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ABSTRACT

Background

Eukaryotic gene expression is controlled by cis-regulatory elements (CREs) including

promoters and enhancers which are bound by transcription factors (TFs). Differential

expression of TFs and their putative binding sites on CREs cause tissue and

developmental-specific transcriptional activity. Consolidating genomic data sets can

offer further insights into the accessibility of CREs, TF activity, and thus gene

regulation. However, the integration and analysis of multi-modal data sets are

hampered by considerable technical challenges. While methods for highlighting

differential TF activity from combined ChIP-seq and RNA-seq data exist, they do not

offer good usability, have limited support for large-scale data processing, and provide

only minimal functionality for visual result interpretation.

Results

We developed TF-Prioritizer, an automated java pipeline to prioritize condition-specific

TFs derived from multi-modal data. TF-Prioritizer creates an interactive, feature-rich,

and user-friendly web report of its results. To showcase the potential of TF-Prioritizer,

we identified known active TFs (e.g., Stat5, Elf5, Nfib, Esr1), their target genes (e.g.,

milk proteins and cell-cycle genes), and newly classified lactating mammary gland

TFs (e.g., Creb1, Arnt).

Conclusion

TF-Prioritizer accepts ChIP-seq and RNA-seq data, as input and suggests TFs with

differential activity, thus offering an understanding of genome-wide gene regulation,

potential pathogenesis, and therapeutic targets in biomedical research.

INTRODUCTION

Understanding how genes are regulated remains a major research focus of molecular

biology and genetics [1]. In eukaryotes, gene expression is controlled by cis-regulatory

elements (CREs) such as promoters, enhancers, or suppressors, which are bound by
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transcription factors (TFs) promoting or repressing transcriptional activity depending on their

accessibility [2]. TFs play an important role not only in development and physiology but also

in diseases, e.g., it is known that at least a third of all known human developmental disorders

are associated with deregulated TF activity and mutations [3–5]. An in-depth investigation of

TF regulation could help us to gain deeper insight into the gene-regulatory balance found in

healthy cells. Since most complex diseases involve aberrant gene regulation, a detailed

understanding of this mechanism is a prerequisite to developing targeted therapies [6,7].

This is a daunting task, as multiple genes in eukaryotic genomes may affect the disease,

each of which is controlled by possibly various CREs.

TF ChIP-seq experiments are the gold standard for identifying and understanding

condition-specific TF-binding on a nucleotide level. However, since there are approximately

1,500 active TFs in humans [8] and about 1,000 in mice [9] and additionally considering the

need to establish TF patterns separately for each tissue and physiological condition this

approach is prohibitive. Alternatively, histone modification (HM) ChIP-seq offers a broader

view of the chromatin due to its capability to highlight open chromatin regions where gene

expression can take place, hence allowing us to identify locations of condition-specific CREs

[10]. Computational methods can then be used to prioritize TFs likely binding to these CREs,

leading to hypotheses and informing us which TF ChIP-seq experiments are the most

promising to perform. This narrows the scope of TF ChIP-seq experiments needed to

confirm working hypotheses about gene regulation [11–13].

Several general approaches have been proposed to identify key TFs that are responsible for

gene regulation. Among them, e.g., (1) a basic coexpression or mutual information analysis

of TFs and their target genes combined with computational binding site predictions [14]. (2)

Some tools use a combination of TF ChIP-seq data - providing genome-wide information

about the exact locations a TF binds - with predicted target genes that can enhance

co-expression analyses [15]. (3) Other tools employ a combination of genome-wide
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chromatin accessibility (e.g., HM ChIP-seq data) or activity information, putative TF binding

sites, and gene expression data. This combination can be powerful to determine key TF

players and is used by the state-of-the-art tool diffTF [16]. Most of the proposed approaches

require substantial preprocessing, computational knowledge, adjustment of the method to a

new use case (e.g., more than two conditions and/or time-series data), and manual

evaluation of the results (e.g., manual search and visualization for TF ChIP-seq data to

provide experimental evidence for the predictions). Hence, to streamline this process we

present TF-Prioritizer, a java pipeline to prioritize TFs that show condition-specific changes

in their activity. TF-Prioritizer falls into the third category of the previously described

approaches and automates several time-consuming steps, including data processing, TF

affinity analysis, machine learning predicting relationships of CREs to target genes,

prioritization of relevant TFs, data visualization, and visual experimental validation of the

findings using public TF ChIP-seq data (i.e., ChIP-Atlas [17]).

Figure 1: General overview of the TF-Prioritizer pipeline. TF-Prioritizer uses peaks from

ChIP-seq and gene counts from RNA-seq. It then (1) calculates TF binding site affinities,
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(2) links candidate regions to potential target genes, (3) performs machine learning to find

relationships between TFs and their target genes, (4) calculates background and TF

distributions, (5) picks TFs which significantly differ from the background using the

Mann-Whitney U test [18] and a comparison between the mean and the median of the

background and TF distribution, (6) searches for tissue-specific TF ChIP-seq evaluation

data in ChIP-ATLAS [17], (7) creates screenshots using the Integrative Genomics Viewer

from predicted regions of interest [19–21], and (8) creates a feature-rich web application

for researchers to share and evaluate their results.

Figure 1 depicts a general overview of the pipeline. TF-Prioritizer expects two types of input

data: i) histone modification peak ChIP-seq data indicating accessible regulatory regions

showing differential activity (peak data is typically generated by MACS2 [22]), and ii) gene

expression data from RNA-seq, which allows us to identify differentially expressed genes

that are potentially regulated by TFs under a certain time point or condition. Our pipeline

searches for TF binding sites within CREs around accessible genes and calculates an

affinity score for each known TF to bind at these particular loci using the state-of-the-art tool

TEPIC [23,24]. TEPIC uses an exponential decay model that was built under the assumption

that regulatory elements close to a gene are more likely important than more distal elements

and weighs this relationship accordingly. This allows us to assess TF binding site specific

probabilities by using TF binding affinities calculated by TRAP, which uses a biophysical

model to assess the strength of the binding energy of a TF to a CREs’ total sequence [25].

