ment cannot be considered better than by guessing.

Table 3.  Python code used for the tuning of the hyperparameters of the random forest classifiers.

1. # Random forests 

2. forest = RandomForestClassifier(random_state=0) 

3. param_grid = {'bootstrap': [True, False], 

4.               'max_depth': np.arange(1, 11).tolist(), 

5.               'max_features': ['sqrt'], 

6.               'min_samples_leaf': np.arange(1, 21).tolist(), 

7.               'min_samples_split': np.arange(2, 21).tolist(), 

8.               'n_estimators': np.arange(100, 1500, 100).tolist()} 

9. grid_search = GridSearchCV(forest, param_grid=param_grid, 

10.                            scoring="balanced_accuracy", verbose=0, n_jobs=-1) 

11. grid_search.fit(X_train, y_train) 

12. bootstrap_rf,  max_depth_rf, max_features_rf, min_samples_leaf_rf, 

min_samples_split_rf, n_estimators_rf = grid_search.best_params_.values()  

https://www.python.org
https://www.python.org
https://www.anaconda.com
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Images data set of handwritten digits. Feature selection with computed ABC analysis was evaluated on a dataset 
of handwritten digits from the dataset collection provided with the "scikit-learn" package (https:// scikit- learn. 
org/ stable/ 40). It contains about 180 8 × 8 pixel images of handwritten digits [0, …, 9] each, with a total size 
of 1797 × 64 data points. Features were selected based on the importance of the d = 64 variables in a principal 
component analysis (PCA)41,42 projection onto uncorrelated principal planes. The number of relevant principal 
components (PCs) to retain was selected by applying cABC analysis to the eigenvalues. The remaining PCs were 
overwritten with zeros and the projected data were back-transformed into the original data space.

Lipidomics data set for Parkinson’s disease. The Parkinson’s disease lipidomics dataset includes plasma concen-
trations of d = 25 lipid markers studied in samples from n = 100 Parkinson’s disease patients and n = 100 healthy 
controls and was previously described  in43. The aim of the original study was to investigate the regulation of 
lipid signaling and lipid marker patterns in Parkinson’s disease. Lipid marker concentrations were rescaled to 
the range [0, 100] from a previous analysis where marker patterns were  sought43. The use of computational ABC 
analysis in combination with variable importance computation in training machine learning algorithms has 
already been described for this dataset using the R  implementation44.

Genomics data set for leukemia. A data set designed to demonstrate the feasibility of cancer classification based 
solely on gene expression monitoring is available in the R package "golubEsets" (https:// bioco nduct or. org/ packa 
ges/ golub Esets 45). The data  set46 has an original size of 72 × 7130 and consists of expression data of 7129 genes 
analyzed with Affymetrix Hgu6800 chips from bone marrow samples of two patient classes, i.e. 47 patients with 
acute lymphoblastic leukemia (ALL) and 25 patients with acute myeloid leukemia (AML; class information). 
For the present experiments, the first 150 gene expression data were used, sorted in decreasing order of vari-
ance as suggested in http:// rstud io- pubs- static. s3. amazo naws. com/ 3773_ 0afae ad59a 02436 889ab c6875 3e6c2 0a. 
html. Feature selection, classifier training and performance testing for the leukemia data set were performed as 
described above for the Parkinson’s disease data set.

Genomics data set for high opioid dosing requirements. The "high opioid dosage requirements"  dataset47 
contains next-generation sequencing (NGS)-derived exonic sequences of the opioid receptor genes OPRM1, 
OPRK1, OPRD1, and SIGMAR1, located on chromosomes 6, 8, 1, and 9, respectively, which encode µ-, κ-, and 
δ-opioid receptors, as well as the intracellular sigma-nonopioid receptor, commonly considered a member of 
the opioid receptor family. The dataset contains d = 152 variants in opioid receptor genes obtained from n = 64 
patients treated with opioid analgesics for persistent pain. In addition, d = 19 additional gene loci from the vicin-
ity of the opioid receptor gene sequences remained in the data set. For the present demonstration, subjects 
were grouped according to their need for high or usual doses of opioids at a threshold of 500 mg oral morphine 
equivalents (OME) per day. This resulted in n = 38 patients being assigned to the "usual" opioid dose group and 
n = 27 patients requiring "very high" doses. Feature selection, classifier training and performance testing were 
performed as described above.

