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ABSTRACT
Background
Eukaryotic gene expression is controlled by cis-regulatory elements (CREs),
including promoters and enhancers, which are bound by transcription factors (TFs).
Differential expression of TFs and their binding affinity at putative CREs determine
tissue- and developmental-specific transcriptional activity. Consolidating genomic
data sets can offer further insights into the accessibility of CREs, TF activity, and,
thus, gene regulation. However, the integration and analysis of multi-modal data sets
are hampered by considerable technical challenges. While methods for highlighting
differential TF activity from combined chromatin state data (e.g., ChIP-seq, ATAC-seq,
or DNase-seq) and RNA-seq data exist, they do not offer convenient usability, have
limited support for large-scale data processing, and provide only minimal
functionality for visually interpreting results.
Results
We developed TF-Prioritizer, an automated pipeline that prioritizes condition-specific
TFs from multi-modal data and generates an interactive web report. We demonstrated
its potential by identifying known TFs along with their target genes, as well as
previously unreported TFs active in lactating mouse mammary glands. Additionally,
we studied a variety of ENCODE data sets for cell lines K562 and MCF-7, including
twelve histone modification ChIP-seq as well as ATAC-seq and DNase-seq datasets,
where we observe and discuss assay-specific differences.
Conclusion
TF-Prioritizer accepts ATAC-seq, DNase-seq, or ChIP-seq and RNA-seq data as input
and identifies TFs with differential activity, thus offering an understanding of
genome-wide gene regulation, potential pathogenesis, and therapeutic targets in
biomedical research.
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INTRODUCTION
Understanding how genes are regulated remains a major research focus of molecular
biology and genetics [1]. In eukaryotes, gene expression is controlled by cis-regulatory
elements (CREs) such as promoters, enhancers, or suppressors, which are bound by
transcription factors (TFs) promoting or repressing transcriptional activity depending on their
accessibility [2]. TFs play an important role not only in development and physiology but also
in diseases, e.g., it is known that at least a third of all known human developmental disorders
are associated with deregulated TF activity and mutations [3–5]. An in-depth investigation of
TF regulation could help to gain deeper insight into the gene-regulatory balance found in
normal physiology. Since most complex diseases involve aberrant gene regulation, a
detailed understanding of this mechanism is a prerequisite to developing targeted therapies
[6,7]. This is a daunting task, as multiple genes in eukaryotic genomes may affect the
disease, each of which is possibly controlled by candidate CREs.

TF ChIP-seq experiments are the gold standard for identifying and understanding
condition-specific TF-binding at a nucleotide level. However, since there are approximately
1,500 active TFs in humans [8] and about 1,000 in mice [9], and additionally considering the
need to establish TF patterns separately for each tissue and physiological condition, this
approach is logistically prohibitive. Alternatively, histone modification (HM) ChIP-seq offers a
broader view of the chromatin state due to its capability to highlight open chromatin regions
aligned with active genes, hence allowing the identification of condition-specific CREs [10].
Computational methods can then be used to prioritize TFs likely binding to these CREs,
leading to hypotheses and defining the most promising TF ChIP-seq experiments. This
narrows the scope of TF ChIP-seq experiments needed to confirm working hypotheses
about gene regulation [11–13].

Several general approaches have been proposed to identify key TFs that are responsible for
gene regulation. Among them, e.g., (1) a basic coexpression or mutual information analysis
of TFs and their target genes combined with computational binding site predictions [14]. (2)
Some tools use a combination of TF ChIP-seq data - providing genome-wide information
about the exact locations of TF binding - with predicted target genes that can enhance
co-expression analyses [15]. (3) Other tools employ a combination of genome-wide
chromatin accessibility (e.g., HM ChIP-seq data) or activity information, putative TF binding
sites, and gene expression data. This combination can be powerful in determining key TF
players and is used by the state-of-the-art tool diffTF [16]. Most of the proposed approaches
require substantial preprocessing, computational knowledge, adjustment of the method to a
new use case (e.g., more than two conditions and/or time-series data), and manual
evaluation of the results (e.g., manual search and visualization for TF ChIP-seq data to
provide experimental evidence for the predictions). Hence, to streamline this process, we
present TF-Prioritizer, a java pipeline to prioritize TFs that show condition-specific changes
in their activity. TF-Prioritizer falls into the third category of the previously described
approaches and automates several time-consuming steps, including data processing, TF
affinity analysis, machine learning predicting relationships of CREs to target genes,
prioritization of relevant TFs, data visualization, and visual experimental validation of the
findings using public TF ChIP-seq data (i.e., ChIP-Atlas [17]).

Figure 1 depicts a general overview of the pipeline. TF-Prioritizer accepts two types of input
data: i) histone modification peak ChIP-seq/ATAC-seq/DNase-seq data indicating accessible
regulatory regions showing differential activity (peak data is typically generated by MACS2
[18]), and ii) gene expression data from RNA-seq, which allows the identification of
differentially expressed genes that are potentially regulated by TFs at specific time points or
physiological condition. If peaks from ATAC-seq or DNase-seq were provided, we employ
HINT to generate TF footprints for further processing [19–21]. Our pipeline searches for TF
binding sites using TRAP [22] within CREs around accessible genes and calculates an
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affinity score for each known TF to bind at these particular loci using TEPIC [23,24]. TEPIC
uses an exponential decay model that was built under the assumption that regulatory
elements close to a gene are more likely important than more distal elements and weighs
this relationship accordingly. This allows us to assess TF binding site specific probabilities by
using TF binding affinities