Beginning with these potential CRE candidates, we search for links to possible regulated

putative target genes that are differentially expressed between given conditions (e.g.,

disease and healthy). Approaching the task to link CREs to target genes, we employ

DYNAMITE [24], which uses a logistic regression model predicting differentially expressed

genes across time points and conditions based on TF binding site information to score

different TFs according to their contribution to the model and their expression (for a more
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technical description, see Section Technical Workflow). In general, TF-Prioritizer uses TEPIC

and DYNAMITE pairwise of the provided data (for each condition and each time point).

Based on a background distribution of the scores (combination of differential expression,

TEPIC, and DYNAMITE - see Section Discovering Cis-regulatory Elements using a

Biophysical Model), TF-Prioritizer computes an empirical p-value reflecting the significance

of the results (see Section ”An aggregated score to quantify the contribution of a TF to gene

regulation”). TF-Prioritizer offers automated access to complementary ChIP-seq data of the

prioritized TFs in ChIP-Atlas [17] for validation and shows predicted regulatory regions of

target genes using the Integrative Genomics Viewer (IGV) [19–21]. Then TF-Prioritizer

automatically generates a user-friendly and feature-rich web application that could also be

used to publish the results as an online interactive report.

To demonstrate the potential and usability of TF-Prioritizer, we use genomic data describing

mammary glands in pregnant and lactating mice and compare our analysis to established

knowledge [26], as well as propose novel TFs, which may be key factors in mammary gland

function.

MATERIALS AND METHODS

Implementation

The main pipeline protocol is implemented in Java version 11.0.14 on a Linux system

(Ubuntu 20.04.3 LTS). The pipeline uses subprograms written in Python version 3.8.5, R

version 4.1.2, C++ version 9.4.0, and CMAKE version 3.16 or higher. External software that

needs to be installed before using TF-Prioritizer can be found on GitHub (see Availability

Section). We also provide a bash script “install.sh” that automatically downloads and installs

necessary third-party software and R/Python packages. The web application uses Angular

CLI version 14.0.1 and Node.js version 16.10.0. We also provide a dockerized version of the

pipeline; it uses Docker version 20.10.12, and Docker-Compose version 1.29.2 (see

Availability Section).
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Data processing

Data sets (GEO accession id: GSE161620) are processed with the nf-core / RNA-seq [27]

and nf-core / ChIP-seq pipelines in their default settings, respectively [28,29]. The FASTQ

files of pregnant and lactating mice are processed by Salmon [30] and MACS2 [31] to

retrieve raw gene counts and broad peak files.

The dataset spans several time points in mammary gland development from pregnancy to

lactation. For each stage, two distinct time points are available: pregnancy day 6 (p6), day

13 (p13), and lactation day 1 (L1), day 10 (L10). For each time point, the dataset contains

RNA-seq data and ChIP-seq data for histone modifications H3K27ac and H3K4me3, as well

as Pol2 ChIP-seq data (Table 1).

p6 p13 L1 L10 Sum

ChIP-seq

H3K27ac

3 1 8 4 16

ChIP-seq

H3K4me3

2 3 5 0 10

ChIP-seq

Pol2

2 0 5 4 11

RNA-seq 6 8 3 4 21

Table 1: Overview of data sets covering mammary gland development from pregnancy to

lactation.

Technical Workflow
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Preprocessing

TF-Prioritizer uses peak data from ChIP-seq and a gene count matrix from RNA-seq as input

files (see GitHub repository for detailed formatting instructions). Initially, the pipeline

downloads necessary data (gene lengths, gene symbols, and short descriptions of the

genes) from BioMart [32]. Optionally, genes with low expression can be removed.

TF-Prioritizer uses transcripts per million (TPM) filter of 1 as default to remove TFs that show

very low expression and are most probably not relevant. Subsequently, we use DESeq2 to

normalize read counts and calculate the log2-fold change (log2fc) [33]. In parallel,

TF-Prioritizer preprocesses the ChIP-seq peaks by filtering blacklisted regions which would

likely lead to false positives [34]. Peak files from the same sample group can be merged to

significantly reduce the total runtime of the pipeline without affecting the ability of the

TF-Prioritizer to identify candidate CREs.

Discovering Cis-regulatory Elements using a Biophysical Model

TEPIC links CREs to target genes using a window-based approach (default: 50,000 bp)

[23,24] using TRAP, a biophysical model to quantify transcription factor affinity [25]. The

window-based approach can be enhanced by providing Hi-C loop data. In the case that the

user provides Hi-C data the prediction window is extended or limited to a chromatin loop

around a potential CREs and target gene. TEPIC interprets ChIP-seq signal intensity as a

quantitative measure of TF binding strength which helps in recovering also low-affinity

binding sites that would be missed in a classical presence/absence model [23]. The default

TEPIC framework searches for dips on top of peaks. However, numerous studies have

shown that CREs are often enriched between histone peaks (peak-dip-peak or

peak-valley-peak model) [35]. To better accommodate histone modification ChIP-seq data,

we thus extended the TEPIC framework to search for transcription factor binding sites

(TFBS) between two peaks that have close (default 500 base pairs) genomic positions.

TEPIC aggregates individual TF affinities into a TF-Gene score which is the sum of the

individual affinities normalized by the length of the considered CREs.
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Figure 2: Workflow of the Distribution Analysis to prioritize TFs in a global context by using

TF-TG scores. We use several scores conducted by previously performed analysis (see

Suppl. Fig. 1), specifically the total log2-fold change (DESeq2), the TF-Gene score

(TEPIC), and the total TF regression coefficient (DYNAMITE). We then calculate the

TF-TG score for each time point for each TF on each of the TFs predicted target genes

(TG) and save it to separate files for the background of each histone modification and for

each TF in each histone modification. In the next step, we perform a Mann-Whitney U [36]

test between the distribution of the background of the histone modification and the distinct

TF distribution of the same histone modification. If the TF passes the Mann-Whitney U test

and the median and mean of the TF are higher than the background median and mean we

consider this TF as prioritized for the histone modification. We perform a discounted

cumulative gain to receive one list with all prioritized TFs and overall histone modifications.
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According to the description in Schmidt et al. [37], the TF-Gene score for a gene

and a TF in window size is calculated as in Equation 1:

Equation 1: Calculation of the TF-Gene score

In Equation 1 is the affinity of TF in peak . A set of peaks ( ) contains all

open-chromatin peaks in a window of size around the gene . is the distance from

the center of the peak to the transcription start site of the gene , and is a constant

fixed at 50,000 bp [38]. The affinities are normalized by peak and motif length where is

the length of the peak and is the total length of the motif of TF (see Schmidt et al. for

more specific information on how the TF-Gene score is calculated [23,24,37]). Since

proximal CREs are expected to have a larger influence on gene expression compared to

distal ones, these contributions are weighted following an exponential decay function of

genomic distance [24].