Sensorics and genomics data for pain. Pain-related data were available from an assessment of sensitivity to 
experimental noxious stimuli and the genomic background of pain collected in a quantitative sensory testing 
study in n = 125 healthy young  volunteers48. The dataset includes subject sex, pain thresholds to heat, cold, blunt 
pressure, puncture pressure, and electrical stimuli with and without prior sensitization by topical application of 
capsaicin or menthol cream, and genetic information on 29 common variants in eight human genes reported to 
modulate pain, including single nucleotide variants and haplotypes. For the present assessments, the task was 
defined to assign the sex of the subjects (69 males, 56 females) from the acquired sensory and genetic informa-
tion, reversing the generally accepted fact that pain perception is sex-specific49.

Ethical approval and consent to participate. Not applicable. Data have been taken from publicly avail-
able sources.

Results
Recursive cABC analysis limits the dimensions of the PCA projection to a minimum while pre-
serving relevant information. Images data set of handwritten digits. The computed ABC analysis pro-
vided a useful method for selecting the relevant principal components to retain in the PCA for further analysis. 
Using cABC analysis of eigenvalues to determine the number of relevant PCA components resulted in k = 14 
components to retain (Fig. 1B), which is a substantial reduction in information from the k = 47 components re-
tained using the commonly used Kaiser-Guttman criterion of eigenvalues >  150,51. Nevertheless, the information 
was sufficient to recognize the digits in the images created with the back-transformed retained PCs. On the other 
hand, if only the information from the PCs that were not to be retained was back-transformed, the images no 
longer reproduced the original information of the digits. The information reduction could be continued in the 
recursive cABC analysis until only k = 5 PCs could be used to reconstruct still recognizable images of handwrit-
ten digits. Feature selection was stopped after the second cABC analysis because the eigenvalues of the remain-
ing 5 PCs were uniformly distributed (Kolmogorov–Smirnov test against uniform distribution: p = 0.341), i.e. the 
second stopping criterion for the recursive cABC analysis was fulfilled. The numerical results of the classification 
experiments are shown in Table 4. They confirm that up to the second cABC analysis, the features contained 
enough information to assign an image to the correct numerical digit with accuracies close to 1. Only 8% of 

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://bioconductor.org/packages/golubEsets
https://bioconductor.org/packages/golubEsets
http://rstudio-pubs-static.s3.amazonaws.com/3773_0afaead59a02436889abc68753e6c20a.html
http://rstudio-pubs-static.s3.amazonaws.com/3773_0afaead59a02436889abc68753e6c20a.html
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the variables (PCs) resulting from the recursive cABC analysis were sufficient for this task, while the standard 
Kaiser-Gutman criterion reduced the number of variables to only 73%.

Recursive cABC analysis guides machine learning feature selection to the most important 
class-relevant information. Lipidomics data set for Parkinson’s disease. Of the original d = 25 lipid mark-
ers, random forests required only one, sphingosine-1-phosphate (S1P), to identify a blood sample as coming 
from a patient with Parkinson’s disease (PD) or a healthy control subject (Fig. 2). The recursive ABC analysis 
further reduced the selected feature set to d = 5 and finally to only d = 1 lipid markers (Table 5). One glucosyl-
ceramide (GluCerC16) still provided enough information for perfect class assignment. The results are consist-
ent with previous findings obtained with other data analysis  methods43,52 and are not discussed further in the 
present method report. However, in another study, GluCerC16 was also the best discriminator between multiple 
sclerosis patients and  controls53, suggesting that it is a general marker for neurodegenerative disease rather than 
specific for PD.

Genomics data set for leukemia. Feature selection in the leukemia data set (Fig.  3) was able to reduce the 
number of variables to d = 25 that could be used to train a random forest classifier that could assign a patient 
to either ALL or AML diagnosis with a perfect balanced accuracy of 1 (Table 6). The recursive ABC analysis 
further reduced the selected feature set to d = 10, 5, and finally to only d = 2 genes. Even with this small set, the 
classification performance was perfect in the 20% validation sample drawn before feature selection. The analysis 
was stopped at this stage using the third stopping criterion, i.e., the feature set was considered small enough and 
the cost of information reduction was evident in the drop in balanced accuracy to 86%.

