Supplementary material for: TF-Prioritizer: a java pipeline to prioritize

condition-specific transcription factors

Markus Hoffmann^{1,2,*,**}, Nico Trummer^{1,*}, Jakub Jankowski³, Hye Kyung Lee³, Lina-Liv Willruth¹, Olga Lazareva^{4,5,6}, Kevin Yuan⁷, Nina Baumgarten^{8,9,10}, Florian Schmidt¹¹, Jan Baumbach^{12,13}, Marcel H. Schulz^{8,9,10}, David B. Blumenthal¹⁴, Lothar Hennighausen^{2,3,†}, and Markus List^{1,†}

¹Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany

²Institute for Advanced Study (Lichtenbergstrasse 2 a, D-85748 Garching, Germany), Technical University of Munich, Germany

³National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America ⁴Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany

⁵Junior Clinical Cooperation Unit Multiparametric methods for early detection of prostate cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany

⁶European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany

⁷Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom

⁸Institute for Cardiovascular Regeneration, Goethe University, 60596 Frankfurt am Main, Germany

⁹German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany

¹⁰Cardio-Pulmonary Institute, Goethe University Hospital, 60596 Frankfurt am Main, Germany

¹¹Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore

¹²Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany

¹³Computational BioMedicine Lab, University of Southern Denmark, Odense, Denmark

¹⁴Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany

^{*}The authors wish to be known that in their opinion the first two authors should be considered as shared first authors

⁺The authors wish to be known that in their opinion the last two authors should be considered as shared last authors

** contact: markus.daniel.hoffmann@tum.de; markus.list@tum.de

ABSTRACT

Background

Eukaryotic gene expression is controlled by cis-regulatory elements (CREs) including promoters and enhancers which are bound by transcription factors (TFs). Differential expression of TFs and their putative binding sites on CREs cause tissue and developmental-specific transcriptional activity. Consolidating genomic data sets can offer further insights into the accessibility of CREs, TF activity, and thus gene regulation. However, the integration and analysis of multi-modal data sets are hampered by considerable technical challenges. While methods for highlighting differential TF activity from combined ChIP-seq and RNA-seq data exist, they do not offer good usability, have limited support for large-scale data processing, and provide only minimal functionality for visual result interpretation.

<u>Results</u>

We developed TF-Prioritizer, an automated java pipeline to prioritize condition-specific TFs derived from multi-modal data. TF-Prioritizer creates an interactive, feature-rich, and user-friendly web report of its results. To showcase the potential of TF-Prioritizer, we identified known active TFs (e.g., *Stat5, Elf5, Nfib, Esr1*), their target genes (e.g., milk proteins and cell-cycle genes), and newly classified lactating mammary gland TFs (e.g., *Creb1, Arnt*).

Conclusion

TF-Prioritizer accepts ChIP-seq and RNA-seq data, as input and suggests TFs with differential activity, thus offering an understanding of genome-wide gene regulation, potential pathogenesis, and therapeutic targets in biomedical research.

Supplementary Figure 1: Technical Workflow

Supplementary Figure 2: IGV screenshot of STAT5 target gene DDR1

Supplementary Figure 3: IGV screenshot of ELF5 target genes ARHGAP39, ARHGEF2, and IGFALS

Supplementary Figure 4: Confusion matrices and statistical measures

a) STAT5A..STAT5B

	Experimental				
edicted	True Fal		False		
	True	54,805	15,319		
Pre	False	39,866	30,258		

Sensitivity	57.89%	Specificity	66.39%
Precision	78.15%	Accuracy	60.65%
F1-Score	66.51%		

d) NFIB

	Experimental			
ed		True	False	
edict	True	104,007	13,330	
Pre	False	30,954	86,383	

Sensitivity	77.06%	Specificity	86.63%
Precision	88.64%	Accuracy	81.13%
F1-Score	82.45%		

e) ARNT..HIF1A

	Experimental			
ed		True	False	
edict	True	59,919	83,115	
P	False	45,076	97,958	

Sensitivity	57.07%	Specificity	54.10%
Precision	41.89%	Accuracy	55.19%
F1-Score	48.32%		

b) ELF5

	Experimental			
ed		True	False	
edict	True	29,864	6,737	
Pre	False	8,636	27,965	

Sensitivity	77.57%	Specificity	80.59%
Precision	81.59%	Accuracy	79.00%
F1-Score		79.53%	

e) CREB1

	Experimental				
Predicted		True	False		
	True	45,263	3,699		
	False	9,895	39,067		

