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1  |  INTRODUCTION

In a recent discussion on how to deal with data analy-
sis issues initiated by reviewers of pain- related scientific 
manuscripts in the European Journal of Pain, a seemingly 
simple statistical issue was raised: two subsets of data in 
a paper had the same mean and standard deviation. A re-
viewer asked for a statistical test for or against the iden-
tity of the subset distributions. The authors insisted that 
if the mean and standard deviation were the same, this 
was sufficient evidence that the subsets of data were not 
significantly different.

This prompted a discussion among pain researchers, 
who are not necessarily primarily from the field of data 
science, a discussion of the importance of carefully ex-
amining the distribution of pain- related data in a jour-
nal whose primary audience is pain researchers seems 
warranted.

2  |  RESOLUTION OF AN 
EXAMPLE CASE

The problem of ‘equal means and equal standard 
deviations’ as sufficient evidence of the absence of a 
statistically significant difference has been formulated 
as an absolute truth. Therefore, it is sufficient to provide 
a counter- example to refute it. The above statement 

implicitly assumes that the distributions are normal 
or uniform. Consider the two distributions in Figure 1 
for which the t- test (Student,  1908) refutes that the 
distributions are different at a p- value of nearly p = 1 
(Figure 1).

The distributions in Figure 1 were drawn from bimodal 
data that have a Gaussian mixture model (GMM) as the 
underlying data- generating process. An M- modal GMM is 
defined as

where p(x) denotes the probability density of a case of the 
data set, and mi, si and wi are the parameters mean, stan-
dard deviation and weight for each component (mode). The 
weights, wi, of the modes add up to a value of one, meaning 
that each mode represents a fraction of the total number of 
cases in the data set. For a bimodal data set with a total of 
n = 1000 data points (cases) generated by a GMM with means 
m1,2 = [−1, 3], standard deviations s1,2 = [1, 8] and weights 
w1,2 = [0.2, 0.8], we have constructed a new bimodal data set 
by reversing the weights to w1,2,new = [0.8, 0.2]. Solving the 
statistical equations for the combined mean and standard 
deviation for the respective single modes (see Data S1) yields 
a Gaussian mixture with means m1,2,new = [−1, 15] and stan-
dard deviations s1,2,new = [1, 7.81].
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These data had the same overall means and standard 
deviations as the original data set (Figure  1), that is for 
the two data sets (‘Set1’ and ‘Set2’ in Figure 1), the over-
all means and standard deviations are equal at m = 2 and 

s = 7.2. A t- test (Student, 1908) shows no statistically sig-
nificant difference. However, the difference in distribution 
is supported by a highly significant Kolmogorov– Smirnov 
test (Smirnov,  1948) (Figure  1f). The non- parametric 
Wilcoxon test (Mann & Whitney,  1947; Wilcoxon,  1945) 
supports the difference in the data sets. This concludes the 
discussion mentioned at the beginning: equal means and 
standard deviations do not mean that the data sets are not 
statistically significantly different.

3  |  IMPLICATIONS

The above demonstration highlights the need for appro-
priate data visualization in scientific reports. However, 
such visualizations must be carefully selected. Figure 1c 
clearly shows that bar charts showing mean and standard 
deviation are inadequate. With such a visualization, the 
reader cannot judge whether a missing difference between 
two data sets is a valid result. Alternatives are shown, 
from typical distribution plots such as density plots or his-
tograms to violin plots superimposed on individual data 
points, which are probably the best representation of the 
data among the options shown. It is highly advisable to 
present the (raw) research data visually, along with the 
usual summary statistics. Without this information, read-
ers will simply have to take the authors' word that the 
data have been adequately analysed, although it has been 
shown that errors can occur (see below). The presentation 
of bar plots with error bars is definitely inadequate and 
should be abandoned.