Figure 1: General overview of the TF-Prioritizer pipeline. TF-Prioritizer uses peaks from
ChIP-seq or ATAC-seq/DNase-seq and gene counts from RNA-seq. If peaks from the
protocols ATAC-seq or DNase-seq were provided, we treat them by using the footprinting
method HINT and use the footprints for further processing [19–21]. It then (1) calculates
TF binding site affinities using the tool TRAP [22], (2) links candidate regions to potential
target genes by employing TEPIC [23], (3) performs machine learning (by using the
framework of TEPIC2 [24] and DYNAMITE) to find relationships between TFs and their
target genes, (4) calculates background and TF distributions, (5) picks TFs which
significantly differ from the background using the Mann-Whitney U test [25] and a
comparison between the mean and the median of the background and TF distribution, (6)
searches for tissue-specific TF ChIP-seq evaluation data in ChIP-ATLAS [17], (7) creates
screenshots using the Integrative Genomics Viewer from predicted regions of interest
[26–28], and (8) creates a feature-rich web application for researchers to share and
evaluate their results.

calculated by TRAP, which uses a biophysical model to assess the strength of the binding
energy of a TF to a CREs’ total sequence [22]. Beginning with these CRE candidates, we
search for links to possible regulated putative target genes that are differentially expressed
between given conditions (e.g., disease and healthy). Approaching the task of linking CREs
to target genes, we employ the framework of TEPIC2 [24] and DYNAMITE [24] (feature
comparison Suppl. Table 1), which uses a logistic regression model predicting differentially
expressed genes across time points and conditions based on TF binding site information to
score different TFs according to their contribution to the model and their expression (for a
more technical description, see Section Technical Workflow). In general, TF-Prioritizer uses
TEPIC and DYNAMITE pairwise of the provided data (i.e., pairwise for each condition and
each time point). Based on a background distribution of the scores (combination of
differential expression, TEPIC, and DYNAMITE - see Section Discovering Cis-regulatory
Elements using a Biophysical Model), TF-Prioritizer computes an empirical p-value reflecting
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the significance of the results (see Section ”An aggregated score to quantify the contribution
of a TF to gene regulation”). TF-Prioritizer offers automated access to complementary
ChIP-seq data of the prioritized TFs in ChIP-Atlas [17] for validation and shows predicted
regulatory regions of target genes using the Integrative Genomics Viewer (IGV) [26–28].
Then, TF-Prioritizer automatically generates a user-friendly and feature-rich web application
that could also be used to publish the results as an online interactive report.

To demonstrate the potential and usability of TF-Prioritizer, we use genomic data describing
mammary glands in pregnant and lactating mice and compare our analysis to established
knowledge [29]. Employing the web application generated by TF-Prioritizer, we found
well-studied TFs involved in the mammary gland development process, and we identified
additional TFs, which are candidate key factors in mammary gland physiology. Additionally,
we use ENCODE cell line data (K562 and MCF-7) to demonstrate the potential and usability
of TF-Prioritizer using ATAC-seq, DNase-seq, and HM ChIP-seq data.

MATERIALS AND METHODS

Implementation
The main pipeline protocol is implemented in Java version 11.0.14 on a Linux system
(Ubuntu 20.04.3 LTS). The pipeline uses subprograms written in Python version 3.8.5, R
version 4.1.2, C++ version 9.4.0, and CMAKE version 3.16 or higher. External software that
needs to be installed before using TF-Prioritizer can be found on GitHub (see Availability
Section). We also provide a bash script “install.sh”, that automatically downloads and installs
necessary third-party software and R/Python packages. The web application uses Angular
CLI version 14.0.1 and Node.js version 16.10.0. We also provide a dockerized version of the
pipeline; it uses Docker version 20.10.12 and Docker-Compose version 1.29.2 (Availability
Section). TF-Prioritizer is available as a docker that can be pulled from docker hub and
GitHub packages (Availability Section).

Data processing

Mammary gland development and lactation in mice
Data sets (GEO accession id: GSE161620) are processed with the nf-core / RNA-seq [30]
and nf-core / ChIP-seq pipelines in their default settings, respectively [31,32]. The FASTQ
files of pregnant and lactating mice are processed by Salmon [33] and MACS2 [34] to
retrieve raw gene counts and broad peak files.

The dataset spans several time points in mammary gland development from pregnancy to
lactation. For each stage, two distinct time points are available: pregnancy day 6 (p6), day
13 (p13), and lactation day 1 (L1), day 10 (L10). For each time point, the dataset contains
RNA-seq data and ChIP-seq data for histone modifications H3K27ac and H3K4me3, as well
as Pol2 ChIP-seq data (Table 1). We used H3K27ac, H3K4me3, and Pol2 data for creating
the model.

p6 p13 L1 L10 Sum

ChIP-seq
H3K27ac

3 1 8 4 16

ChIP-seq
H3K4me3

2 3 5 0 10

ChIP-seq 2 0 5 4 11
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Pol2

RNA-seq 6 8 3 4 21

Table 1: Overview of data sets covering mammary gland development from pregnancy to
lactation.

ENCODE cell lines
ATAC-seq, DNase-seq, ChIP-seq, and RNA-seq data are downloaded from the ENCODE
project for the cell lines K562 (human chronic myelogenous leukemia cell line) and MCF-7
(human breast adenocarcinoma cell line) which are both often used to study cancer biology
and have been subjected to a large number of different experimental protocols and assays
(Table 2, File identifiers in Suppl. Material 1).
(https://www.encodeproject.org/search/?type=Experiment).