Sensitivity	82.06%	Specificity	91.35%
Precision	92.45%	Accuracy	86.12%
F1-Score		86.94%	

g) AHR..ARNT

	Experimental			
Predicted		True	False	
	True	65,503	94,477	
	False	False 38,243		

Sensitivity	63.14%	Specificity	56.30%
Precision	40.94%	Accuracy	58.52%
F1-Score		49.68%	

c) ESR1

	Experimental				
ed		True	False		
edict	True	9,214	1,003		
Pre	False	6,459	3,758		

Sensitivity	58.79%	Specificity	78.93%
Precision	90.18%	Accuracy	63.48%
F1-Score			

f) ARNT

	Experimental					
edicted		True	False			
	True	17,083	24,403			
Pre	False	3,811	37,675			

Sensitivity	81.76%	Specificity	60.69%
Precision	41.18%	Accuracy	66.00%
F1-Score	54.77%		

	ARNT	CREB1	ELF5	ESR1	KLF4	мүс	NFIB	SNAI2	STAT1	STAT5A	STAT5	B TFAP2C
ARNT	-	0.08	0.03	0.04	0.01	0.02	0.05	0.02	-	0.03	0.03	0.05
CREB1	0.08	-	0.22	0.07	-	0.01	0.29	0.01	-	0.21	0.11	0.13
ELF5	0.03	0.22	-	0.03	-	-	0.23	0.01	-	0.24	0.14	0.03
ESR1	0.04	0.07	0.03	-	-	-	0.05	0.01	-	0.03	0.01	0.06
KLF4	0.01	-	-	-	-	0.10	-	0.01	0.09	-	0.01	-
MYC	0.02	0.01	-	-	0.10	-	0.01	0.02	0.08	-	0.01	0.01
NFIB	0.05	0.29	0.23	0.05	-	0.01	-	0.01	-	0.21	0.10	0.07
SNAI2	0.02	0.01	0.01	0.01	0.01	0.02	0.01	-	0.01	0.01	0.03	0.02
STAT1	-	-	-	-	0.09	0.08	-	0.01	-	-	0.01	-
STAT5A	0.03	0.21	0.24	0.03	-	-	0.21	0.01	-	-	0.19	0.03
STAT5B	0.03	0.11	0.14	0.01	0.01	0.01	0.10	0.03	0.01	0.19	-	0.01
TFAP2C	0.05	0.13	0.03	0.06	-	0.01	0.07	0.02	-	0.03	0.01	-

Co-Occurrence Analysis

Supplementary Material 1: Confusion matrices and the calculation of sensitivity, specificity, precision, accuracy, and F1-score

		Experimental			TP = True Positives FP = False Positives		
	ed			True	False	TN = True Negatives FN = False Negatives	
	edict	True		TP	FP		
	Pre	False		FN	TN		
	b) N	1etrics					
	Sens	itivity =	\overline{T}	<u>TP</u> P+FN			
	Specificity = $\frac{TN}{TN+FP}$						
	Precision = $\frac{TP}{TP+FP}$						
	Accuracy = $\frac{TP + TN}{TP + FP + TN + FN}$						
	2 x Sensitivity x Precisio					in	
Sensitivity + Precision							

a) Confusion Matrix

Supplementary Table 1: Feature comparison between TF-Prioritizer and diffTF

Feature	TF-Prioritizer	diffTF
Filter for chromosomes (e.g., sex, mitochondrial chromosomes)	×	mandatory, cannot be skipped
Classifies TFs into activators and repressors	×	✓
Sample combination option to reduce runtime	~	×
Filter for blacklisted genomic regions	~	✓
TPM filter for TFs	~	×
TPM filter for target genes	~	×
Biophysical Model for TF binding sites	TRAP	Use of all binding sites
Probability scores for TF target gene links	ТЕРІС	×
Prioritize TFs based on binding site energies,TF expression and target genes expression	Linear Regression (DYNAMITE)	×
Additional filtering layer for prioritized TFs	Background distribution model	Background distribution model
Searches automatically for outside experimental data	ChIP-Atlas	×
Creates genome browser screenshot on loci of interest using experimental and predicted data	IGV browser	×
Provide insight into predictions (e.g., show peaks in IGV)	~	×
Creates heatmaps for predicted target genes that have the highest binding affinity for each TF	~	×
Creates a feature-rich interactive web application	~	×

Supplementary Table 2: Technical comparison between TF-Prioritizer and diffTF

Technical Features	TF-Prioritizer	diffTF
Provides a docker or docker-like version of the pipeline to prevent technical dependency issues	dockerized	singularity, with dependency problems
Pipeline can resume if unexpected shutdown happened (e.g., server crash, process was forced to quit)	~	×
Simulation of the whole process to check for validity of parameters and files	~	~
Multi-Threading available	~	~
pipeline checks available RAM and uses less threads if not enough RAM is available	~	×

Supplementary Table 3: Comparison of prioritized transcription factors between TF-Prioritizer and diffTF