Regarding box plots, which are commonly used in sci-
entific publications in pain research, it must be mentioned 
that they are not ideal. Although in the above example, the 
boxplot representation seemed to sufficiently illustrate the 
inequality of the two data sets, simple boxplots can dis-
tort the representation of the data in other cases. Figure 2 
shows a pet example where boxplots are an inadequate 
visualization of data. Consider an ideal bimodal data set 
with means m1,2 = [0,1] and standard deviations s1,2 = [0.1, 
0.1], with half of the data in mode 1 (weights w1,2 = [0.5, 
0.5]). The violin plot shows exactly this information. The 
box plot, on the other hand, produces a meaningless vi-
sualization from which the true distribution cannot be 
deduced. Overlaying the box plot with single data points 

F I G U R E  1  Example of simulated data. Two bimodal datasets 
(‘Set1’, ‘Set2’) were constructed as Gaussian mixtures to have the 
same overall means and standard deviations. The results of two 
statistical identity tests are shown in panel (a) (in red). In Set1, the 
majority of the data points belong to the right mode (80%), whereas 
in Set2, the right mode comprises only 20% of the data. The two 
data sets are presented with different types of graphs (b– f).

(a)

(b)

(c)

(d)

(e)

(f)
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makes the error clear but emphasizes that the box plot was 
an inadequate visualization.

To show that the example of a one- dimensional bi-
modal data set is not an artificial case with little relevance 
to real pain- related data, a data set of pain thresholds to 
heat after sensitization with capsaicin is shown. It comes 
from an in- house study of pain thresholds to different 
stimuli, with and without sensitization by local applica-
tion of menthol or capsaicin, carried out on n = 125 healthy 
young volunteers (Doehring et al., 2011). Analysis of dif-
ferences in heat pain thresholds between the unsensitized 
and sensitized conditions for a possible modal distribution 
using automated separation of one- dimensional Gaussian 
mixtures (Lötsch et al., 2022) revealed that a two- modal 
distribution provided the best fit to the distribution of the 
data (Figure 3). This is consistent with another study on 
different subjects, in whom modal separation of capsaicin 

sensitivity was reflected in genotype differences between 
subgroup members (Kringel et al., 2018). Evidence for a 
multimodal distribution is also found in other pain- related 
data. For example, cold thresholds in humans are clearly 
bimodally distributed in Figure  2 in Maier et al.  (2010), 
although this has not been commented on.

More generally, there is a need to visualize data sets. In 
a more general way, high- dimensional data sets from pain 
research can be visualized using a non- clustered heat-
map (pixelmap) (Wilkinson & Friendly, 2009). A simple 
visual overview of high- dimensional data sets from pain 
research is shown in Figure 4 for two data sets collected in 
the context of the development of neuropathy following 
pharmacological cancer treatment. The columns of the 
graphs show the concentrations of d = 238 lipid markers 
and the rows show the probes taken from each patient 
before and after treatment. The rows are ordered in the 

F I G U R E  2  A pathology of the 
boxplot representation of data. A bimodal 
data set (a) with modes at m1,2 = [0, 1] 
and standard deviations s1,2 = [0.1, 0.1] 
is adequately represented by a violin 
plot (b), to which raw data points can 
be added (c). The box plot (d) does not 
show the bimodal distribution of the data 
at all, suggesting a data set that hardly 
resembles reality. Adding individual data 
points to the box plot makes this error 
more obvious (e) but also shows more 
clearly that the boxplot is an inadequate 
visualization here.

(a)

(b)

(c)

(d)

(e)

 15322149, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ejp.2135 by U

niversitatsbibliothek Johann, W
iley O

nline L
ibrary on [11/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



790 |   LÖTSCH and ULTSCH

order of the laboratory analyses, without clustering or an-
other reordering (non- clustering heatmap). In cohort 2, 
the graph shows a pathology in the dataset. That is, from 
the 53rd sample onwards, the concentrations appear to be 
consistently different from the concentrations above. A 
machine- learning algorithm trained on the data from co-
hort 1 to identify whether a probe was taken before or after 
therapy failed to do so on the data from cohort 2. When 
the outlying samples were omitted, the algorithm was 
successful. A review of the laboratory workflow revealed 
that the cohort 2 sample was analysed in three batches. 
All aberrant samples and no others belonged to the third 
batch, suggesting pre- analytical mishandling of the sam-
ples or a technical error. This data error was not detected 
by standard laboratory quality control measures, nor was 
it apparent from the mean minimum and maximum vari-
able values. The figure makes this immediately clear to re-
searchers or reviewers and readers of such a publication. 
Without the data visualization, the error might have gone 
unnoticed in a scientific publication.