Genomics data set for high opioid dosing requirements. The recursive cABC analysis ended with d = 3 loci in the 
OPRM1 gene (Fig. 4), when the second stopping criterion was applied because the importance measure was uni-
formly distributed (Table 7). One of the three variants in the final feature set, Chr6.154451224.MIX, was found 
only six times in the entire cohort and only in subjects with high opioid requirements of > 500 mg/d OME. The 
variant has not yet been characterized for its functional significance for the µ-opioid receptor.

Recursive cABC analysis provides a data-driven means of filtering feature sets for nonsense 
variables. Sensorics and genomics data for pain. An assessment of the importance of sensory and genetic 
information in the pain-related data set suggests that, at best, sex can be inferred from pain threshold to me-
chanical blunt pressure and to some extent from electrical stimuli (Table 8). However, feature selection initially 
identified d = 5 variables as highly relevant to sex segregation, including genetic variables in the catechol-O-
methyltransferase gene, namely COMT G472A and a haplotype composed of four of the single nucleotide poly-
morphisms tested in this study. This seems unjustified, as it would imply that the variants are systematically more 
common in one of the sexes, rather than just a random distribution in the selected cohort that was not matched 
for genotypes. The second cABC analysis solved this problem by reporting only d = 2 sensory variants (Fig. 5).

Discussion
When large data values are observed with much lower probability than small values, a meaningful subset of 
values may contain most of the information. Such distributions are often observed in biology, medicine, and 
other fields. Lognormal or other types of power transformations are common methods to make a distribution 
Gaussian, i.e., normally distributed. However, there are uses and interpretations of the untransformed skewed 
distributions. The cABC analysis can directly address skewed distributions in terms of information  theory5. The 

Table 4.  Feature selection using recursive cABC analysis on the eigenvalues of principal components in the 
PCA projection of pixel gray values in 8 × 8 images of handwritten digits and the performance of random forest 
classifiers, quantified as balanced accuracy (and 95% nonparametric confidence interval, CI). For comparison, 
the commonly used Kaiser-Guttman criterion of eigenvalues >  150,51 was applied to select the relevant PCs. 
The data was taken from the Python package "scikit-learn" (https:// scikit- learn. org/ stable/ 40) and contains 
about 180 8 × 8 pixel images of handwritten digits [0, …, 9] each, with a total size of 1797 × 64 data points. The 
classification task was to assign the handwritten digits to the correct number. In addition, the p-values of a 
Kolmogorov–Smirnov  test60 of the distribution of the values subjected to cABC analysis against the uniform 
distribution are reported. Classification accuracy refers to the 20% validation sample not used for feature 
selection and classifier training.

cABC times KS-test p-value for item list Number of features (% of all)
Median balanced accuracy (95% CI) (validation 
data) Features

0 6.476·10–31 64 (100%) 0.97(0.96–0.98) All PCs

0 3.072·10–18 Kaiser-Gutman: 47 (73%) 0.97(0.97–0.99) PC 1—47

1 0.00047 A: 14 (22%) 0.97(0.96–0.98) PC 1—14

2 0.341 AA: 5 (8%) 0.91(0.89–0.93) PC 1—5

2 – AA: 5 0.50(0.42–0.57) As above but target assignment permuted

1 – BC: 40 (62%) 0.57(0.53–0.6) PC 15—64

https://scikit-learn.org/stable/
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Figure 2.  Feature selection using recursive cABC analysis for Parkinson’s disease lipidomics data. The dataset consisted of d = 25 
lipid markers measured in the plasma of n = 100 Parkinson patients and healthy controls,  respectively43,44. (A) Variable importance 
according to a 5 × 20 nested cross-validation feature selection using random forests and the generic permutation importance provided 
in the "permutation_importance" method of the "sklearn.inspection" package. Bar colors indicate the selection of informative variables 
in different repeated selection steps using cABC analysis, from light blue = "not selected" to dark blue and black for features selected 
in deeper until the last repetition of cABC analysis. (B) and (C) Results of the cABC analysis of the mean variable importance. The 
ABC plots (blue lines) show the cumulative distribution function of the importance variables together with the identity distribution, 
 xi = constant (magenta line), and the uniform distribution, i.e., as a stopping criterion for the repetitions of the cABC analysis. The 
red lines show the boundaries between the ABC subsets "A", "B" and "C". The figure was created using Python version 3.8.13 for 
Linux (https:// www. python. org) with the seaborn statistical data visualization package (https:// seabo rn. pydata. org 22) and our Python 
package "cABCanalysis" (https:// pypi. org/ proje ct/ cABCa nalys is/).

