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Appendix 

Appendix A: Diffusion model 

The concentration change over time is described by Fick’s second law of diffusion: 

𝜕𝑛

𝜕𝑡
= 𝐷𝛥𝑛 

Equation 1 

With 𝑛(𝑟, 𝑡)being the particle concentration at a distinct location 𝑟 and a distinct time point 𝑡. 

The parameter 𝐷 ist termed diffusion coefficient. 𝛥 is the Laplace operator. When analyzing a 

single particle instead of a large ensemble, equation 1 rewrites to: 

𝜕𝑝

𝜕𝑡
= 𝐷𝛥𝑝 

Equation 2 

With 𝑝(𝑟, 𝑡 | 𝐷) being the localization probability of the particle at a distinct location 𝑟 and time 

point 𝑡. As membrane bound receptors show a two-dimensional lateral diffusion with 

𝑟 = 𝑒 𝑥, 𝑒 𝑦 the solution of equation 2 calculates to: 

𝑝(𝑥, 𝑦, 𝑡 | 𝐷) =
1

4𝜋𝐷𝑡
𝑒 ( ) 

Equation 3 

The dimensionality of the diffusion model can be reduced to a single dimension by 

addressing only the Euclidean point-to-point distance 𝑟 = 𝑥 + 𝑦 . For this purpose 

equation 3 is transformed into polar coordinates and integrated over the line element 

𝑑𝑠 = 𝑟𝑑𝜑: 

𝑝(𝑟, 𝑡 | 𝐷) =
1

4𝜋𝐷𝑡
𝑟 𝑒 ( )𝑑𝜑 =

2𝑟

4𝐷𝑡
𝑒 ( ) 

Equation 4 

The expectation value of equation 4 calculates to: 



< 𝑟 >= 𝑟 𝑝(𝑟, 𝑡 | 𝐷)𝑑𝑟 = 4𝐷𝑡 
Equation 5 

Inserting the expectation value of equation 5 into equation 4 results in the final diffusion 

model: 

𝑝(𝑟, 𝑡 |  < 𝑟 >) =
2𝑟

< 𝑟 >
𝑒

( )
 

Equation 6 

A mixture model of multiple diffusive states is given by the superposition of the single state 

diffusion models: 

𝑃(𝑟, 𝑡 | 𝜔, < 𝑟 >) = 𝜔  𝑃(𝑟, 𝑡 |  < 𝑟 > ) 
Equation 7 

Appendix B: Error estimation 

The main sources of error during data acquisition are first, errors during particle localization 

procedure caused by the Poisson statistics of the detected photon distribution, background 

noise (static error) and signal pixelation and second, particle movement during image 

acquisition time (dynamic error) (Savin and Doyle, 2005).  

Localization error 

The localization error 𝜀 describes how accurate the position (�̂� , �̂� ) of a fixed single emitter 

can be determined by fitting the two-dimensional projection of its diffracted photon density  

distribution to a model point spread function: 

𝑝(𝑥, 𝑦 | 𝜇 , 𝜇 , 𝜎 , 𝜎 ) =
1

2𝜋𝜎 𝜎
𝑒

( )

 

Equation 8 

With 𝜇 and 𝜇 being the estimated probe’s positions and 𝜎 and 𝜎 being the estimated 

sample standard deviations of the respective dimensions. The standard errors of the mean 

for each dimension 𝜀 and 𝜀  are well approximated by: 



𝜀 ≈
√

 with 𝑑𝑖𝑚 =  𝑥, 𝑦 Equation 9 

Here, 𝑁describes the sample size, by which means the detected number of photons. As the 

accurate determination of the static error in single molecule localization microscopy has been 

a research target for several years, it is a well solved problem. Therefore, 𝜀 can either be 

estimated from the experimental conditions (photon distribution, signal-to-noise ratio and 

pixelation) (Mortensen et al., 2010) or from the distribution of point-to-point distances 

measured between multiple localizations of the same static fluorescent probe (Endesfelder et 

al., 2014). 