We want to point out that the biophysical model calculated by TRAP only returns the center

of a potentially large area of high binding energy. The TF is supposed to bind somewhere in

this area. In our IGV screenshot, the center of the high binding energy area can appear at a

distance up to the window defined by TEPIC. We consider predicted TF peaks as matching if

we find TF ChIP-seq peaks inside this window. Following this, we do not expect the

predicted TF bindings to overlap exactly with the TF ChIP-seq peaks.

An aggregated score to quantify the contribution of a TF to gene regulation.

To determine which TFs have a significant contribution to a condition-specific change

between two sample groups, we want to consider multiple lines of evidence in an

aggregated score. We introduce Transcription Factor Target Gene scores (TF-TG scores,

Figure 2) which combine (i) the absolute log2-fold change of differentially expressed genes

since genes showing large expression differences are more likely affected through TF

regulation than genes showing only minor expression differences; (ii), the TF-Gene scores
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from TEPIC indicating which TFs likely influence a gene, and (iii) to further quantify this link

we also consider the total coefficients of a logistic regression model computed with

DYNAMITE [24]. DYNAMITE predicts (high/low) expression of a gene based on the fold

changes of TF-Gene scores reported by TEPIC and thus helps to prioritize among multiple

potential TFs regulating a gene. We calculate TF-TG scores ( ) for each time point and

each type of ChIP-seq data (e.g., different histone modifications) as in Equation 2:

Equation 2: Calculation of the TF-TG score for each time point and each type of ChIP-seq

data :

,

where represents the fold change of the target gene between the two conditions,

the TF-Gene score retrieved by TEPIC as detailed above, and the total

regression coefficient of the TF .

Identify meaningful contributions based on a random background distribution

The ultimate goal of TF-Prioritizer is to identify those TFs that are most likely involved in

regulating condition-specific genes. To judge if a specific TF-TG score is meaningful, we

generate a background distribution under the hypothesis that the vast majority of TFs will not

be condition-specific. Therefore, we generate two different kinds of distributions (see Figure

2): (1) A background distribution that is ChIP-seq-specific, where each TF-TG score, if larger

than zero, is added: (2) A

ChIP-seq-specific TF distribution, where all TF-specific and ChIP-seq-specific TF-TG scores,

if larger than zero, are added: . We then test

each TF distribution of each ChIP-seq against the global distribution matching the ChIP-seq

data type. If the p-value of a Mann-Whitney U (MWU) test [36] is below the threshold

(default: 0.05) and the median and mean of TF are higher than the background distribution,

the TF is recognized as a potential candidate. In the last step, we sort the TFs based on the

mean of the TF-TG scores and report the ranks. For a more mathematical description see

the following.
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We obtain a global list of prioritized TFs across several ChIP-seq data types (e.g. different

histone modifications) as follows:

Let be the set of transcriptions factors such that the MWU test between the

foreground distribution and the background distribution yields a significant

-value. For a fixed TF , let

be the rank of in

w.r.t. the mean TF-TG scores across all target genes. We now compute an overall TF score

by aggregating the HM-specific ranks as follows:

Equation 3:

,

where is the set of histone modifications where the foreground distribution of

TF-TG scores for a specific HM and specific TF exhibits a significant right-shift

w.r.t. the background distribution of a specific HM . We first sum up the score of the

TF over all HMs , while is the number of TFs that are found to be significant in

this HM, and the rank of the TF in the list of this HM . If a TF is not found in an

HM we add 0 (Equation 3). Lastly, we rank TFs ascendingly according to that score.

Discovering each score's contribution to the global score

To analyze the impact of the different parts of the TF-TG-Score we permutate its

components (TF-Score from TEPIC, regression coefficient of DYNAMITE, log2fc of

DESeq2). We execute TF-Prioritizer with the exact same configuration but with all possible

combinations of the components and compare the prioritized TFs (e.g., solely TF-Score from

TEPIC, a combination of TF-Score from TEPIC with the regression coefficient of DYNAMITE,

…).

Validation using independent data from ChIP-Atlas
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TF-Prioritizer is able to download and visualize experimental tissue-specific TF ChIP-seq

data for prioritized TFs from ChIP-Atlas [17], a public database for ChIP-seq, ATAC-seq,

DNase-seq, and Bisulfite-seq data. ChIP-Atlas provides more than 362,121 data sets for six

model organisms, i.e., human, mouse, rat, fruit fly, nematode, and budding yeast [39].

TF-Prioritizer automatically visualizes TF ChIP-seq peaks on predicted target sites of

prioritized TFs to experimentally validate our predictions. TF-Prioritizer also visualizes

experimentally known enhancers and super-enhancers from the manually curated database

ENdb [40].

By employing TF ChIP-seq data from ChIP-Atlas, TF-Prioritizer is capable of performing a

TF co-occurrence analysis of prioritized TFs by systematically comparing the experimentally

validated peaks of pairs of prioritized TFs. In a co-occurrence analysis, it is checked what

percentage of available peaks of one TF is also found in another TF. TF-Prioritizer returns

the percentage of similar peaks between prioritized TFs to discover the co-regulation of TFs.

Explorative analysis of differentially expressed genes

TF-Prioritizer allows users to manually investigate the ChIP-seq signal in the identified CREs

of differentially expressed genes. To this end, TF-Prioritizer generates a compendium of

screenshots of the top 30 upregulated or downregulated loci (sorted by their total log2-fold

change) between two sample groups. Additionally, we allow the user to specify loci that are

of special interest (e.g., the CSN family or the SOCS2 locus in lactating mice). TF-Prioritizer

then produces screenshots using the TF ChIP-seq data from ChIP-Atlas and visualizes them

in a dynamically generated web application. Screenshots are produced using the IGV

standalone application [19–21]. TF-Prioritizer also automatically saves the IGV session, so

the user can do further research on the shown tracks.