https://www.python.org
https://seaborn.pydata.org
https://pypi.org/project/cABCanalysis/


9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5470  | https://doi.org/10.1038/s41598-023-32396-9

www.nature.com/scientificreports/

recursive application of item categorization, implemented as cABC analysis, reduced large feature sets to a bare 
minimum that still allowed random forest classifiers to be trained to perform classification of new data with 
high accuracy. Alternatively, it provided computed bounds to reduce the amount of information to a fraction 
that still adequately captures the whole truth, as in the example of PCA reconstruction of images of handwritten 
digits. Thus, the method provides a tool for reducing both computational and data acquisition costs. Moreover, 
by drastically reducing the number of features, it can be a suitable basis for knowledge discovery in biomedical 
data. Importantly, the minimum size is the result of computing the number of k relevant items, rather than a 
decision to select the k best items from a list.

One problem with selecting items from a ranked list is defining a well-reasoned cutoff. Cutoffs are often set 
heuristically. For example, in PCA, the number of components that explain 95% of the total variance (e.g.54) or 
only those with eigenvalues >  150,51. However, arbitrary values are also commonly used, for example in the Python 
implementation of the so-called "SelectKBest" feature selection method for machine learning, available in the 
"sklearn.feature_selection" module of the "scikit-learn" Python package (https:// scikit- learn. org/ stable/ 40). This 
will return features according to the k highest scores, but the value of k must be set to a certain number. There 
are techniques that can be used to avoid arbitrary choices, such as grid search-based approaches to "select k best" 
feature selection. However, these approaches depend on the particular algorithm, while a more general approach 
to item categorization and selection of the most important variables would be desirable. The exact computation of 
well-founded set bounds in the form of computational ABC analysis is a general approach applicable to all types 
of positive numerical data, with utility in skewed distributions such as feature importance in machine learning.

Computational ABC analysis, and especially nested cABC analysis, are precise algorithmic implementations 
of the principle of parsimony, also known as Occam’s razor. This is the problem-solving principle that in the case 
of competing theories or explanations, the simpler one, e.g., a model with fewer parameters, should be preferred. 
In science, parsimony is an important heuristic for arriving at appropriate theories. Knowledge discovery by 
applying feature selection techniques to complex data sets assumes that if a classifier can be trained to assign a 
patient to the correct class better than by guessing, then the variables needed by the classifier to accomplish this 
task contain relevant information about the class structure being addressed. In this way, the most informative 
variables can be identified. In this use of feature selection, creating a powerful classifier is not the end goal, but 
feature selection takes precedence over classifier performance.

In this context, the feature selection algorithm is tasked with extracting information from the data set to 
present to the domain expert for further scientific interpretation. Depending on the context, the expert’s under-
standing can be enhanced by both broadening and narrowing the feature set. An example of expanding the 
thematic focus is recognizing various different psychological traits, such as depression or anxiety, as relevant to 
the development of persistent pain, based on the occurrence of several items of the corresponding questionnaires 
in a set of selected  features55. On the other hand, narrowing the focus by reducing the number of responses from 
75 in the full psychological questionnaire battery, which is difficult to interpret item by item, to only seven bet-
ter captures the important picture that emerges from reducing complexity to only relevant information about 
specific psychological features in the context of  pain56. Deciding what level of complexity reduction provides 
the best knowledge discovery and understanding of the underlying biomedical problem is primarily a decision 
for the expert in the field, and data analysis can provide suggestions to support this decision-making process.