Static error 

The static error estimates the deviation between the true (�̂�) and the determined (𝑟) 

Euclidean point-to-point distance of two molecules. With the localization error 𝜀at hand, the 

spatial probability density distribution of a single fluorescent probe’s determined position in 

one dimension around its true position �̂�  is given by 𝑝(𝑥 | �̂� , 𝜀): 

𝑝(𝑥 | �̂� , 𝜀) =
1

√2𝜋𝜀
𝑒

( )

 
Equation 10 

Assuming that the localization error is equal in both lateral dimensions (𝜀 = 𝜀 = 𝜀 ) the 

expected measured Euclidean point-to-point distance between two fluorescent probes that 

are separated by a true distance of �̂� = (�̂� − �̂� ) + �̂� − �̂�  calculates to: 

< 𝑟 >=  

𝑟  𝑝(𝑥 | �̂� , 𝜀) 𝑝(𝑥 |�̂� , 𝜀) 𝑝(𝑦 |�̂� , 𝜀) 𝑝(𝑦 |�̂� , 𝜀) 𝑑𝑥 𝑑𝑥 𝑑𝑦 𝑑𝑦  

Equation 11 

The problem can be simplified by rotating the coordinate system in a way that �̂� = 0, 

�̂� = �̂�,�̂� = 0 and �̂� = 0 and by adding 0 = �̂� + 2𝑥 �̂� − �̂� − 2𝑥 �̂�: 



< 𝑟 >=  

(𝑥 − 2𝑥 𝑥 + (𝑥 − �̂�) + 𝑦 − 2𝑦 𝑦 + 𝑦 + 2𝑥 �̂� − �̂� ) 

1

√2𝜋𝜀
𝑒

      1

√2𝜋𝜀
𝑒

( ̂)

    
1

√2𝜋𝜀
𝑒     

1

√2𝜋𝜀
𝑒     𝑑𝑥 𝑑𝑥 𝑑𝑦 𝑑𝑦  

Equation 12 

Finally, equation 11 can be simplified to: 

< 𝑟 >= �̂� + 4𝜀  Equation 13 

Thus, the expected measured mean squared displacement systematically overestimates the 

true mean squared displacement (Savin and Doyle, 2005). 

Dynamic error 

The dynamic error is caused by the fact that the position of the fluorescent probe is 

determined from the superposition of all its photons detected during the camera exposure 

time. As a result, the measured particle position at a distinct time point (𝑡) is not an accurate 

snapshot but an average of all positions taken by the particle during acquisition time (𝜏). 

𝜇 = ∫ 𝜇 (𝑡 − 𝜉)𝑑𝜉 with 𝑑𝑖𝑚 =  𝑥, 𝑦 Equation 14 

This means that dynamics within a time period 𝑡 ≤ 𝜏cannot be resolved (Savin and Doyle, 

2005). 

Model correction 

Based on previous work from Savin and Doyle (Savin and Doyle, 2005), the diffusion 

coefficient of a single molecule can be calculated from the measured apparent mean 

squared displacement, if the static error is known. 

< 𝑟 > = 4𝐷 𝑡 −  + 4𝜀  for 𝑡 ≥ 𝜏 Equation 15 



Appendix C: The chemical master equation 

The HMM postulates a reaction network consisting of first order reactions at discrete time steps. 

To translate this reaction network into a continuous time space, the state transition probabilities 

of the HMM need to be transferred into first order reaction rate constants. A first order reaction 

follows a mono-exponential decay function 

𝑓 (𝑡) = 𝐴𝑒 , Equation 16 

with 𝑘  defining the reaction rate constant. The probability that a single molecule will transit 

within the time span of a discrete time step of the HMM (𝛥𝑡) is given by the integral of the 

normalized decay function form 𝑡 = 0to 𝑡 = 𝛥𝑡. 

𝑝 = 𝑘 𝑒 𝑑𝑡 
Equation 17 

Solving the integral of equation 16 results in a conversion formula: 

𝑘 =
−𝑙𝑛(1 − 𝑝)

𝛥𝑡
 

Equation 18 

A closed bio-chemical reaction system that is set up from first-order chemical equations can 

thus be described by the chemical master equation: 

𝑑𝑥

𝑑𝑡
= 𝑘 (𝑗 → 𝑖) 𝑥 − 𝑘(𝑖 → 𝑗)[𝑥 ] 

 

Equation 19 



Here, 𝑘(𝑖 → 𝑗)[𝑥 ] describes the reactions that reduce the concentration [𝑥 ] and 𝑘(𝑗 → 𝑖) 𝑥  

describes reactions that increase the concentration [𝑥 ], while they reduce the concentration 

𝑥 .