Using TF-Prioritizer to investigate gene regulation

We use three approaches to evaluate the biological relevance and statistical certainty of our

results: (1) literature research to validate whether the reported TFs are associated with the

phenotype of interest, (2) we consider the top 30 target genes with highest affinity values
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and determine if their expression cluster by condition (note: we do not preselect differentially

expressed genes for this analysis but focus on affinities only); we also review the literature

and report whether these genes are known to be involved in either pregnancy or mammary

gland development/lactation, and (3) validation using independent TF ChIP-seq data from

ChIP-Atlas. To conduct the third evaluation, we built region search trees, a balanced binary

search tree where the leaves of the tree have a start and end position and the tree returns all

leaves that overlap with a searched region, for all chromosomes of the tissue-specific

ChIP-Atlas peaks for each available prioritized TF [41]. We then iterate over all predicted

regions within the window size defined in TEPIC and determine if we can find any

overlapping peaks inside the ChIP-Atlas peaks. If we can find an overlap with a peak defined

by the ChIP-Atlas data, we count the predicted peak as a true positive (TP) or else as a false

positive (FP). Next, we randomly sample the same number of predicted peaks in random

length-matched regions not predicted to be relevant for a TF. If we find an overlap in the

experimental ChIP-Atlas data, we consider this region as a false negative (FN) or else as a

true negative (TN). Notably, we expect the FN count to be inflated since we considered

condition-specific peaks of active CREs. Inactive CREs may very well have TFBS that are

not active. Nevertheless, we expect to find more such TFBS in active regions compared to

random samples, allowing us to compute sensitivity, specificity, precision, accuracy, and the

harmonic mean between precision and sensitivity (F1-score) (see Suppl. Material 1).

RESULTS AND DISCUSSION

We present TF-Prioritizer which combines RNA-seq and ChIP-seq data to identify

condition-specific TF activity. TF-Prioritizer is built on several existing state-of-the-art tools

for peak calling, TF-affinity analysis, differential gene expression analysis, and machine

learning tools. TF-Prioritizer is the first to jointly consider multiple types of modalities (e.g.,

different histone marks and/or time series data), provide a joint list of active TFs, and enable

the user to see a visualized validation of the predictions in an interactive and feature-rich

web application.
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In our application case (https://exbio.wzw.tum.de/tfprio/mouse/#/), TF-Prioritizer reports

several TFs known to be involved in mammary gland development and/or lactation, including

Signal Transducer and Activator of Transcription (Stat5 - consisting of Stat5a and Stat5b)

[26,42,43], E74 Like ETS Transcription Factor 5 (Elf5) [44,45], Estrogen Receptor 1 (Esr1)

[46], and Nuclear Factor I B (Nfib) [26]. TF-Prioritizer also identifies TFs that are known to be

important in pregnancy, e.g., ETS Proto-Oncogene 2 (Ets2) [47]. Furthermore, we prioritize a

few candidate TFs that are not yet widely known to be involved in either of the processes

(e.g., CAMP Responsive Element Binding Protein 1 (Creb1), Aryl Hydrocarbon Receptor

Nuclear Translocator (Arnt)) showing the potential of TF-Prioritizer to generate new

hypotheses, e.g., overall, we found that 94 out of 104 prioritized TFs controlled at least one

Rho family GTPase-associated target gene. Rho family GTPases play an important role in

epithelial morphogenesis during mammary gland development [48,49]. Furthermore, we

predict 58 of 104 prioritized TFs to control Casein (Csn) family proteins that are known to be

milk proteins [50].

In the following, we intensively evaluate and discuss the TFs Stat5 and Elf5 and their

predicted target genes as those TFs are widely accepted to be important in mammary gland

development and lactation in mice. We investigate for each TF its expression change

(DESeq2 normalized gene counts) over the time points (pregnancy day 6 (p6), day 13 (p13),

and lactation day 1 (L1), day 10 (L10)) as well as the top 30 predicted target genes for

selected histone modifications and time points. We evaluate the sensitivity, specificity,

precision, and accuracy of the predicted peaks using experimentally validated data to review

the literature about the TF's role in pregnancy, mammary gland development, or lactation.

We pick a few of the predicted target genes for closer evaluation and assess differential

expression between the two stages (pregnancy and lactation). We determine if we predict

high binding energy of the TF in close proximity to the target gene and evaluate the

predicted peaks with experimental evidence using external data from ChIP-Atlas and

experimental data from pregnant and lactating mice. Also, we evaluate the expression

change of the target gene on a Pol2 ChIp-seq signal. Lastly, we provide literature and
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interpretation of the target gene's role in pregnancy, mammary gland development, or

lactation.

After the evaluation of Stat5 and Elf5, we provide further details about the predictions of the

TFs Esr1, Nfib, Creb1, and Arnt with respect to the Rho family GTPase-associated target

genes and the Casein protein family. For further data exploration, we refer to our web

application for all prioritized TFs (see the Availability section).

Stat5

Stat5 mRNA levels are highly upregulated during the last days of pregnancy and at the

beginning of lactation from p6 (1,076), p13 (2,810) to L1 (3,355), and L10 (1,203). In Figure

3. a) (H3K4me3) and 3b (H3K27ac), we can see a clear expression separation between p13

and L1 of predicted target genes of Stat5. Suppl. Fig. 4. a) shows that TF-Prioritizer is able

to reach a sensitivity of 57.89%, a specificity of 66.39%, a precision of 78.15%, an accuracy

of 60.65%, and an F1 score of 66.51% for Stat5a..Stat5b. These high percentages of

statistical measures give us confidence in our predictions. Stat5 is known in the literature to

significantly regulate mammary gland morphology [51].