Strengths and limitations. ABC curves, and therefore cABC analysis, are invariant to scaling. This means 
that multiplying the data by any non-zero factor will not change the analysis. However, ABC methods have the 
limitation that they are not translation invariant, i.e., adding a value to all items changes the ratio of the largest 

Table 5.  Feature selection using recursive cABC analysis in the Parkinson’s disease lipidomics data set 
and performance of random forest classifiers, quantified as balanced ac accuracy (and 95% nonparametric 
confidence interval, CI). The data set consisted of d = 25 lipid markers measured in the plasma of n = 100 
Parkinson patients and healthy controls,  respectively43,44. During feature selection, the cABC analysis was 
applied recursively to the items assigned to ABC subset "A" in the previous run, starting with the full feature 
set. Recursive subsets are named "AA", "AAA", etc. In addition, the p-values of a Kolmogorov–Smirnov  test60 
of the distribution of the values subjected to cABC analysis against the uniform distribution are reported. 
Classification accuracy refers to the 20% validation sample not used for feature selection and classifier training.

cABC times KS-test p-value for item list Number of features (% of all)
Median balanced accuracy (95% CI) 
(validation data) Features

0 5.769·10−14 25 (100%) 1 (1–1)

AEA, OEA, LPA16_0, LPA18_1, LPA18_2, 
LPA18_3, LPA20_4, C16Cer, C18Cer, C20Cer, 
Cer24Cer, Cer24_1Cer, GluCerC16, GluC-
erC24_1, LacCerC16, LacCerC24, LacCerC24_1, 
SphA, SA1P, SphO, S1P, C16SSphanin, C18Spha-
nin, C24Sphanin, C24_1Sphanin

1 0.037 A: 5 (20%) 1 (1–1) LPA18_2, LPA20_4, GluCerC16, S1P, C16SSpha-
nin

2 0.002 AA: 2 (8%) 1 (1–1) GluCerC16, S1P

3 – AAA: 1 (4%) 0.97 (0.94–1) GluCerC16

3 – 0.52 (0.32–0.7) As above but target assignment permuted

https://scikit-learn.org/stable/
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to the smallest data and thus the results of the ABC methods with respect to the set limits. In the ABC methods 
discussed here, this is addressed by normalizing the data points so that the minimum of the data is equal to zero. 
Like any ABC analysis, the cABC analysis is limited to non-negative efforts (items, data values). The basis of the 
analysis, the ABC curve, is a representation of the relative concentration in the data. It is most useful for right-
skewed distributions. For such distributions, there are only a few items (data points) that account for most of the 
cumulative sum of all values.

The second stopping criterion, the uniform distribution of the item sets subjected to cABC analysis, is a tested 
criterion that depends on the statistical method chosen. For the present experiments, the Kolmogorov–Smirnov 
test was chosen. It should be noted, however, that the results of other tests may not be consistent when the p-value 
is close to 0.05. However, continuing the analysis with uniformly distributed items only selects the next 41% of 
the best items, which does not seem to cause major problems or generate "spurious" features. It just weakens 
the cutoff for recursion. The results of the digits dataset experiment show that reducing the information in the 
feature selection can come at a cost, i.e., the image quality in the present example was lower than when all PCs 
were reprojected. The selected features were able to represent the most important information in the data, i.e., 
the digits were still recognizable in the reprojected images. The loss of quality is perhaps most obvious in the first 
"5" (Fig. 1), which was already hard to distinguish from a "9" in the original image, and became even harder to 
distinguish in the reprojected images.cABC analysis addresses positive data and is particularly useful for right-
skewed distributions, typical of feature sets where only a few of many variables are highly relevant to the structure 
of a data set. It provides a formal solution to the classic "Pareto 80/20" principle by computing the exact bounds 

Figure 3.  Feature selection using recursive cABC analysis in the genomics dataset for leukemia. (https:// bioco 
nduct or. org/ packa ges/ golub Esets 45). The data set consisted of expression data of d = 150 genes, queried from 
n = 47 patients with acute lymphoblastic leukemia (ALL) and n = 25 patients with acute myeloid leukemia 
(AML)45,46. (A) Variable importance according to a 5 × 20 nested cross-validation feature selection using random 
forests and the generic permutation importance provided in the "permutation_importance" method of the 
"sklearn.inspection" package. Bar colors indicate the selection of informative variables in different repeated 
selection steps using cABC analysis, from light blue = "not selected" to dark blue and black for features selected 
in deeper until the last repetition of cABC analysis. (B)–(D) Results of the cABC analysis of the mean variable 
importance. The ABC plots (blue lines) show the cumulative distribution function of the importance variables 
together with the identity distribution,  xi = constant (magenta line), and the uniform distribution, i.e., as a 
stopping criterion for the repetitions of the cABC analysis. The red lines show the boundaries between the ABC 
subsets "A", "B" and "C". The figure was created using Python version 3.8.13 for Linux (https:// www. python. org) 
with the seaborn statistical data visualization package (https:// seabo rn. pydata. org 22) and our Python package 
"cABCanalysis" (https:// pypi. org/ proje ct/ cABCa nalys is/).