Appendix D: Confusion matrix 

The performance of the classification algorithms is measured by several metrics that are 

originated in the four entries of the confusion matrix: True positive (TP), false positive (FP), true 

negative (TN), false negative (FN). The metrics are composed of these as follows: 

 

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = +   Equation 20 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =   Equation 21 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   Equation 22 

𝑟𝑒𝑐𝑎𝑙𝑙 =   Equation 23 



Supplementary Figures 

 

Supplementary Figure 1: Model Selection. For each measurement of the dataset, 5 hidden 

Markov models (HMMs) were trained with different complexity (number of classes n=1 to 5). For 



each model the Bayesian information criterion (BIC) was calculated. The value range of all 

calculated BIC values was scaled to an interval of [0; 1]. The resulting distribution and it’s  95% 

confidence interval is shown for untreated cells (A) and InlB treated cells (B). C and D: The 

HMM with a minimal BIC value is identified per cell and the resulting distribution of optimal 

HMMs is depicted as a bar chart for untreated cells (C) and InlB treated cells (D). Consequently, 

the most frequently populated model is used for further analyses. e and f: As an alternative 

approach, the optimal HMM is identified using likelihood ratio tests. Here the optimal model is 

defined as the simplest models, for which a comparison with the next most complex model 

using the likelihood ratio test does not lead to a significant improvement (the significance 

threshold was set to 𝛼 = 0.05). Again, the optimal HMMs per cell are identified and their 

distribution is depicted as a bar chart for untreated cells (E) and InlB treated cells (F). BIC-

based HMM analysis was performed using the ermine package. 



 

Supplementary Figure 2: Modeling the jump-distance probability density function: Overlay of 

the jump-distance probability density function (filled grey area) and two three state diffusion 

mixture models: For the first model (black solid line) the HMM parameter 𝜋  was used as 

state occupancy and the HMM parameter 𝐵  was used as mobility (𝑃(𝑟|𝜋 , 𝐵 )). For 

the second model (blue dashed line) the state occupancy 𝜔  was learned by expectation 

maximization while keeping the mobility HMM parameter 𝐵 fix (𝑃(𝑟|𝜔 , 𝐵 )) . The 

figures show the results for a representative Fab labeled cell (A) and a representative InlB 

labeled cell (B).



 

Supplementary Figure 3: Limit of detection (LOD). The static localization error of single 

molecule detection is determined in the form of the theoretically achievable localization 

precision. The localization precision distribution is visualized separately for untreated (blue, 

Fab) and InlB treated cells (orange, InlB). The distribution quartiles are highlighted as dashed 

lines. The average localization precision measured for untreated cells is 𝜎 = 27.52 ±

1.92 𝑛𝑚 and 𝜎 = 24.58 ± 1.91 𝑛𝑚 for InlB treated cells. Substituting the localization 

precision for an immobile particle (𝐷 = 0 ) into equation 14 results in the LOD for particle 

movement. It is given by the smallest measurable MSD which is 𝐿𝑂𝐷 = 3043.57 ±

431.57 𝑛𝑚  for untreated cells and 𝐿𝑂𝐷 = 2430.6 ± 392.73 𝑛𝑚  for InlB treated cells. 

Values are given as mean ± standard deviation.



 

Supplementary Figure 4: Outlier Detection. Outliers in the hidden Markov model (HMM) 

parameter list were identified using either an isolation forest or by performing density-based 

spatial clustering of applications with noise (DBSCAN). Prior to DBSCAN analysis the values of 

each feature were scaled to a range of [0; 1]. Both groups (untreated and InlB treated cells) 

were analyzed separately. For the purpose of visualization the 11-dimensional space of the 

HMM-parameter list was projected onto two dimensions, by applying a principal component 

analysis (PCA) and plotting the first two principal components (PC1 and PC2). Outliers are 

highlighted in orange. A: Untreated outliers as identified by an isolation forest. B: Untreated 

outliers as identified by DBSCAN. C: InlB treated outliers as identified by an isolation forest. D: 

InlB treated outliers as identified by DBSCAN. Machine-learning based detection of outliers was 

performed using the scikit-learn package.