Suppressor Of Cytokine Signaling 2 (Socs2) (Figure 3. a) mRNA levels show higher

expression in pregnancy compared to lactation. Socs2 shows both experimental and

predicted peaks (Figure 3. c). We can also observe a change in the Pol2 signal between

pregnancy and lactation, reflecting the increased transcriptional activity. Socs2 has distinct

physiological functions in the developing mammary gland [52] and Stat5 may act as a

suppressor for Socs2 during lactation [53].

mRNA levels of the members of the Casein (Csn) family are strongly upregulated during

lactation (Figure 3. b). This includes the milk protein Casein Beta (Csn2) [54] and the Casein

Alpha S2 Like proteins (Csn1s2a and Csn1s2b) [55,56]. Stat5 ChIP-Atlas data supports the

binding of predicted Stat5 peaks in the genomic area surrounding these genes. We can also

observe a precise change in TF binding activity during p6 (few peaks), p13 (more peaks),

and L1 (crowded peaks) using complementary Stat5 experimental TF ChIP-seq data from

16

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.19.512881doi: bioRxiv preprint 

https://paperpile.com/c/NtbDhX/JJLq
https://paperpile.com/c/NtbDhX/Ftpu
https://paperpile.com/c/NtbDhX/60uV
https://paperpile.com/c/NtbDhX/oM8f
https://paperpile.com/c/NtbDhX/hHMC+2izi
https://doi.org/10.1101/2022.10.19.512881
http://creativecommons.org/licenses/by-nc/4.0/


lactating mice (Figure 3. d). In Pol2 signaling (Figure 3. d), we observe a significant change

between p6 and L1. Discoidin Domain Receptor Tyrosine Kinase 1 (Ddr1) appears to be

upregulated by Stat5 (Figure 3. a-b). In Suppl. Fig. 2, we observe that TRAP predicted high

binding energy for Stat5 to the regulatory region of Ddr1 in L1. Experimental data of

ChIP-Atlas and Stat5 ChIP-seq data also indicate the binding of Stat5 in the Ddr1 region

confirming our predicted peak. We can also observe a significant increase in the Pol2 signal

during the time between p6, and L1 in the predicted region. Stat5 is known to be linked to

Ddr1 which is essential in mammary gland development [57,58] as Ddr1 signaling is

essential to sustain Stat5 function during lactogenesis [59].

Elf5

Past studies have shown that Elf5 is important for mammary gland development [44,45].

Indeed, Elf5 mRNA levels show increasing expression at the beginning of the pregnancy p6

(1,355), p13 (6,970) to lactation L1 (12,729), L10 (6,133) (Figure 4. a-b). The heatmap of the

top 30 predicted target genes in Figure 4. a) (H3K4me3 - p6 versus L1) and Figure 4. b)

(Pol2 - p6 versus L10) clearly separates predicted target genes between pregnancy and

lactation. TF-Prioritizer can predict peaks for Elf5 with a sensitivity of 77.57%, a specificity of

80.59%, a precision of 81.59%, an accuracy of 79.00%, and an F1 score of 79.53%, which

indicates that these peaks are correctly predicted.

Figure 4. a) shows that Elf5 likely leads to the downregulation of GLI Family Zinc Finger 1

(Gli1) mRNA levels during lactation. In Figure 4. c) we can witness predicted and

experimentally validated peaks near Gli1. We can observe that the Pol2 signal is increasing

over time to lactation. In close proximity to Gli1, we can observe Rho GTPase Activating

Protein 9 (Arhgap9) whose mRNA levels are predicted to be upregulated by Elf5. We believe

that Elf5 is acting as a suppressor for Gli1 as Fiaschi et al. showed that Gli1-expressing

females were unable to lactate and milk protein gene expression was essentially absent [60].

Figure 4. a) further shows that Rho GTPase Activating Protein 9 (Arhgap9) mRNA levels,

one of several essential proteins in Rho GTPases [48,49] are upregulated in lactation
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compared to pregnancy. We predict high binding energy in close proximity and inside

Arhgap9. In Figure 4. c) we observe experimentally validated peaks which are corroborated

by results from ChIP-Atlas. We also notice a significant change in the Pol2 signal between

pregnancy and lactation in this area.

In Figure 4. c) we observe that Arhgap9 and Gli1 are close neighbors in the human genome.

We hypothesize that Elf5 is suppressing Gli1 to enable lactation [60] and is upregulating

Arhgap9 for Rho GTPase activity during lactation at the same time.

In Figure 4. b), Rho GTPase Activating Protein 39 (Arhgap39) mRNA levels are upregulated

during pregnancy. Arhgap39 is another Rho GTPase activating protein and could therefore

be essential for mammary gland development. Suppl. Fig. 3 shows predicted peaks close to

Arhgap39. We also observe experimentally validated peaks which are corroborated by data

from ChIP-Atlas. In addition, we notice an increase in the Pol2 signal in this area during

lactation compared to pregnancy.

Rho/Rac Guanine Nucleotide Exchange Factor 2 (Arhgef2) mRNA levels, which is essential

for Rho GTPase activity, are also upregulated during pregnancy (Figure 4. b). In Suppl. Fig.

3. a-b), predicted and experimentally validated peaks occur near Arhgef2. We also detect a

change in the Pol2 signal during lactation.

Lymphocyte Cytosolic Protein 1 (Lcp1) mRNA levels, which was reported essential for

lactation [61], are upregulated in lactation compared to pregnancy (Figure 4) with several

predicted peaks in close proximity to Lcp1. We also find Elf5 experimentally validated peaks

in the ChIP-Atlas data and Elf5 TF ChIP-seq data at the same position as our predicted

peaks. We can also observe a stronger Pol2 signal during lactation compared to pregnancy.

Insulin Like Growth Factor Binding Protein Acid Labile Subunit (Igfals) mRNA levels are

upregulated in lactation [62] (Figure 4. a) with high binding affinity near Igfals in Suppl. Fig.

3. c). We also find experimentally validated peaks near Igfals which are corroborated by data

from the ChIP-Atlas. We also observe a stronger Pol2 signal during lactation than in

pregnancy. Igfals is a regulator of the tumor suppressor protein p53 [63] activity and Igfals

may thus be a protective factor preventing breast cancer in mammary gland development.
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Esr1

Esr1 mRNA levels are upregulated the most at time point p13 (p6 (639), p13 (2,981), L1

(742), and L10 (806)). Esr1 (Suppl. Fig. 4. c) can be predicted with a sensitivity of 58.79%, a

specificity of 78.93%, a precision of 90.18%, an accuracy of 63.48%, and an F1 score of

71.18%. We predict that Esr1 controls the expression of at least three Rho family

GTPase-associated proteins: Arhgap39, Rho/Rac Guanine Nucleotide Exchange Factor 18

(Arhgef18), and Rho Guanine Nucleotide Exchange Factor 40 (Arhgef40). We also observed

Casein Kinase 1 Epsilon (Csnk1e), a member of the Casein family, to be controlled by Esr1.