4  |  RELEVANCE OF CONSIDERING 
DATA DISTRIBUTIONS

In virtually every textbook of statistics, the first step in 
a statistical analysis is the formulation of a hypothesis 
about the data- generating process. In almost all cases, 
this already includes a hypothesis about the distribu-
tion of a variable. Often, this distribution hypothesis 
implicitly states that the data are normal, or at least so 
distributed that the seemingly assumption- free calcula-
tion of means and variances (standard deviations) yields 
meaningful values. It is shown above that this is not true 
in practical situations. Therefore, this paper calls for 
measuring some basic properties of the distribution be-
fore making a hypothesis. Measuring the distribution is 
different from analysing the data based on preconceived 
assumptions. For example, calculating means and vari-
ances implicitly assumes that these values exist and are 
meaningful for a particular set of data. For a binary vari-
able with yes/no responses coded as [1, 0], it is possible 

F I G U R E  3  Example of pain- related data. Distribution of differences in heat pain thresholds obtained before and after hypersensitization 
by topical application of capsaicin (Kringel et al., 2018). The density distribution is presented as a probability density function estimated 
using Pareto Density Estimation (PDE) (black line). PDE is a kernel- based density estimation that represents the relative probability of a 
given continuous random variable taking certain values and has been shown to be particularly useful for detecting structures in continuous 
data that indicate the presence of distinct subgroups (Ultsch, 2003).
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to calculate a mean, but whether this is an appropriate 
result seems questionable and needs at least careful con-
sideration in the actual data context. Again, visualizing 
the raw data in such a way that its distribution can be 
observed makes it clear to the reader what the authors of 

a scientific paper have observed and on what their con-
clusions are based.

Measuring data characteristics, on the other hand, com-
pares the given data to a standard. One of the best tools for 
doing this is the quantile– quantile (QQ) plot (Figure  5). 

F I G U R E  4  Non- clustered heat maps of two data sets related to the development of neuropathy after pharmacological cancer treatment 
from two independent cohorts enrolled in two different hospitals (a, b). Columns show standardized lipid marker concentrations (variables) 
and rows show samples in order of laboratory analysis (cases). It should be noted that for this diagnostic view, clustering of the data should 
be disabled if it is the default setting of the software used.

(a) (b)

F I G U R E  5  Quantile- quantile (QQ) plots, that is a measuring visualization, of empirical distributions (a– e) compared to a known 
normal (Gaussian) distribution. Distribution (a) may indeed be modelled by a Gaussian. (b) Indicates that there are many small values with 
about 50% of the values less than 200 and a few extremely large, that is >1500 values. This distribution is skewed to the right, which calls for 
a ‘compressing’ non- linear transformation, such as log(B) or sqrt(B) before any other analysis can be made on variable B. Analogously, (c) 
Depicts a left- skewed distribution with many large values above 4.0 and few small values up to 3.0. For this type of distribution, a ‘stretching’ 
transformation such as Cn for n ≥ 2 can be used. (d) Shows a combination of a convex and concave part in the QQ plot. This indicates the 
presence of concentrations of the data, that is modes (see Figure 2). (e) Compares a uniform distribution to the normal distribution. It 
should be noted that a calculation of means and standard deviations is not appropriate per se for distributions (b) to (d).

(a) (b) (c) (d) (e)
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This plot compares the quantiles of the data, usually on 
the y- axis, with the quantiles of a known distribution on 
the x- axis. Except for the largest and smallest parts of a dis-
tribution, measuring quantiles is a robust and hypothesis- 
free method. For example, comparing an empirical data 
set to the Gaussian (normal) distribution gives a first in-
dication of whether the data can be used as is or whether 
some non- linear transformations are needed (Figure 5).