▸

Table 6.  Feature selection using recursive cABC analysis in the leukemia genomics dataset (https:// bioco 
nduct or. org/ packa ges/ golub Esets 45), quantified as balanced accuracy (and 95% nonparametric confidence 
interval, CI). The data set consisted of expression data of d = 150 genes sequenced from n = 47 patients with 
acute lymphoblastic leukemia (ALL) and n = 25 patients with acute myeloid leukemia (AML)45,46. Classification 
accuracy refers to the 20% validation sample not used for feature selection and classifier training. The genetic 
marker annotations correspond to the annotation data of the Affymetrix Hu6800 array (chip hu6800); for 
details see e.g. https:// bioco nduct or. org/ packa ges/ hu6800. db/). The cABC analysis was applied recursively 
("recursive cABC analysis") to the items assigned to ABC subset "A" in the previous run, starting with the full 
feature set. Recursive subsets are named "A", "AA", etc. In addition, the p-values of a Kolmogorov–Smirnov 
 test60 of the distribution of the values subjected to cABC analysis against the uniform distribution are reported.

cABC times KS-test p-value for item list Number of features (% of all)
Median balanced accuracy (95% CI) 
(validation data) Features

0 5.71·10–19 150 (100%) 1 (1–1) All d = 150 genetic markers

1 0.00032 A: 25 (16.7%) 1 (1–1)

M63438_s_at, M11147_at, M19507_at, 
M27891_at, M96326_rna1_at, M27783_s_at, 
L19779_at, Y00787_s_at, X56681_s_at, Y00433_
at, V00599_s_at, X82240_rna1_at, D21261_at, 
M14328_s_at, X68277_at, M28130_rna1_s_at, 
X14008_rna1_f_at, M19045_f_at, M84526_at, 
HG3549.HT3751_at, M77232_rna1_at, 
M33680_at, M11722_at, X17042_at, U05259_
rna1_at

1 0.5 (0.21–0.83) As above but target assignment permuted

2 0.0336 AA: 10 (6.7%) 1 (1–1)
M11147_at, M19507_at, M27891_at, Y00787_s_
at, X82240_rna1_at, M14328_s_at, M28130_
rna1_s_at, M84526_at, M33680_at, M11722_at’]

3 0.00557 AAA: 5 (3.3%) 0.88 (0.75–1) M11147_at, M19507_at, Y00787_s_at, M28130_
rna1_s_at, M33680_at

4 0.00287 AAAA: 2 (1.3%) 0.86 (0.75–1) M19507_at, Y00787_s_at

https://bioconductor.org/packages/golubEsets
https://bioconductor.org/packages/golubEsets
https://www.python.org
https://seaborn.pydata.org
https://pypi.org/project/cABCanalysis/
https://bioconductor.org/packages/golubEsets
https://bioconductor.org/packages/golubEsets
https://bioconductor.org/packages/hu6800.db/
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Figure 4.  Feature selection using recursive cABC analysis in the high opioid dose requirement dataset 
consisting of d = 171 variants in the opioid receptor genes OPRM1, OPRK1, OPRD1, and SIGMAR1, located 
on chromosomes 6, 8, 1, and 9, respectively, and adjacent regions, acquired in n = 64 patients treated with 
opioid analgesics for persistent pain, n = 38 at "usual" opioid doses, and n = 27 at very high  doses47. (A) Variable 
importance according to a 5 × 20 nested cross-validation feature selection using random forests and the generic 
permutation importance provided in the "permutation_importance" method of the "sklearn.inspection" 
package. Bar colors indicate the selection of informative variables in different repeated selection steps using 
cABC analysis, from light blue = "not selected" to dark blue and black for features selected in deeper until the 
last repetition of cABC analysis. (B) and (C) Results of the cABC analysis of the mean variable importance. The 
ABC plots (blue lines) show the cumulative distribution function of the importance variables together with the 
identity distribution,  xi = constant (magenta line), and the uniform distribution, i.e., as a stopping criterion for 
the repetitions of the cABC analysis. The red lines show the boundaries between the ABC subsets "A", "B" and 
"C". The figure was created using Python version 3.8.13 for Linux (https:// www. python. org) with the seaborn 
statistical data visualization package (https:// seabo rn. pydata. org 22) and our Python package "cABCanalysis" 
(https:// pypi. org/ proje ct/ cABCa nalys is/).