 

Supplementary Figure 5: Pairwise hidden Markov model (HMM) parameter correlation. 

Spearman’s rank correlation matrix of HMM parameter distribution for untreated (A) and InlB 

treated (B) cells. Parameter pairs with a Spearman’s rank correlation coefficient > 0.9 are 

defined as highly correlated. Consequently, filtering P(1|1), P(2|2) and P(3|3) from the HMM-

parameter space results in a parameter set without highly correlated parameter pairs. 

Correlation analysis was performed using the pandas package.  



 

Supplementary Figure 6: ABC analysis by item categorization of hidden Markov model 

(HMM) parameters. The importance of HMM-parameters to the classification task of 

identifying untreated and InlB treated cells was characterized by calculating the mean 

absolute SHAP values for the decisions made by a random forest classifier. Item 

categorization was performed by ABC analysis. The ABC plot (blue line) shows the 

cumulative distribution function of the parameter importance as characterized by the mean 

absolute SHAP values with the limits between sets A, B and C indicated as red lines. The 

analysis shows that 27% of the HMM-parameters account for 68% of the SHAP-based 

feature importance. Consequently, the three HMM-parameters (𝐷 , 𝜔 , 𝑃(2|3))  that belonged 

to ABC set “A” were considered as most relevant to the classification task (see table 3). Item 

categorization was performed using the R package ABCanalysis.  



 

Supplementary Figure 7: Negative control of classifier performance measure trained on a 

reduced feature space based on validation metrics. The performance of different classifiers 

on classifying single cells as either untreated or InlB treated was measured. The analysis 

was performed in four steps: First a subset of randomly chosen HMM parameters that 

matches the dimensionality of parameters classified as highly important by the ABC-analysis 

are selected. Second, the reduced parameter list is split into a training and a validation data 

set (⅔ to ⅓). Third, the training data set was permuted. Third, an artificial neural network 

(ANN), a classification and regression tree (CART), a random forest classifier (RF) and an 

eXtreme Gradient Boosting algorithm (XGBoost) were trained on the training data set to 

predict whether cells are Fab or InlB labeled from the variables learned from the HMM. To 

rule out a random result, the experiment was repeated 100 times with different HMM 

parameter subsets. Fourth, the classifier performance was validated on the validation data 

set by means of different metrics: (A) The area under the receiver operating characteristic 

curve (ROC-AUC), (B) the balanced accuracy, (C) the f1-score, (D) the precision and (E) the 

recall. The dashed lines represent the mean performance of the random forest classifier 



trained on the HMM-parameter subset that only consists of the “important few” parameters 

categorized as “A” by a previously performed ABC-analysis. Classifier training was 

performed using the scikit-learn, keras and xgboost packages. 



Supplementary Tables 

Supplementary Table 1: Quartiles of parameters associated with membrane bound MET 

dynamics. The parameters were machine-learned by 108 three-state hidden Markov models 

(HMMs) and jump-distance mixture models in two steps. First, an individual HMM was 

trained on each single-cell trajectory dataset resulting in a list of optimized HMM-parameter 

sets. Second, The state occupancy for each cell was determined by optimizing a jump-

distance mixture model on the trajectory datasets. For simplicity reasons, the resulting list of 

optimized model parameters (𝜔 , 𝐴 , 𝐷 ) is termed optimized HMM-parameters. 

Differences between the HMM-parameter distributions of untreated and InlB treated cells 

were tested by the use of a two-sided Mann-Whitney U test against the 0-Hypothesis 

𝐻 : 𝐹𝑎𝑏 =  𝐼𝑛𝑙𝐵 with an alternative hypothesis 𝐻 : 𝐹𝑎𝑏 ≠  𝐼𝑛𝑙𝐵. The p-values are corrected 

for multiple testing using the method of Bonferroni. The number of tests performed is 14. 

Testing was performed using the scipy package. 