In the introductory example, one could have hypothe-
sized that the two sets of data would have the same means. 
If this were a reasonable hypothesis, the study would have 
succeeded in testing it. However, if the hypothesis is that 
the two data sets are not statistically significantly differ-
ent, the conclusions are different as shown above. It seems 
reasonable to look at the distribution of the data and not 

make an assumption about it and calculate a mean when 
it is not appropriate. For example, it should be noted that 
calculating means and standard deviations per se is not 
appropriate for the distributions B through D in Figure 5.

Measurement plots must be distinguished from plots 
that already impose a model of the data on the visualiza-
tion. This is sometimes not transparent and can lead to 
incorrect results. For example, the density plot shown in 
Figure  2a adequately represents the Gaussian mixture of 
the two normally distributed variables with means [0, 1] 
and standard deviations [0.1, 0.1]. However, using the same 
plot on a binary variable [0, 1] results in the same data visu-
alization, only this time it is incorrect (Figure 6). The prob-
ability density function provided in the R standard density 
plotting routine is a kernel density function that smooths 

F I G U R E  6  Pitfalls of data visualizations that implicitly impose model assumptions on data, such as the standard visualization of data 
distributions. A binary data set [0, 1] with n = 5000 points each is plotted as a histogram (a), where it is adequately represented provided that 
a sufficiently small bin is selected (0.01 in the present example). (b) Using a standard probability density kernel smoothing estimator, the 
same data set appears as if it were two Gaussian modes with means m1,2 = [0, 1]. (c) Adjusting the kernel width makes the visualization more 
reflective of the underlying truth, as (d) does use a different type of kernel density estimator than the one provided by the so- called Pareto 
density estimation (Ultsch, 2003).

(a)

(b)

(c)

(d)

 15322149, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ejp.2135 by U

niversitatsbibliothek Johann, W
iley O

nline L
ibrary on [11/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



   | 793LÖTSCH and ULTSCH

the data, making a binary variable look like two Gaussians. 
More appropriate data visualizations include the standard 
histogram or another type of probability density estimator, 
such as the Pareto density estimation (PDE) (Ultsch, 2003), 
which is also a kernel density but uses a different algorithm; 
however, it is not a standard in statistical or plotting soft-
ware. It should be noted that histograms, like all examples 
in Figure 6, also make assumptions about the data by apply-
ing a certain bin width, the default settings just happen to 
be better suited for the binary data example, which is also 
true for the PDE.

The present visualizations were performed by program-
ming code in the R language (Ihaka & Gentleman, 1996) 
using the R software package (R Development Core 
Team, 2008) (version 4.2.2 for Linux), which is available 
for free on the Comprehensive R Archive Network at 
https://cran.r- proje ct.org. However, both the figures and 
the statistics can be produced using virtually any statis-
tical software package, whether coding- driven or point- 
and- click, although the latter usually has limited data 
visualization options and less flexibility.

5  |  CONCLUSIONS

The initial question of whether two sets of data with the 
same means and standard deviations can be statistically 
different, and, whether a statistical test is even necessary 
in such cases, was answered with a clear ‘yes’. The sta-
tistical background for this is, of course, available in the 
pain research community. The above comments under-
line that adequate visualization of the data is one of the 
keys to a correct analysis. Before making any (implicit) 
hypotheses about the data, it is necessary to make meas-
uring visualizations such as QQ plots or pixel matrix plots 
as examples in this commentary. While statistical signals 
that the distribution is supposedly not normal are some-
times missed and non- parametric or parametric tests are 
performed without regard to them, the likelihood that 
authors, reviewers or readers of research reports will 
overlook such errors is greatly reduced if the raw data are 
presented in such a way that their distribution is clear. 
Therefore, reporting standard descriptive statistics falls 
short if it is not accompanied by an informative visuali-
zation of the (raw) data. In summary, before ‘step one’ in 
a scientific analysis of data, namely the formulation of a 
hypothesis, step zero should be the use of measurement 
visualizations to avoid (implicit) false hypotheses or as-
sumptions about the nature of the given data.
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