▸

Table 7.  Feature selection using recursive cABC analysis in the genomics dataset for high opioid dosage 
requirements, quantified as balanced accuracy (and 95% nonparametric confidence interval, CI). The data set 
consisted of d = 171 variants in the opioid receptor genes OPRM1, OPRK1, OPRD1, and SIGMAR1, located on 
chromosomes 6, 8, 1, and 9, and adjacent regions, acquired from n = 64 patients treated with opioid analgesics 
for persistent pain, n = 38 on "usual" opioid doses, and n = 27 on very high doses. Classification accuracy 
refers to the 20% validation sample not used for feature selection and classifier training. The cABC analysis 
was applied recursively ("recursive cABC analysis") to the items assigned to ABC subset "A" in the previous 
run, starting with the full feature set. Recursive subsets are named "A", "AA", etc. In addition, the p-values of 
a Kolmogorov–Smirnov  test60 of the distribution of the values subjected to cABC analysis against the uniform 
distribution are reported.

cABC times KS-test p-value for item list Number of features (% of all)
Median balanced accuracy (95% CI) 
(validation data) Features

0 6.35·10–58 171 (100%) 0.66 (0.52–0.83) All d = 171 genetic markers

1 0.0011 A: 10 (5.8%) 0.74 (0.53–0.9)

Chr6.154441456.SNV, Chr6.154443510.SNV, 
Chr6.154447392.SNV, Chr6.154449850.SNV, 
Chr6.154450987.MIX, Chr6.154451224.Del, 
Chr6.154451224.MIX, Chr6.154452687.SNV, 
Chr6.154452687.MNP, Chr6.154452690.SNV

2 0.481 AA: 3 (1.8%) 0.79 (0.7–0.88) Chr6.154451224.Del, Chr6.154451224.MIX, 
Chr6.154452687.MNP

3 – 0.48 (0.3–0.71) As above but target assignment permuted

Table 8.  Feature selection using recursive cABC analysis in sensory and genomic data for pain, quantified as 
balanced accuracy (and 95% nonparametric confidence interval, CI). The dataset includes subject sex, pain 
thresholds for heat, cold, blunt pressure, punctate pressure (von Frey hairs), and electrical stimuli with and 
without prior sensitization by topical application of capsaicin or menthol cream, and genetic information on 
29 common variants in eight human genes reported to modulate pain, including single nucleotide variants 
and haplotypes, obtained from n = 125 healthy young  volunteers48. Classification accuracy refers to the 
20% validation sample not used for feature selection and classifier training. The cABC analysis was applied 
recursively ("recursive cABC analysis") to the items assigned to ABC subset "A" in the previous run, starting 
with the full feature set. Recursive subsets are named "A", "AA", etc. In addition, the p-values of a Kolmogorov–
Smirnov  test60 of the distribution of the values subjected to cABC analysis against the uniform distribution are 
reported.

cABC times KS-test p-value for item list Number of features (% of all)
Median balanced accuracy (95% CI) 
(validation data) Features

0 1.61·10–28 53 (100%) 0.64 (0.53–0.75) All d = 52 sensorics variables and genetic markers

1 0.044 6 (11.3%) 0.69 (0.59–0.8) “von Frey hairs plus capsaicin”, “blunt pressure”, 
“electrical”, “COMT_G472A”, “COMT4_1”