Protocol K562 MCF-7 Sum

ATAC-seq 4 1 5

DNase-seq 4 4 8

ChIP-s
eq

H3K27ac 1 2 3

H3K27me
3

2 2 4

H3K36me
3

2 2 4

H3K4me3 4 2 6

H3K9me3 1 2 3

H2AFZ 1 1 2

H3K4me1 2 1 3

H3K4me2 1 1 2

H3K79me
2

1 1 2

H3K9ac 2 1 3

H4K20me
1

1 1 2

RNA-seq 15 4 19

Table 2: Overview of the data set covering several HM ChIP-seq, ATAC-seq, DNase-seq,
and RNA-seq for the cell lines K562 and MCF-7.
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Technical Workflow

Preprocessing
TF-Prioritizer uses peak data from ChIP-seq, ATAC-seq, or DNase-seq and a gene count
matrix from RNA-seq as input files (see GitHub repository for detailed formatting
instructions). Initially, the pipeline downloads necessary data (gene lengths, gene symbols,
and short descriptions of the genes) from BioMart [35]. Optionally, genes with low expression
can be removed. TF-Prioritizer uses transcripts per million (TPM) filter of 1 as default to
remove TFs that show very low expression and are most probably not relevant.
Subsequently, we use DESeq2 to normalize read counts and calculate the log2-fold change
(log2fc) [36]. In parallel, TF-Prioritizer preprocesses the peaks by first employing HINT if the
provided peak data is labeled as ATAC-seq or DNase-seq to perform footprinting to correct
for the biases (i.e., by analyzing chromatin accessibility data in terms of histone modification
state, enabling more accurate comparison between the two data types) between the
ChIP-seq, ATAC-seq, and DNase-seq protocols [19,37]. TF-Prioritizer then filters blacklisted
regions which would likely lead to false positives [38]. Peak files from the same sample
group can be merged to significantly reduce the total runtime of the pipeline without affecting
the ability of the TF-Prioritizer to identify candidate CREs.

Discovering Cis-regulatory Elements using a Biophysical Model
TEPIC links CREs to target genes using a window-based approach (default: 50,000 bp)
[23,24] using TRAP, a biophysical model to quantify transcription factor affinity [22]. The
window-based approach can be enhanced by providing Hi-C loop data, where the prediction
window is extended or limited to a chromatin loop around potential CREs and target genes.
TEPIC interprets ChIP-seq signal intensity as a quantitative measure of TF binding strength,
which also helps in recovering low-affinity binding sites that would be missed in a classical
presence/absence model [23]. The default TEPIC framework searches for dips on top of
peaks. However, numerous studies have shown that CREs are often enriched between
histone peaks (peak-dip-peak or peak-valley-peak model) [39]. To better accommodate
histone modification ChIP-seq data, we thus extended the TEPIC framework to search for
transcription factor binding sites (TFBS) between two peaks that have close (default 500
base pairs) genomic positions. TEPIC aggregates individual TF affinities into a TF-Gene
score which is the sum of the individual affinities normalized by the length of the considered
CREs.
According to the description in Schmidt et al. [40], the TF-Gene score for a gene
and a TF in window size is calculated as in Equation 1:
Equation 1: Calculation of the TF-Gene score

In Equation 1, is the affinity of TF in peak . The set of peaks contains all
open-chromatin peaks in a window of size around the gene . is the distance from
the center of the peak to the transcription start site of the gene , and is a constant
fixed at 50,000 bp [41]. The affinities are normalized by peak and motif length, where is
the length of the peak and is the total length of the motif of TF (see Schmidt et al. for
more specific information on how the TF-Gene score is calculated [23,24,40]). Since
proximal CREs are expected to have a larger influence on gene expression compared to
distal ones, these contributions are weighted following an exponential decay function of
genomic distance [24].

We want to point out that the biophysical model calculated by TRAP only returns the center
of a potentially large area of high binding energy. The TF is supposed to bind somewhere in
this area. In our IGV screenshot, the center of the high binding energy area can appear at a
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distance up to the window defined by TEPIC. We consider predicted TF peaks as matching if
we find TF ChIP-seq peaks inside this window. Following this, we do not expect the
predicted TF bindings to overlap exactly with the TF ChIP-seq peaks.

Figure 2: Workflow of the Distribution Analysis to prioritize TFs in a global context by using
TF-TG scores. We use several scores conducted by previously performed analysis (see
Suppl. Fig. 1), specifically the total log2-fold change (DESeq2), the TF-Gene score
(TEPIC), and the total TF regression coefficient (DYNAMITE). We then calculate the
TF-TG score for each time point for each TF on each of the TFs predicted target genes
(TG) and save it to separate files for the background of each histone modification and for
each TF in each histone modification. In the next step, we perform a Mann-Whitney U [42]
test between the distribution of the background of the histone modification and the distinct
TF distribution of the same histone modification. If the TF passes the Mann-Whitney U test
and the median and mean of the TF are higher than the background median and mean,
we consider this TF as prioritized for the histone modification. We perform a discounted
cumulative gain to receive one list with all prioritized TFs and overall histone modifications.

An aggregated score to quantify the contribution of a TF to gene regulation.
To determine which TFs have a significant contribution to a condition-specific change
between two sample groups, we want to consider multiple lines of evidence in an
aggregated score. We introduce Transcription Factor Target Gene scores (TF-TG scores,
Figure 2) which combine (i) the absolute log2-fold change of differentially expressed genes
since genes showing large expression differences are more likely affected through TF
regulation than genes showing only minor expression differences; (ii), the TF-Gene scores
from TEPIC indicating which TFs likely influence a gene, and (iii) to further quantify this link
we also consider the total coefficients of a logistic regression model computed with
DYNAMITE [24]. DYNAMITE predicts (high/low) expression of a gene based on the fold
changes of TF-Gene scores reported by TEPIC and thus helps to prioritize among multiple
potential TFs regulating a gene. We calculate TF-TG scores ( ) for each time point and
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each type of ChIP-seq data (e.g., different histone modifications) as in Equation 2:
Equation 2: Calculation of the TF-TG score for each time point and each type of ChIP-seq
data :

,
where represents the fold change of the target gene between the two conditions,

the TF-Gene score retrieved by TEPIC as detailed above, and the total
regression coefficient of DYNAMITE’s linear model of the expression of the target gene as
a function of the expression of the TF .