TF	diffTF	TF-Prioritizer
AHR	(x)	(X)
AIRE	(x)	
ANDR	(x)	
AP2B	(x)	
AP2C	(x)	
ARI3A.D	(x)	
ARI3A.S	(x)	
ARI5B	(x)	
ARID3A		(X)
ARID5A		(X)
ARNT	(x)	(x)
ARNT2	(x)	
ATF1	(x)	
ATF2	(x)	
ATF3	(x)	
BACH1	(X)	
BARX2	(x)	
BATF	(x)	
BCL6	(x)	
BHE40	(x)	
BHLHE40		(x)
BMAL1	(x)	
BRCA1	(x)	
CBFB		(x)
CDC5L	(X)	
СЕВРА	(x)	(x)
СЕВРВ	(x)	

CEBPD	(x)	(x)
CEBPG	(x)	
CEBPZ	(X)	
CLOCK		(X)
COE1	(x)	
COT1.B	(x)	
COT1.S	(x)	
COT2.B	(x)	
COT2.S	(x)	
CREB1	(x)	(x)
CREM	(x)	
CTCF	(x)	
CUX1	(x)	
CXXC1	(x)	
DBP	(x)	(x)
DLX3	(x)	
E2F1	(x)	
E2F2	(x)	(x)
E2F3	(x)	
E2F4		(x)
E2F5	(x)	
E2F6	(x)	(x)
E2F7	(x)	(x)
E4F1	(x)	
EGR1	(x)	(x)
EGR2	(x)	(x)
EGR3	(x)	
ELF1	(x)	
ELF3	(X)	(x)
ELF5	(x)	(x)

ELK1	(x)	
ELK3	(x)	
ELK4	(x)	(X)
ENOA	(x)	
EPAS1	(x)	(x)
ERG	(x)	
ERR2	(x)	
ESR1	(x)	(x)
ETS1	(x)	(x)
ETS2	(x)	(X)
ETV4	(x)	(x)
ETV5	(x)	
ETV6		(x)
EVI1	(x)	
FLI1	(x)	
FOS	(x)	
FOSB	(x)	
FOSL2	(x)	
FOXA1	(x)	
FOXA3	(x)	
FOXC1	(x)	
FOXI1	(x)	
FOXJ2	(x)	
FOXJ3.A	(x)	
FOXJ3.S	(x)	
FOXM1	(x)	
FOXO1	(x)	
FOXO3	(x)	(x)
FOXO4	(X)	(x)
FOXP2	(x)	

FOXP3	(x)	
FOXQ1	(x)	
FUBP1	(x)	
GABP1	(x)	
GABPA	(x)	(x)
GATA2	(x)	(x)
GATA3	(x)	
GATA6	(x)	
GCR.C	(x)	
GCR.S	(x)	
GFI1	(x)	
GLI1	(x)	
GLI2	(x)	
GLI3	(x)	
GLIS3	(x)	
GMEB1		(x)
HAND1		(x)
HBP1	(x)	
HES1	(x)	(x)
HEY2	(x)	
HIC1	(x)	(x)
HIF1A	(x)	(x)
HINFP	(x)	
HLF	(x)	(x)
HLTF	(x)	
HMGA1	(x)	
HNF1A	(x)	
HOXA5		(x)
HOXB4		(x)
HOXD9		(x)

HSF1	(X)	
HSF2	(x)	
HTF4	(x)	
HXA1	(x)	
HXA10	(x)	
HXA5	(x)	
HXA7	(x)	
HXB6	(x)	
НХВ7	(x)	
HXB8	(x)	
HXC6	(x)	
HXC8	(x)	
HXD10	(x)	
HXD4	(x)	
HXD9	(x)	
IKZF1	(x)	
IRF1	(x)	
IRF2	(x)	
IRF3	(x)	
IRF7	(x)	(x)
IRF9	(x)	(x)
ITF2	(x)	
JUN	(x)	
JUNB	(x)	(x)
JUND	(x)	(x)
KAISO	(x)	
KLF1	(x)	
KLF15	(x)	(x)
KLF3		(x)
KLF4	(x)	(x)

KLF6	(X)	(X)
KLF8	(x)	
LEF1	(X)	
LYL1		(X)
MAF	(x)	
MAFB	(X)	(X)
MAFG	(x)	
MAFK.A	(x)	
MAFK.S	(x)	
MAZ	(x)	(x)
MBD2	(x)	
MCR	(x)	
MECP2	(x)	(x)
MEF2A	(x)	
MEF2C	(x)	
MEF2D	(x)	
MEIS1	(x)	
MEIS2	(x)	
MITF	(x)	
MSX2	(x)	
MTF1	(x)	
MXI1	(x)	(x)
МҮВ	(x)	(x)
МҮВВ	(x)	
MYC	(x)	(x)
MYCN	(x)	
NANOG.A	(x)	
NANOG.S	(x)	
NF2L1	(X)	
NF2L2	(x)	