HMM parameter Fab quartiles InlB quartiles Test statistic p value 

(Ha: Fab ≠ InlB) 

𝜔  
0.132; 0.148; 0.161 0.205; 0.224; 0.261 86 4.96∙10-16 

𝜔  
0.332; 0.366; 0.400 0.416; 0.423; 0.445 396 9.69∙10-10 

𝜔  
0.446; 0.479; 0.521 0.317; 0.345; 0.369 2825 6.45∙10-16 

𝐷  0.000; 0.000; 0.000 0.000; 0.000; 0.000 - - 

𝐷  
0.061; 0.067; 0.073 0.039; 0.041; 0.043 2916 4.73∙10-18 



𝐷  
0.241; 0.248; 0.259 0.207; 0.218; 0.227 2769 1.14∙10-14 

𝑃(1|1) 
0.948; 0.954; 0.962 0.935; 0.946; 0.952 2143 4.64∙10-4 

𝑃(2|1) 
0.038; 0.046; 0.052 0.048; 0.054; 0.064 780 4.40∙10-4 

𝑃(3|1) 
0.000; 0.000; 0.000 0.000; 0.000; 0.000 1195 1.49∙10-0 

𝑃(1|2) 
0.017; 0.019; 0.021 0.028; 0.033; 0.037 128 4.35∙10-15 

𝑃(2|2) 
0.932; 0.942; 0.952 0.895; 0.911; 0.926 2526 7.57∙10-10 

𝑃(3|2) 
0.030; 0.040; 0.048 0.045; 0.056; 0.068 635 6.06∙10-6 

𝑃(1|3) 
0.000; 0.000; 0.000 0.000; 0.000; 0.000  989 5.59∙10-2 

𝑃(2|3) 
0.030; 0.035; 0.047 0.073; 0.089; 0.106 95 7.94∙10-16 

𝑃(3|3) 
0.953; 0.965; 0.970 0.894; 0.911; 0.926 2821 7.94∙10-16 

  



Supplementary Table 2: Comparison of the state occupancy machine-learned by the hidden 

Markov model (HMM, 𝜔 ) based analysis of trajectory datasets with the equilibrium state 

occupancy generated by the simulation of stochastic Petri nets (PN, 𝜔 ). The analysis was 

performed in three steps: First, HMM-parameters were optimized. Second, the state 

occupancy was determined by using a diffusion mixture model. Third, for each cell a 

stochastic Petri net (PN) was designed and parameterized with the optimized transition 

probabilities learned by the HMM. For this reason reaction rate constants (𝑘 ) were 

calculated from the HMM-learned transition probability matrix (𝐴 ). The time evolution of 

small ensembles of 1000 molecules, initially all fast diffusing, was simulated with the 

stochastic PNs until equilibrium was reached. For each simulation, the average equilibrium 

population ratio was calculated from the last 1000 time steps. For each experiment the 

occupancy distributions are compared state-wise using two-sided and one-sided Mann-

Whitney U tests against a 0-Hypothesis 𝐻 : 𝑆 = 𝑆 . The alternative hypothesis of the two-

sided Mann-Whitney U test is given by 𝐻 : 𝑆 ≠ 𝑆  while the alternative hypotheses of the 

one-sided Mann-Whitney U tests are given either by 𝐻 : 𝑆 < 𝑆  or  𝐻 : 𝑆 > 𝑆 . For each 

condition 𝜔  three tests were performed and the p-values are corrected for multiple 

testing using the method of Bonferroni. Testing was performed using the scipy package. 

 

Experiment State S1 State S2 Test statistic p value 

(Ha: S1 ≠ S2) 

p value 

(Ha: S1 < S2) 

p value 

(Ha: S1 > S2) 

𝜔  immobile slow 0 1.01∙10-18 5.07∙10-19 3.00 

𝜔  immobile fast 0 1.01∙10-18 5.07∙10-19 3.00 

𝜔  slow fast 204 4.02∙10-14 2.01∙10-14 3.00 



𝜔  immobile slow 0 1.01∙10-18 5.07∙10-19 3.00 

𝜔  immobile fast 88 1.18∙10-16 5.90∙10-17 3.00 

𝜔  slow fast 2782 1.26∙10-15 3.00 6.32∙10-16 

𝜔  immobile slow 0.00 1.01∙10-18 5.07∙10-19 3.00 

𝜔  immobile fast 0.00 1.01∙10-18 5.07∙10-19 3.00 

𝜔  slow fast 951 5.57∙10-3 2.79∙10-3 3.00 

𝜔  immobile slow 0 1.01∙10-18 5.07∙10-19 3.00 

𝜔  immobile fast 873 9.87∙10-4 4.93∙10-4 3.00 

𝜔  slow fast 2916 1.01∙10-18 3.00 5.07∙10-19 

  