A random background distribution allows TFprioritzier to exclude spurious results
The ultimate goal of TF-Prioritizer is to identify those TFs that are most likely involved in
regulating condition-specific genes. To judge if a specific TF-TG score is meaningful, we
generate a background distribution under the hypothesis that the vast majority of TFs will not
be condition-specific. Therefore, we generate two different kinds of distributions (see Figure
2): (1) For each HM , a background distribution containing all positive TF-TG scores
associated with : . Here,

denotes the set of TFs that can bind to strands of the DNA modified by and
is the set of target genes of the TF . (2) For each HM-TF pair with

a foreground distribution containing all positive TF-TG scores associated with
: . Note that

holds for all HM-TF pairs . We then test each TF distribution of each ChIP-seq against
the global distribution matching the ChIP-seq data type. If the p-value of a Mann-Whitney U
(MWU) test [42] is below the threshold (default: 0.05) and the median and mean of TF are
higher than the background distribution, the TF is recognized as a potential candidate. In the
last step, we sort the TFs based on the mean of the TF-TG scores and report the ranks.

We obtain a global list of prioritized TFs across several ChIP-seq data types (e.g., different
histone modifications) as follows:
Let be the set of transcriptions factors such that the one-sided MWU test between
the foreground distribution and the background distribution yields a
significant -value. For a fixed TF , let

be the rank of in
w.r.t. the mean TF-TG scores across all target genes, where is the Iverson bracket,

i.e., and . We now compute an overall TF score by aggregating
the HM-specific ranks as follows:
Equation 3:

,
where denotes the set of histone modifications on strands of the DNA where the TF

can bind. Note that if , is not defined. In this case, we set
such that the summand for equals . Lastly, we sort TFs in ascending

order according to the scores .

Discovering each score's contribution to the global score
To analyze the impact of the different parts of the TF-TG-Score, we permute its components
(TF-Score from TEPIC, regression coefficient of DYNAMITE, log2fc of DESeq2). We execute
TF-Prioritizer with the exact same configuration but with all possible combinations of the
components and compare the prioritized TFs (e.g., solely TF-Score from TEPIC, a
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combination of TF-Score from TEPIC with the regression coefficient of DYNAMITE, …).

Validation using independent data from ChIP-Atlas
TF-Prioritizer is able to download and visualize experimental tissue-specific TF ChIP-seq
data for prioritized TFs from ChIP-Atlas [17], a public database for ChIP-seq, ATAC-seq,
DNase-seq, and Bisulfite-seq data. ChIP-Atlas provides more than 362,121 data sets for six
model organisms, i.e., human, mouse, rat, fruit fly, nematode, and budding yeast [43].
TF-Prioritizer automatically visualizes TF ChIP-seq peaks on predicted target sites of
prioritized TFs to experimentally validate our predictions. TF-Prioritizer also visualizes
experimentally known enhancers and super-enhancers from the manually curated database
ENdb [44]. Additionally, experimental data from other databases or experimental data
retrieved by own experiments can be supplied and processed by TF-Prioritizer.
By employing TF ChIP-seq data from ChIP-Atlas, TF-Prioritizer is capable of performing a
TF co-occurrence analysis of prioritized TFs by systematically comparing the experimentally
validated peaks of pairs of prioritized TFs. In a co-occurrence analysis, it is checked what
percentage of available peaks of one TF is also found in another TF. TF-Prioritizer returns
the percentage of similar peaks between prioritized TFs to discover the co-regulation of TFs.
We investigate the co-occurrence of TFs and in terms of statistical significance by
calculating a log-likelihood score. Let be the set of all TF binding sites and be the
set of peaks for TF . For TF , let be the number of binding sites such that
there is a peak within . For a TF-TF pair , let be the number
of binding sites such that there is a peak and a peak within
then the log-likelihood score is calculated for the four observations
(a) (i.e., and are co-occurring), (b) (i.e., is
occurring but is not), (c) (i.e., is occurring but is not), and
(d) (i.e., neither nor is occurring) with
their corresponding expectation values (a) , (b)

, (c) , and (d)
as follows [45–47]:

.
Note that when interpreting each log-likelihood score needs to be brought into relation with
the number of peaks found in the respective TFs and also set in relation with the other
number of peaks determined in the entire log-likelihood table, as the log-likelihood score
may differ from TF-pair to TF-pair. A high log-likelihood score, in combination with a high
number of peaks, with respect to the entire log-likelihood table, generally indicates that the
co-occurrence relationship is statistically significant and that the two TFs could be
functionally related. For further details and explanation of the formula and interpretation,
consult [45–47].

Explorative analysis of differentially expressed genes
TF-Prioritizer allows users to manually investigate the ChIP-seq signal in the identified CREs
of differentially expressed genes. To this end, TF-Prioritizer generates a compendium of
screenshots of the top 30 upregulated or downregulated loci (sorted by their total log2-fold
change) between two sample groups. Additionally, we allow the user to specify loci that are
of special interest (e.g., the CSN family or the Socs2 locus in lactating mice). TF-Prioritizer
then produces screenshots using the TF ChIP-seq data from ChIP-Atlas and visualizes them
in a dynamically generated web application. Screenshots are produced using the IGV
standalone application [26–28]. TF-Prioritizer also automatically saves the IGV session so
the user can further research the shown tracks.
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Handling missing data
In some cases, not all assay types are available for all samples, or the data does not have
the same high quality as the rest of the samples. TF-Prioritizer then skips the grouping of
missing data points and can still find meaningful results in the rest of the data. For example,
the data for three time points for one histone modification is available, but one time point
was missing or discarded. TF-Prioritizer then uses only the three available time points for
grouping and downstream processing and analysis.