NFAC1.A	(x)	
NFAC1.S	(x)	
NFAC3	(x)	
NFAC4	(x)	
NFAT5	(x)	
NFATC3		(x)
NFATC4		(x)
NFE2	(x)	
NFE2L1		(x)
NFIA.C	(x)	
NFIA.S	(x)	
NFIB		(x)
NFIL3	(x)	(x)
NFKB1	(x)	
NFKB2	(x)	(x)
NFYA.D	(x)	
NFYA.S	(x)	
NFYB	(x)	
NFYC	(x)	
NKX31	(x)	
NR1D1	(x)	(x)
NR1D2		(x)
NR1H2	(x)	(X)
NR1H3		(x)
NR1H4	(x)	
NR2C1	(x)	
NR2C2	(x)	
NR2E3	(x)	
NR2F2		(x)
NR2F6	(x)	

NR4A1		(x)
NR4A2		(x)
NR5A2	(x)	
NR6A1	(x)	
NRF1	(x)	
ONEC2	(x)	
OVOL1	(x)	(x)
P53	(x)	
P63	(x)	
P73	(x)	
PAX5.D	(x)	
PBX1	(x)	
PBX2	(x)	(x)
PBX3	(x)	
PEBB	(x)	
PIT1	(x)	
PKNX1	(x)	
PLAG1.D	(x)	
PLAG1.S	(x)	
PO2F1	(x)	
PO2F2	(x)	
PO6F1	(x)	
PPARA.C	(x)	
PPARD	(x)	
PPARG		(x)
PPARG.A	(x)	
PPARG.S	(x)	
PRDM1	(X)	
PRGR.C	(X)	
PRGR.S	(X)	

PRRX1	(x)	
PRRX2	(x)	(x)
PURA	(x)	
RARB	(x)	
RARG.C	(x)	
RARG.S	(x)	
RBPJ		(x)
REL	(x)	
RELB	(x)	(x)
REST	(x)	
RFX1	(x)	
RFX2	(x)	
RFX3	(x)	
RORA	(x)	(x)
RORG	(x)	
RREB1	(x)	
RUNX1	(x)	(x)
RUNX2	(x)	(x)
RUNX3		(x)
RXRA	(x)	
RXRB		(x)
RXRG	(x)	
SHOX2		(x)
SMAD1	(x)	
SMAD2	(x)	(x)
SMAD3		(x)
SMAD4	(x)	
SMRC1	(x)	
SNAI1	(x)	
SNAI2	(x)	(x)

SOX10	(x)	(x)
SOX13	(x)	
SOX17	(x)	
SOX18	(x)	
SOX4	(x)	(X)
SOX5	(X)	
SOX6		(X)
SOX9	(x)	
SP1.A	(x)	
SP1.S	(X)	
SP2	(x)	
SP3	(x)	(x)
SP4	(x)	
SPIB	(x)	
SRBP1	(x)	
SRBP2	(x)	
SREBF2		(X)
STAT5A	(x)	(x)
STA5TB	(x)	(x)
STAT1	(X)	(X)
STAT3	(x)	
STAT4	(X)	
STAT6	(X)	
SUH	(x)	
TAL1.A	(x)	
TAL1.S	(x)	
ТВР	(x)	
TBX2	(X)	
ТВХ3	(X)	(X)
TCF3		(X)

TCF4		(x)
TCF7	(x)	
TEAD1	(x)	
TEAD3	(x)	
TEAD4	(x)	
TEF	(x)	
TF2L1	(x)	
TF7L2	(x)	
TFAP2A		(x)
TFAP2B		(x)
TFAP2C		(x)
TFCP2	(x)	
TFDP1	(x)	
TFE2.S	(x)	
TFE3	(x)	
TFEB	(x)	
TGIF1		(x)
TGIF1.S	(x)	
THA.C	(X)	
THA.S	(x)	
THB.C	(x)	
THB.S	(x)	
TWST1	(x)	
TYY1	(x)	
USF1	(x)	
USF2	(x)	
VDR		(X)
VDR.C	(X)	
VDR.S	(X)	
XBP1	(x)	

YBOX1	(x)	
ZBT18	(x)	
ZBT7A	(x)	
ZBTB17		(x)
ZBTB6	(x)	
ZBTB7A		(X)
ZEB1	(x)	(X)
ZEP1	(X)	
ZEP2	(x)	
ZFHX3	(X)	
ZFP335		(X)
ZFX	(x)	(x)
ZN148	(X)	
ZN423	(x)	

Supplementary Table 4: Comparison of prioritized transcription factors before and after the filtering of the background distribution

	Number of TFs before filter	Number of TFs after filter
TEPIC	203	92
LOG2FC and TEPIC	203	95
TEPIC and DYNAMITE	203	97
DYNAMITE	203	102
LOG2FC and DYNAMITE	203	104
TF-TG score	203	104
LOG2FC	203	119