From these results, we can hypothesize that Esr1 could thus play a role during mammary

gland development [46]. In the literature, we found that Mueller et al. concluded that

complete mammary gland development depends on the estrogen receptor among other TFs

[64]. H.L.M. Tucker et al. showed that repressing Esr1 expression has a significant impact on

mammary gland development [65].

Nfib

Nfib mRNA level expression is strongly increasing during pregnancy p6 (5,320) with the

highest expression at the end of the pregnancy p13 (20,517) and decreasing during lactation

L1 (8,639) to L10 (2,958). We can predict the correct peaks of Nfib with a sensitivity of

77.06%, a specificity of 86.63%, a precision of 88.64%, an accuracy of 81.13%, and an F1

score of 82.45%. We predict that Nfib regulates Casein Kinase 2 Beta (Csnk2b), a member

of the Casein family. According to GeneCards [66], Csnk2b is a regulatory subunit of casein

kinase II/CK2. Among its related pathways is the regulation of Tumor Protein p53 (Tp53)

[67,68]. Csnk2b is upregulated in lactation and could therefore play a role in tumor

prevention. We predict that Nfib controls Rho/Rac Guanine Nucleotide Exchange Factor 2

(Arhgef2), Rho Guanine Nucleotide Exchange Factor 39 (Arhgef39), and Cdc42 Guanine

Nucleotide Exchange Factor 9 (Arhgef9) which are associated with Rho GTPase activity.

According to our predictions, Nfib also has a partial influence on the expression of Ddr1 (see

Stat5). With respect to this data, we are in line with the currently accepted knowledge that
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Nfib is important for mammary gland development [26].

Creb1

The co-occurrence analysis of TF-Prioritizer shows that Creb1 has a high number of similar

peaks with TF known to be involved in mammary gland development and lactation, namely

Elf5 (22% overlap), Nfib (29% overlap), and Stat5a (21% overlap) (see Suppl. Fig. 5). Creb1

mRNA levels are upregulated during late pregnancy from p6 (779), p13 (3,361), and early

lactation L1 (1,311) to L10 (400). We hence decided to have a closer look at Creb1 and its

target genes. For Creb1, TF-Prioritizer reaches a sensitivity of 82.06%, a specificity of

91.35%, a precision of 92.45%, an accuracy of 86.12%, and an F1 score of 86.94% (Suppl.

Fig. 4. e). We also predict Creb1 to regulate a member of the Rho GTPase family - Rho/Rac

Guanine Nucleotide Exchange Factor 18 (Arhgef18) and a member of the Casein protein

family Csnk1e. To the best of our knowledge, Creb1 has not yet been widely recognized to

play a role in lactation or mammary gland development. However, Yao et al. [69,70] suggest

Creb1 is involved in the lactation process and regulates milk fatty acid composition in the

mammary gland in goats. We recommend experimentally validating the importance of Creb1

in lactation in the mammary gland in mice.

Arnt

We observe a similar gene count behavior of Arnt in comparison to, e.g., Nfib, over time,

Arnt mRNA levels are getting more expressed during pregnancy (p6 516, p13 2210) and are

getting less expressed during lactation (L1 919, L10 283) which could mean that Arnt is

more involved in mammary gland development but less involved in lactation. Arnt and many

other TFs can regulate gene expression using co-factors [71]. We prioritized such

co-regulation with either Hypoxia Inducible Factor 1 Subunit Alpha (Hif1a) [72] or Aryl

Hydrocarbon Receptor (Ahr) [73]. We prioritized Arnt..Hif1a (expression of Hif1a: p6 (639),

p13 (3,654), L1 (2,357), L10 (856)), Ahr..Arnt (expression of Ahr: p6 (492), p13 (1,892), L1

(459), L10 (91)) and Arnt alone. We can also see that the TF partners in the complex also

follow the same gene expression pattern of upregulation until the end of pregnancy and then
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slow downregulation during lactation. In Suppl. Fig. 4. f-g) we can see that Arnt (sensitivity:

81.76%, specificity: 60.69%, precision: 41.18%, accuracy: 66.00%, F1 score: 54.77%) has a

drop if it comes to co-factoring with Hif1a (sensitivity: 57.07, specificity: 54.10%, precision:

41.89%, accuracy: 55.19%, F1 score: 48.32%) and Ahr (sensitivity: 63.14%, specificity:

56.30%, precision: 40.94%, accuracy: 58.52%, F1 score: 49.68%). We want to point out that

we could not retrieve experimental data for Hif1a and Ahr which could explain the drop in the

statistical metrics. We predict that the Arnt..Hif1a complex controls Rho Guanine Nucleotide

Exchange Factor 1 (Arhgef1), Rho GTPase Activating Protein 12 (Arhgap12) of the Rho

GTPase family, and Casein Kinase 2 Alpha 2 (Csnk2a2) of the Casein protein family. In the

Ahr..Arnt complex we predict Arhgef39, Arhgef2, and Arhgef40 of the Rho GTPase family to

be controlled. We predict Arnt to control Csnk2a2 a member of the Casein protein family.

This could mean that Arnt could be important for the lactation process. These predictions

need to be experimentally validated.

Rho GTPase's role in pregnancy, mammary gland development, and

lactation

We predict that several Rho GTPase-associated genes are regulated by the predicted TFs,

as their expression changes during pregnancy and lactation. For example, we observe an

upregulation of Arhgap9 that is essential for Rho GTPase activity during lactation in

comparison to pregnancy (Figure 4. a and Figure 4. c). On the other hand, Arhgef2 is

upregulated during pregnancy and downregulated during lactation. Arhgef2 is responsible for

the activity of the Rho GTPase by exchanging GDP for GTP [74]. Our data suggest

mechanisms of pregnancy, mammary gland development, and lactation, are dependent on

Rho GTPase and its regulation by multiple TFs. Experimental validation could help to further

understand those complex processes.
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Figure 3: Validation of selected Stat5 target genes. (a) and (b) show heat maps of

predicted target genes. We select Ddr1, Socs2, and Csn family proteins (black arrows) as

they are already known to be crucial in either mammary gland development or lactation. In

the heatmaps, we can observe a clear separation of these target genes between the time

points p13 and L1. Panels (c) and (d) show IGV screenshots of Socs2 and the Csn family.