Using TF-Prioritizer to investigate gene regulation
We use three approaches to evaluate the biological relevance and statistical certainty of our
results: (1) literature research to validate whether the reported TFs are associated with the
phenotype of interest, (2) we consider the top 30 target genes with highest affinity values
and determine if their expression cluster by condition (note: we do not preselect differentially
expressed genes for this analysis but focus on affinities to avoid a circular line of reasoning);
we also review the literature and report whether these genes are known to be involved in
either pregnancy or mammary gland development/lactation, and (3) validation using
independent TF ChIP-seq data from ChIP-Atlas. To conduct the third evaluation, we built
region search trees, a balanced binary search tree where the leaves of the tree have a start
and end position, and the tree returns all leaves that overlap with a searched region for all
chromosomes of the tissue-specific ChIP-Atlas peaks for each available prioritized TF [48].
We then iterate over all predicted regions within the window size defined in TEPIC and
determine if we can find any overlapping peaks inside the ChIP-Atlas peaks. If we can find
an overlap with a peak defined by the ChIP-Atlas data, we count the predicted peak as a
true positive (TP) or else as a false positive (FP). Next, we randomly sample the same
number of predicted peaks in random length-matched regions not predicted to be relevant
for a TF. If we find an overlap in the experimental ChIP-Atlas data, we consider this region as
a false negative (FN) or else as a true negative (TN). Notably, we expect the FN count to be
inflated since we considered condition-specific peaks of active CREs. Inactive CREs may
very well have TFBS that are not active. Nevertheless, we expect to find more such TFBS in
active regions compared to random samples, allowing us to compute sensitivity, specificity,
precision, accuracy, and the harmonic mean between precision and sensitivity (F1-score)
(see Suppl. Material 2).

Choice of Parameters
In a pipeline like TF-Prioritizer, the choice of parameters is crucial to retrieve meaningful
results. In this section, we explain our choice of parameters. We filter the RNA-seq data by a
mean DESeq2 normalized gene count of 50 and a TPM of 1 to exclude noise of very weakly
expressed target genes and TFs that are probably not important for the condition but would
negatively impact the predictive models. We use the default configurations of TEPIC with the
exception of the TF binding site search (i.e., in the histone modification ChIP-seq data, it is
important to search for TF binding sites between two peaks that are in close proximity (max.
500 base pairs) to each other (peak-dip-peak or peak-valley-peak model) [39]). The TEPIC2
framework and DYNAMITE were executed in default configurations as provided by the
authors. We provide all default parameters in our configuration file.

RESULTS AND DISCUSSION

We present TF-Prioritizer, which combines data to identify candidate CREs (e.g., ChIP-seq,
ATAC-seq, DNase-seq) and RNA-seq to identify condition-specific TF activity. TF-Prioritizer
is built on several existing state-of-the-art tools for peak calling, TF-affinity analysis,
differential gene expression analysis, and machine learning tools. TF-Prioritizer is the first to
jointly consider multiple types of modalities (e.g., different histone marks and/or time series
data), provide a joint list of active TFs, and enable the user to see a visualized validation of
the predictions in an interactive and feature-rich web application.
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Exploring TFs in mammary tissue during pregnancy and lactation in
mice

We used TF-Prioritizer to identify TFs that are known to control mammary gland
development and lactation. The tool also identifies TFs that are important in pregnancy, as
well as new candidate TFs that have not yet been widely studied. TF-Prioritizer reported 104
TFs, many of which control Rho family GTPase-associated target genes and Casein family
genes. TF-Prioritizer was evaluated using experimental TF ChIP-seq data where it showed
high sensitivity, specificity, precision, and accuracy (Suppl. Fig. 2, Suppl. Material 2).

Prioritized TFs are known to play a role in mammary gland development and lactation

TF-Prioritizer prioritized STAT5, a transcription factor that plays an important role in
mammary gland development [29,49,50]. Stat5 mRNA levels are highly upregulated during
the last days of pregnancy and at the beginning of lactation, supporting experimental
findings that STAT5 is a key driver of mammary gland development. The predicted target
genes of STAT5 show a clear expression separation between pregnancy and lactation
(Figure 3 a, b). Peaks were predicted with a sensitivity of 57.8%, specificity of 66.3%, a
precision of 78.1%, an accuracy of 60.6%, and an F1 score of 66.5% (Suppl. Fig. 2).
Additionally, STAT5 is known to activate the expression of the Socs2 gene during mammary
gland development [51,52]. We can observe predicted peaks of STAT5 near Socs2, which
could explain the regulation of its expression by STAT5 (Figure 3 c). STAT5 is further known
to regulate the expression of the Casein gene family. Csn2, Csn1s2a, and Csn1s2b [53]
mRNA levels are strongly upregulated during lactation, which could be explained by an
activator role of STAT5 at the predicted peaks in their close proximity [54–56] (Figure 3 d,
Suppl. Fig. 3, Suppl. Material 3, Sec. STAT5).

Additionally, ELF5, another transcription factor that plays an important role in mammary
gland development, was predicted to be relevant by TF-Prioritizer. Elf5 mRNA levels
increase at the end of pregnancy and the beginning of lactation, hence supporting ELF5’s
role in mammary gland development. Peaks were predicted with a sensitivity of 77.5%,
specificity of 80.5%, a precision of 81.6%, an accuracy of 79%, and an F1 score of 79.5%
(Suppl. Fig. 2). TF-Prioritizer predicts ELF5 binding sites near Gli1. Gli1 mRNA levels are
downregulated during lactation, and ELF5 is thus probably acting as a suppressor for Gli1.
Fiaschi et al. showed experimentally that Gli1-expressing females were unable to lactate,
and milk protein gene expression was essentially absent [57] (Suppl. Figs. 4 and 5, Suppl.
Material 3, Sec. ELF5).