Supplementary Table 3: Negative control of classifier performance measure based on 

validation metrics. The performance of different classifiers on classifying single cells as either 

untreated or InlB treated was measured. The analysis was performed in four steps: First the 

HMM parameter list (𝜔 , 𝐴 , 𝐷 ) was filtered for highly correlated parameters and split 

into a training and a validation data set (⅔ to ⅓). Second, the training data set was 

permuted. Third, an artificial neural network (ANN), a classification and regression tree 

(CART), a random forest classifier (RF) and an eXtreme Gradient Boosting algorithm 

(XGBoost)  were trained on the training data set to predict whether cells are Fab or InlB 

labeled from the variables learned from the HMM. To rule out a random result, the 

experiment was repeated 100 times with different permutations of the training data set. 

Fourth, the classifier performance was validated on the validation data set by means of 

different metrics: The area under the receiver operating characteristic curve (ROC-AUC), the 

balanced accuracy, the f1-score, the precision and the recall. The values are given as mean 

± standard deviation. As the training data is permuted, the classifiers are expected to perform 

random guesses. Classifier training was performed using the scikit-learn, keras and xgboost 

packages. 

Classifier ROC-AUC Accuracy F1-score Precision Recall 

ANN 0.497 ± 0.208 0.489 ± 0.168 0.481 ± 0.179 0.487 ± 0.172 0.487 ± 0.206 

CART 0.492 ± 0.150 0.502 ± 0.150 0.481 ± 0.146 0.526 ± 0.182 0.468 ± 0.167 

RF 0.457 ± 0.197 0.473 ± 0.149 0.475 ± 0.143 0.482 ± 0.150 0.481 ± 0.160 

XGBoost 0.501 ± 0.176 0.499 ± 0.135 0.498 ± 0.130 0.508 ± 0.142 0.497 ± 0.138 

  



Supplementary Table 4: Positive control of classifier performance measure based on 

validation metrics. The performance of different classifiers on classifying single cells as either 

untreated or InlB treated was measured. The analysis was performed in four steps: First the 

HMM parameters that are characterized as highly important to the classification task by the 

previously performed ABC-analysis are selected. Second, the reduced parameter list is split 

into a training and a validation data set (⅔ to ⅓). Third, the training data set was permuted. 

Third, an artificial neural network (ANN), a classification and regression tree (CART), a 

random forest classifier (RF) and an eXtreme Gradient Boosting algorithm (XGBoost)  were 

trained on the training data set to predict whether cells are Fab or InlB labeled from the 

variables learned from the HMM. To rule out a random result, the experiment was repeated 

100 times with different seed-based classifier initializations. Fourth, the classifier 

performance was validated on the validation data set by means of different metrics: The area 

under the receiver operating characteristic curve (ROC-AUC), the balanced accuracy, the f1-

score, the precision and the recall. The values are given as mean ± standard deviation. As 

the HMM-parameter subset used within the experiment only consists of the “important few” 

parameters categorized as “A” by a previously performed ABC-analysis, the classifiers are 

expected to perform similarly as if trained on the complete HMM-parameter set (table 2). 

Classifier training was performed using the scikit-learn, keras and xgboost packages. 

Classifier rank ROC-AUC Accuracy F1-score Precision Recall 

ANN 3 1.000 ± 0.000 0.992 ± 0.013 0.992 ± 0.013 1.000 ± 0.000 0.984 ± 0.025 

CART 1 0.964 ± 0.028 0.920 ± 0.067 0.912 ± 0.075 0.975 ± 0.055 0.864 ± 0.114 

RF 4 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 

XGBoost 2 0.998 ± 0.007 0.978 ± 0.038 0.976 ± 0.040 0.992 ± 0.028 0.963 ± 0.062 
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