In (c) we see that we predict peaks in p13 near Socs2. Socs2 is necessary for mammary

gland development [52]. From this data, we suggest that Socs2 is controlled by Stat5 as

an activator in p13 and as a repressor in L1 due to the inhibited expression of Socs2 in the

heatmaps [53]. In (d) we can observe Pol2 tracks, that show a distinct change in the

expression of Csn family proteins between pregnancy and lactation. This could indicate

that Stat5 controls the expression of the milk proteins.
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Figure 4: Validation of selected target genes for Elf5. (a) and (b) show heat maps of

predicted target genes. We select Gli1, Lcp1, and Igfals (black arrows) as they are already

known to be crucial in either mammary gland development or lactation. We further select

the genes Arhgap9, Arhgef2, and Arhgap39 (black arrows) that are known to be essential

for Rho GTPases due to their studied role in epithelial morphogenesis during mammary

gland development [48,49]. In the heatmaps, we can observe a clear separation of these

target genes between the time points p6-L1 and p6-L10. (c) and (d) show IGV screenshots

of Arhgap9/ Gli1 and Lcp1 respectively. In (c) we can see predicted Elf5 peaks near

Arhgap9 and Gli1. ChIP-Atlas and the experimental TF ChIP-seq data substantiate the

prediction near Arhgap9. Experimental data of Elf5 back up the predictions near Gli1. We

can also observe upregulated Pol2 activity in L1 in this area. In (d) we can see multiple

predictions of Elf5 bindings near Lcp1. ChIP-Atlas and the experimental TF ChIP-seq data

corroborate the bindings of Elf5 in this area. We also observe an upregulated Pol2 activity

in time points L1 and L10 in this area.

TF-Prioritizer versus diffTF

We compared TF-Prioritizer against the state-of-the-art tool diffTF that prioritizes and

classifies TFs into repressors and activators given conditions (e.g., health and disease) [16].

diffTF does not allow multiple conditions or time series data and distinct analysis of histone

modification peak data in a single run and does not consider external data for validation. We

point out that diffTF cannot use different sample sizes between ChIP-seq and RNA-seq data,

i.e. diffTF requires that for each ChIP-seq sample there is an RNA-seq sample and vice

versa. diffTF does not use a biophysical model to predict TFBS but uses general, not

tissue-specific, peaks of TF ChIP-seq data, and considers all consensus peaks as TFBS

[16]. For a comparison of features and technical details see Suppl. Table 1 and Suppl. Table

2, respectively. Since the diffTF tool does not provide an aggregation approach to different
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conditions, we aggregate the prioritized TFs the same way as TF-Prioritizer does (i.e., the

union of all prioritized TFs overall runs using diffTF’s default q-value cut-off of 0.1) to

enhance the comparability of the final results overall conditions. In summary, diffTF

prioritized 300 TFs compared to the 104 TFs (including combined TFs like Stat5a..Stat5b

that count as one TF in TF-Prioritizer) that TF-Prioritizer reported (see Figure 5). It thus

seems that diffTF is less specific than TF-Prioritizer (see Suppl. Table 3 for a comparison of

prioritized TFs). diffTF also finds known TFs that TF-Prioritizer captures (e.g., Stat5a, Stat5b,

Elf5, and Esr1) but did not capture the well-known TF Nfib. diffTF also prioritizes Creb1 and

Arnt that in our opinion are strong candidates for experimental validation. By deploying 20

cores on a general computing cluster, TF-Prioritizer took roughly 7.5 hours to be fully

executed and diffTF took approx. 41 hours to be fully executed.

Figure 5: Venn diagram of prioritized TFs by TF-Prioritizer and diffTF. diffTF and

TF-Prioritizer found 62 (18.2%) common TFs.

Limitations and Considerations
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TF-Prioritizer has several limitations. TF-Prioritizer is heavily dependent on the parameters

given to the state-of-the-art tools it is using, e.g., providing Hi-C data to TEPIC could have a

significant impact on the search window while linking potential CREs to target genes. We

also point out that we neither have any experimental evidence nor existing literature as proof

that the default length of 500 bps of the dip model used in the extended TEPIC framework is

the ideal cut-off.

We want to highlight the main disadvantage of using the TF-TG score as we significantly

center the surveillance of TF-Prioritizer on genes showing a high fold change or high

expression which does not necessarily mean that those genes are the most relevant for a

condition. Also, note that TF binding behavior is regulated by factors we do not observe here

such as phosphorylation. The results of the discounted cumulative gain ranking should be

considered with care, since the biologically most relevant TFs may manifest in only a subset

of ChIP-seq data types.

The calculation of TP, TN, FP, and FN is only an approximation, as to the best of our

knowledge, there is no known approach to determine if a CREs or TFBS is active in a

condition or not. Sensitivity, specificity, precision, accuracy, and the harmonic mean of

precision and sensitivity (F1) differ from TF to TF. We believe this is correlated with the

prevalence of the binding sites or the motif specificity. We can also see a decline in the

metrics if we look at co-factor regulation (see Figure 6. a Ahr..Arnt, Arnt, and Arnt..Hif1a).

We experience the highest performance of TF-Prioritizer by looking at TFs where no

co-factor regulation is currently known or widely accepted (e.g., Creb1, Elf5, Esr1).
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Figure 6: a) Overview of Statistical Metrics of prioritized TFs that were discussed in this

manuscript. b) Contribution of the components of the TF-TG Score to the global score.

We further wanted to investigate the contribution of every single part of the TF-TG score to

the number and quality of the prioritized TFs. In Suppl. Table 4 we can see that the

distribution analysis filters out about half of the TFs and only returns the most promising TFs.