TF-Prioritizer further prioritized ESR1 [58] and NFIB [29], both known for their essential
function in mammary gland development and lactation (Suppl. Material 3, Sec. ESR1 and
NFIB). Our results suggest that the mechanisms of pregnancy, mammary gland
development, and lactation could be dependent on Rho GTPase [59,60] and its regulation
by several TFs reported here. Experimental validation is needed to elucidate those complex
processes further (see Suppl. Material 3, Sec. Rho GTPase's role in pregnancy, mammary
gland development, and lactation) [61].

Prioritized novel TFs with a predicted role in pregnancy, mammary gland
development, and lactation

We predict two TFs, CREB1 and ARNT, suggesting a role in the processes of pregnancy,
mammary gland development, and lactation.

CREB1 binding sites show considerable overlap with binding sites of other TFs known to be
involved in mammary gland development and lactation, such as ELF5 (22% of binding sites
overlap, log-likelihood score 6,914 with a sample size of 16,531), NFIB (29% binding sites
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overlap, log-likelihood score 15,793 with a sample size of 23,923), and STAT5A (21%
binding sites overlap, log-likelihood score 5,902 with a sample size of 15,180) (see Suppl.
Figs. 6. a-c). The co-occurrences could be significant due to the high log-likelihood values
with a high sample size in comparison to the whole co-occurrence table. We hypothesize
that a correlation of association strength may offer additional evidence for a functional
association between TFs. Indeed, CREB1 shows a moderate correlation of binding site
affinities with NFIB, STAT5A, STAT5B, and ELF5 (Suppl. Fig 7). Our results suggest that
CREB1 regulates a member of the Rho GTPase gene family and a member of the Casein
gene family. Since CREB1 has not yet been recognized to contribute to aspects of mammary
development and physiology, further experimental validation of our findings is needed
(Suppl. Material 3, Sec. CREB1).

Furthermore, the TF ARNT is prioritized along with two cofactors and predicted to be more
involved in mammary gland development but less involved in lactation due to its high
expression levels during the last state of pregnancy and lower expression during lactation.
However, experimental mouse genetics demonstrated that ARNT is not required for
mammary development and function [62], suggesting the presence of alternative and
compensatory pathways. (Suppl. Material 3, Sec. ARNT).

Comparing TF-Prioritizer and diffTF
We compared TF-Prioritizer against the state-of-the-art tool diffTF that prioritizes and
classifies TFs into repressors and activators given conditions (e.g., health and disease) [16].
diffTF does not allow multiple conditions or time series data and distinct analysis of histone
modification peak data in a single run and does not consider external data for validation. We
point out that diffTF cannot use different sample sizes between ChIP-seq and RNA-seq data,
i.e., diffTF requires that for each ChIP-seq sample, there is an RNA-seq sample and vice
versa. diffTF does not use a biophysical model to predict TFBS but uses general, not
tissue-specific, peaks of TF ChIP-seq data and considers all consensus peaks as TFBS [16].
For a comparison of features and technical details, see Suppl. Table 2 and Suppl. Table 3,
respectively. Since the diffTF tool does not provide an aggregation approach to different
conditions, we aggregate the prioritized TFs the same way as TF-Prioritizer does (i.e., the
union of all prioritized TFs overall runs using diffTF’s default q-value cut-off of 0.1) to
enhance the comparability of the final results overall conditions. In summary, diffTF
prioritized 300 TFs compared to the 104 TFs (including combined TFs like Stat5a..Stat5b
that count as one TF in TF-Prioritizer) that TF-Prioritizer reported (Figure 4 a). It thus seems
that diffTF is less specific than TF-Prioritizer (see Suppl. Table 4 for a comparison of
prioritized TFs). diffTF also finds known TFs that TF-Prioritizer captures (e.g., STAT5A,
STAT5B, ELF5, and ESR1) but did not capture the well-known TF NFIB. diffTF also
prioritizes CREB1 and ARNT, which in our opinion, are strong candidates for experimental
validation. By deploying 20 cores on a general computing cluster, TF-Prioritizer took roughly
7.5 hours to be fully executed, and diffTF took approx. 41 hours to be fully executed. Due to
the high number of TFs that are prioritized by diffTF, we ranked the TFs after their p-value
(where a low p-value indicates higher evidence that a TF is involved in the processes)
provided by diffTF and cut off the exact same amount of TFs (104 TFs) that are prioritized by
TF-Prioritizer to make the benchmarking more comparable and interpretable. We observe
that the known TFs drop out (e.g., STAT5A, STAT5B, ELF5, NFIB, ESR1) (Figure 4 b).
CREB1, which we suggest to be a good candidate for experimental validation, can still be
found in diffTFs prediction. Notably, only 22 TFs are prioritized by both TF-Prioritizer and
diffTF by using this cutoff.

Limitations and Considerations
TF-Prioritizer has several limitations. TF-Prioritizer is heavily dependent on the parameters
of the state-of-the-art tools it is using, e.g., providing Hi-C data to TEPIC could have a
significant impact on the search window while linking potential CREs to target genes. We
also point out that we neither have any experimental evidence nor existing literature as proof
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that the default length of 500 bps of the dip model used in the extended TEPIC framework is
the ideal cut-off.

We want to highlight the main disadvantage of using the TF-TG score as we significantly
center the surveillance of TF-Prioritizer on genes showing a high fold change or high
expression, which does not necessarily mean that those genes are the most relevant for a
condition. Also, note that TF binding behavior is regulated by factors we do not observe
here, such as phosphorylation. The results of the discounted cumulative gain ranking should
be considered with care since the biologically most relevant TFs may manifest in only a
subset of ChIP-seq data types.