2 0.132 2 (3.8%) 0.7 (0.57–0.8) “blunt pressure”, “electrical”,

2 – 2 0.55 (0.3–0.72) As above but target assignment permuted

https://www.python.org
https://seaborn.pydata.org
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14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5470  | https://doi.org/10.1038/s41598-023-32396-9

www.nature.com/scientificreports/



15

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5470  | https://doi.org/10.1038/s41598-023-32396-9

www.nature.com/scientificreports/

between subsets. Inherently, it cannot provide a correction for feature importance measures assigned by a feature 
selection algorithm. In contrast, feature selection algorithms are generic because they only provide an answer to 
the question of how many of the best features are relevant and should be retained in the subsequent data analysis 
or interpretation of the results, which is often arbitrary, such as taking the top 5 or 10. The choice of feature selec-
tion method is independent of the cABC analysis and is at the discretion of the data analyst. If a flawed feature 
selection method has assigned inflated importance values to irrelevant variables, cABC analysis cannot correct 
this. An example is Gini impurity-based feature importance, available as a default method in some random for-
est software packages, which measures how effective the feature is at reducing uncertainty when constructing 
decision trees based on the mean reduction in impurity (or "Gini importance").Its use is now discouraged, as it 
has been shown to occasionally produce biased results with inflated importance of numerical features that are 
not predictive for unseen  data57,58. In the documentation of the "scikit-learn" package (https:// scikit- learn. org/ 
stable/ 40), an example is given where two random variables, one categorical and one numerical, were added to a 
dataset on survival factors in the sinking of the Titanic (https:// scikit- learn. org/ stable/ auto_ examp les/ inspe ction/ 
plot_ permu tation_ impor tance. html). We have used this published code and added the present cABC analysis. 
Using the Gini feature importance on independent data separated before random forest training, d = 4 features 
were selected for the ABC subset "A", while based on the importance measures obtained using permutation 
importance as the recommended alternative feature selection method, only gender was selected. However, this 
may be a coincidence, and in other scenarios the importance values for relevant and nonsensical variables may 
be closer. Other diagnostic tools must then be used, such as evaluating the classification performance when the 
unselected features are used for training instead of the selected features, as recently  suggested59. In the present 
example, the permutation importance-based feature proved sufficient to train a random forest classifier to assign 
unseen cases (20% separated before feature selection and training) to classes with balanced accuracy similar to 
that using the full feature set. The classifier trained with the unselected features was significantly less power-
ful. In contrast, random forests trained with the Gini impurity-based faulty feature set performed worse, and 
importantly, the classification accuracy of random forests trained with the unselected features of this variant was 
closer to that of those trained with the selected features (Fig. 6).

Conclusions
ABC methods, such as those presented here, are essential in data analysis today to identify simple, easy to 
understand (the critical few) properties of complex multivariate data. The selection of the k best items is often 
decided heuristically or arbitrarily. The cABC analysis provides this number calculated from actual data. It uses 
the point on the cumulative importance of items that is closest to the "one gets it all" extreme, i.e., a single item 
already contains all the relevant information. In addition, cABC analysis, in its recursive variant, provides a 
computational means of reducing information to a bare minimum, thereby increasing human comprehension.

Figure 5.  Feature selection using recursive cABC analysis in sensory and genomic data for pain. The dataset 
includes subject gender, pain thresholds to heat, cold, blunt pressure, punctate pressure (von Frey hairs), and 
electrical stimuli with and without prior sensitization by local application of capsaicin or menthol cream, and 
genetic information on 29 common variants in eight human genes reported to modulate pain, including single 
nucleotide variants and haplotypes, acquired from n = 125 healthy young  volunteers48. (A) Variable importance 
according to a 5 × 20 nested cross-validation feature selection using random forests and the generic permutation 
importance provided in the "permutation_importance" method of the "sklearn.inspection" package. Bar colors 
indicate the selection of informative variables in different repeated selection steps using cABC analysis, from 
light blue = "not selected" to dark blue and black for features selected in deeper until the last repetition of cABC 
analysis. (B) and (C) Results of the cABC analysis of the mean variable importance. The ABC plots (blue lines) 
show the cumulative distribution function of the importance variables together with the identity distribution, 
 xi = constant (magenta line), and the uniform distribution, i.e., as a stopping criterion for the repetitions of 
the cABC analysis. The red lines show the boundaries between the ABC subsets "A", "B" and "C". The figure 
was created using Python version 3.8.13 for Linux (https:// www. python. org) with the seaborn statistical data 
visualization package (https:// seabo rn. pydata. org 22) and our Python package "cABCanalysis" (https:// pypi. org/ 
proje ct/ cABCa nalys is/).

▸
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Data availability
The cABC method is implemented in the Python package "cABCanalysis" available at https:// pypi. org/ proje ct/ 
cABCa nalys is/.
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