In Figure 6. b, we can see that ELF5, AHR..ARNT, and ARNT..HIF1A manifest in each of the

scores independent of any combination. NFIB, CREB1, and ARNT manifest in any score that

is related to TEPIC or DYNAMITE. ESR1 manifests in any score that is related to the

LOG2FC. STAT5A..STAT5B only manifests in certain combinations of the scores or in the

TF-TG score. The LOG2FC alone yields the most prioritized TFs but at a closer look, the

LOG2FC alone would miss NFIB which is highly relevant in mammary gland development.

Looking at this data we believe that the TF-TG score that combines TEPIC, DYNAMITE, and

LOG2FC results in the most promising TFs that are relevant.
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CONCLUSION AND OUTLOOK

TF-Prioritizer is a pipeline that combines RNA-seq and ChIP-seq data to identify

condition-specific TF activity. It builds on several existing state-of-the-art tools for peak

calling, TF-affinity analysis, differential gene expression analysis, and machine learning

tools. TF-Prioritizer is the first tool to jointly consider multiple types of modalities (e.g.,

different histone marks and/or time series data) and provide a summarized list of active TFs.

A particular strength of TF-Prioritizer is that it integrates all of this in an automated pipeline

that produces a feature-rich and user-friendly web report and allows interpreting results in

the light of experimental evidence (TF ChIP-seq data) either retrieved automatically from

ChIP-Atlas or user-provided and processed into genome browser screenshot illustrating all

relevant information for the target genes. Our approach is heavily inspired by DYNAMITE

[24,75], which follows the same goal but requires manually performing all necessary steps.

We show that TF-Prioritizer is capable of identifying already known TFs (e.g., Stat5, Elf5,

Nfib, Esr1) that are involved in the process of mammary gland development or lactation, and

their experimentally validated target genes (e.g., Socs2, Csn milk protein family, Rho

GTPase associated proteins). Furthermore, we prioritized some not yet recognized TFs

(e.g., Creb1, Arnt) that we suggest as potential candidates for further experimental

validation. These results led us to hypothesize that the Rho GTPases undergo major

changes in their tasks during the stages of pregnancy, mammary gland development, and

lactation, which is regulated by TFs.

In the future, we want to extend TF-Prioritizer to more closely consider the combined effects

of enhancers, which are often non-additive as suggested by our current model [76]. We

further want to test the functionality of TF-Prioritizer on ATAC-seq data and to apply

TF-Prioritizer in a single-cell context where histone ChIP-seq is currently hard to retrieve.

Furthermore, we want to include a more meaningful ranking over the prioritized TFs. In

summary, TF-Prioritizer is a powerful functional genomics tool that allows biomedical
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researchers to integrate large-scale ChIP-seq and RNA-seq data, prioritize TFs likely

involved in condition-specific gene regulation, and interactively explore the evidence for the

generated hypotheses in the light of independent data.

AVAILABILITY AND REQUIREMENTS

The source code of the pipeline is freely available at GitHub:

https://github.com/biomedbigdata/TF-Prioritizer

The report on the pregnant and lactating mice data set is available at:

https://exbio.wzw.tum.de/tfprio/mouse/#/

Mouse pregnancy and lactation data

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161620

Mouse TF ChIP-seq data on STAT

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE82275

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84115

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37646

Project name: TF-Prioritizer

Project home page: https://github.com/biomedbigdata/TF-Prioritizer

Operating system(s): Linux

Programming language: Java

Other requirements: Java version 11.0.14 or higher, Python version 3.8.5 or higher, R

version 4.1.2 or higher, C++ version 9.4.0 or higher, CMAKE version 3.16 or higher, Angular

CLI version 14.0.1 or higher, Node.js version 16.10.0 or higher, Docker version 20.10.12 or

higher, and Docker-Compose version 1.29.2 or higher.

Open source license: GNU GPL v. 3.0
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SUPPLEMENTARY DATA

Supplementary Data is available at GigaScience online.

ABBREVIATIONS

Abbreviation Description

Ahr Aryl Hydrocarbon Receptor

Arhgap12 Rho GTPase Activating Protein 12

Arhgap39 Rho GTPase Activating Protein 39

Arhgap9 Rho GTPase Activating Protein 9

Arhgef1 Rho Guanine Nucleotide Exchange Factor

1

Arhgef18 Rho/Rac Guanine Nucleotide Exchange

Factor 18

Arhgef2 Rho/Rac Guanine Nucleotide Exchange

Factor 2

Arhgef40 Rho Guanine Nucleotide Exchange Factor

40

Arhgef9 Cdc42 Guanine Nucleotide Exchange

Factor 9

Arnt Aryl Hydrocarbon Receptor Nuclear

Translocator

CREs cis-regulatory elements
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Creb1 CAMP Responsive Element Binding Protein

1

Csn Casein proteins

Csn1s2a Casein Alpha S2 Like A

Csn1s2b Casein Alpha S2 Like B

Csn2 Casein Beta

Csnk1e Casein Kinase 1 Epsilon

Csnk2a2 Casein Kinase 2 Alpha 2

Csnk2b Casein Kinase 2 Beta

Ddr1 Discoidin Domain Receptor Tyrosine Kinase

1

Elf5 E74 Like ETS Transcription Factor 5

Esr1 Estrogen Receptor 1

Ets2 ETS Proto-Oncogene 2, Transcription

Factor

F1-score harmonic mean between precision and

sensitivity

FN false negatives

FP false positives

Gli1 GLI Family Zinc Finger 1
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HM histone modification

Hif1a Hypoxia Inducible Factor 1 Subunit Alpha

IGV Integrative Genome Viewer

Igfals Insulin Like Growth Factor Binding Protein

Acid Labile Subunit

L1 lactation day 1

L10 lactation day 10

Lcp1 Lymphocyte Cytosolic Protein 1

MWU Mann-WhitneyU test

Nfib Nuclear Factor I B

Socs2 Suppressor Of Cytokine Signaling 2

Stat5 (composition of Stat5a and Stat5b) Signal Transducer And Activator Of

Transcription 5A + Signal Transducer And

Activator Of Transcription 5B

TF transcription factor

TF-Gene score retrieved by TEPIC

TF-TG score retrieved by the Distribution Analysis

TFBS transcription factor binding sites

TG target gene
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TP true positives

TPM transcripts per million

Tp53 Tumor Protein P53

log2fc log2 fold-change

p13 pregnancy day 13

p6 pregnancy day 6
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