Figure 3: Validation of selected STAT5 target genes. (a) and (b) show heat maps of
predicted target genes. We select Socs2 and Csn family genes (black arrows) as they are
known to be crucial in either mammary gland development or lactation. In the heatmaps,
we can observe a clear separation of these target genes between the time points p13 and
L1. Panels (c) and (d) show IGV screenshots of the loci of Socs2 and the Csn family. We
included a predicted track in the IGV screenshot that indicates high-affinity binding regions
for the TF that are represented by a tick and a black box surrounding it. In (c), we see that
we predict peaks in p13 near Socs2. From this data, we suggest that Socs2 mRNA
expression is controlled by STAT5 [51,52]. In (d), we can observe Pol2 tracks that show a
distinct change in the expression of Csn family proteins between pregnancy and lactation.
This indicates that STAT5 controls the expression of milk proteins.

The calculation of TP, TN, FP, and FN is only an approximation, as to the best of our
knowledge, there is no known approach to determine if a CREs or TFBS is active in a
condition or not. Sensitivity, specificity, precision, accuracy, and the harmonic mean of
precision and sensitivity (F1) differ from TF to TF. We believe this is correlated with the
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prevalence of the binding sites or the motif specificity. We can also see a decline in the
metrics if we look at co-factor regulation (Figure 5. a, AHR..ARNT, ARNT, and
ARNT..HIF1A). We experience the highest performance of TF-Prioritizer by looking at TFs
where no co-factor regulation is currently known or widely accepted (e.g., CREB1, ELF5,
ESR1).

We further investigated the contribution of every single part of the TF-TG score to the
number and quality of the prioritized TFs. To achieve this, we ran every combination of the
component of the score (i.e., log2fc, TEPIC, DYNAMITE) with TF-Prioritizer. In Suppl. Table
5 we can see that the distribution analysis filters out about half of the TFs and only returns
the most promising TFs. In Figure 5. b, we can see that ELF5, AHR..ARNT, and
ARNT..HIF1A manifest in each of the scores independent of any combination. NFIB, CREB1,
and ARNT manifest in any score that is related to TEPIC or DYNAMITE. ESR1 manifests in
any score that is related to the LOG2FC. STAT5A..STAT5B only manifests in certain
combinations of the scores or in the TF-TG score. The LOG2FC alone yields the most
prioritized TFs, but at a closer look, the LOG2FC alone would miss NFIB, which is highly
relevant in mammary gland development. Looking at this data, we believe that the TF-TG
score that combines TEPIC, DYNAMITE, and LOG2FC results in the most promising TFs
that are relevant.

Figure 4: Venn diagram of prioritized TFs by TF-Prioritizer and diffTF. (a) diffTF and
TF-Prioritizer found 62 (18.2%) common TFs. diffTF and TF-Prioritizer find known TFs
(e.g., STAT5A, STAT5B, ELF5, and ESR1), but diffTF did not capture the well-known TF
NFIB. diffTF and TF-Prioritizer both prioritize CREB1 and ARNT as candidates for
experimental validation. (b) We ranked the diffTF results by p-value and consider the top
104 (the same amount of TFs that the TF-Prioritizer predicted). Here only CREB1 is still
predicted to be important by diffTF - other TFs such as STAT5A..STAT5B, ELF5, and NFIB
drop out.

In Figure 5. c we can see that STAT5A..STAT5B and ARNT only manifest in the HM
H3K4me3. ELF5, CREB1, and NFIB only manifest in H3K27ac. ESR1, AHR…ARNT, and
ARNT…HIF1A manifests in both HMs H3K4me3 and H3K27ac. As expected, most TFs only
manifest in a subset of HMs, reflecting their association with certain chromatin states [63,64].
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Figure 5: a) Overview of performance metrics of prioritized TFs that were discussed in this
manuscript. b) Contributions of individual components of the TF-TG score to the
accumulated TF-TG score. We systematically considered different components of the
TF-TG score (i.e., the score of TEPIC, LOG2FC, and DYNAMITE) as well as their
combinations to determine their importance for the overall results. We find all important
TFs exclusively using the TF-TG score. c) Investigation of which TFs are reported in which
assay. We can see that the most important TFs only manifest in a subset of HMs.

Unraveling the specificity of TFs with respect to HM ChIP-seq, ATAC-seq,
and DNase-seq

The ENCODE project generated a plethora of different assays for cell lines such as K562
and MCF-7, which we used here to determine to what extent different protocols (i.e.,
ATAC-seq, DNase-seq, and HM-ChIP-seq) are suited to reveal condition-specific TFs.
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Figure 6: Guide to determine which experiments fit best by the usage of ATAC-seq,
DNase-seq, or several histone modifications. a) We combined all HM ChIP-seq data and
investigated the overlap with ATAC-seq and DNase-seq. We found that ATAC-seq and
ChIP-seq have a bigger overlap than ATAC-seq and DNase-seq. We found 26 TFs that
are prioritized by all three protocols. b) We separated the TFs of the HM ChIP-seq data in
which HM they were discovered. We can see huge differences between the HMs (e.g.,
while we can discover 137 TFs in H2AFZ, we can only discover two in H4K20me1).

In total, we discovered 381 unique TFs (339 across eleven HM ChIP-seq experiments, 83 in
ATAC-seq, and 96 in DNase-seq). We found TFs that can only be detected in a subset of the
protocols (Figure 6. a-b, Suppl. Table 6). Using ChIP-seq data, we found the largest number
of TFs, likely due to the combination of results from ten different histone modifications and
one histone variant, which together cover a wide variety of chromatin states. We found the
largest number of detected TFs using the H2AFZ histone variant, which is predominantly
found in CREs and also associated with cancer [65]. Since we have only investigated cancer
cell lines, it remains unclear if this histone variant is generally highly informative of TF
binding or if this is limited to cancer cells. Surprisingly, DNase-seq and ATAC-seq show a
comparably small overlap even though both protocols are aimed at measuring chromatin
accessibility. This corroborates earlier findings where it was observed that both protocols
reveal assay-specific sites that contribute to predicting gene expression [66].

Indeed, some TFs known to be important for both cancer cell lines were reported through
several protocols, while others were reported by only one protocol. For instance, we found
MYC, a key TF for cell proliferation in K562 and MCF-7 cells [67,68], was highly ranked in
ATAC-seq and HM ChIP-seq (H3K4me2, H3K79me2). Conversely, GATA1, another TF
important for cell differentiation in K562 [69,70], was prioritized only by DNase-seq. GATA1
regulates MYB, a key haematopoietic TF involved in stem cell self-renewal and lineage
decisions that was prioritized in HM ChIP-seq (H2AFZ, H3K27ac, H3K4me2) [70,71].
TF-Prioritizer found many members of the SP (SP1, SP2, SP3, SP4, SP8, and SP9) and
KLF (KLF1, KLF2, KLF3, KLF4, KLF6, KLF7, KL8, KLF9, KLF10, KLF11, KLF12, KLF14,
KLF15, and KLF16) family to be important for K562 cell differentiation in a plethora of HM
ChIP-seq, ATAC-seq, and DNase-seq experiments. We identified six out of 9 TFs from the
SP TF family and 14 out of 16 TFs from the KLF TF family [72]. Hu et al. found that the SP
and KLF TF families are most important in erythroid differentiation in K562 cells [73] and that
SP1 and SP3 are involved in activating GATA1 [74].
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We further investigated if TF-Prioritizer found biologically relevant TFs for the MCF-7 cell
line. We found ELF5, an important TF in breast cancer, to be prioritized in ATAC-seq,
DNase-seq, and HM ChIP-seq (H2AFZ). This is of particular interest, as ELF5 is a strong
biomarker in breast cancer, and TF-Prioritizer is capable of prioritizing ELF5 in the
ATAC-seq, DNase-seq, and ChIP-seq [75–77]. Piggin et al. also postulated that ELF5
modulates the estrogen receptor [77]. TF-Prioritizer found certain estrogen receptors (e.g.,
ESR2, ESRRG) to be relevant for cell differentiation in MCF-7. Estrogen receptor proteins
are highly relevant in breast cancer [78,79]. The TF GATA3 was also predicted (ATAC-seq,
H3K27ac, H3K9ac) to be important for cell differentiation in MCF-7. GATA3 is a key player
when it comes to cell differentiation in the MCF-7 cell line [80,81] and a regulator of estrogen
receptor proteins [82]. FOXA1, predicted by TF-Prioritizer (ATAC-seq), is important in cell
differentiation for MCF-7 cell lines is a critical determinant of estrogen receptor function, and
affects the proliferation activity of breast cancer [83,84].

CONCLUSION AND OUTLOOK

TF-Prioritizer is a pipeline that combines RNA-seq and ChIP-seq data to identify
condition-specific TF activity. It builds on several existing state-of-the-art tools for peak
calling, TF-affinity analysis, differential gene expression analysis, and machine learning
tools. TF-Prioritizer is the first tool to jointly consider multiple types of modalities (e.g.,
different histone marks and/or time series data) and provide a summarized list of active TFs.
A particular strength of TF-Prioritizer is its ability to integrate all of this in an automated
pipeline that produces a feature-rich and user-friendly web report. It allows interpreting
results in the light of experimental evidence (TF ChIP-seq data) either retrieved
automatically from ChIP-Atlas or user-provided and processed into genome browser
screenshots illustrating all relevant information for the target genes. Our approach was
heavily inspired by DYNAMITE [24,85], which follows the same goal but requires manually
performing all necessary steps.

We show that TF-Prioritizer is capable of identifying already known and validated TFs (e.g.,
STAT5, ELF5, NFIB, ESR1) that are involved in the process of mammary gland development
or lactation, and their experimentally validated target genes (e.g., Socs2, Csn milk protein
family, Rho GTPase associated proteins). Furthermore, we prioritized some not yet
recognized TFs (e.g., CREB1, ARNT) that we suggest as potential candidates for further
experimental validation. These results led us to hypothesize that the Rho GTPases undergo
major changes in their tasks during the stages of pregnancy, mammary gland development,
and lactation, which are regulated by TFs.

In conclusion, each protocol and histone modification can unravel unique transcription factor
binding sites that provide insight into gene regulatory mechanisms. It is our opinion that
employing TF-Prioritizer on as many protocols and HM ChIP-seq experiments as possible
could improve our understanding of given conditions.

In the future, we plan to extend TF-Prioritizer to more closely explore the combined effects of
enhancers, which are often non-additive, as suggested by our current model [86]. We further
plan to test the functionality of TF-Prioritizer on ATAC-seq data and to apply TF-Prioritizer in
a single-cell context where histone ChIP-seq is currently hard to retrieve. Furthermore, we
plan to include a more detailed ranking of the prioritized TFs. We plan to offer the user the
ability to apply raw FASTQ files to TF-Prioritizer, where quality checks of the data will be
performed. In summary, TF-Prioritizer is a powerful functional genomics tool that allows
biomedical researchers to integrate large-scale ChIP-seq and RNA-seq data, prioritize TFs
likely involved in condition-specific gene regulation, and interactively explore the evidence
for the generated hypotheses in the light of independent data.
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AVAILABILITY AND REQUIREMENTS
The source code of the pipeline is freely available at GitHub:
https://github.com/biomedbigdata/TF-Prioritizer
The report on the pregnant and lactating mice data set is available at:
https://exbio.wzw.tum.de/tfprio/mouse/#/
Mouse pregnancy and lactation data:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161620

Mouse TF ChIP-seq data on STAT:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE82275
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84115
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37646

ChIP-seq, ATAC-seq, and DNase-seq data from K562 and MCF-7 cell lines (Suppl. Material
1 for file identifiers):
https://www.encodeproject.org/search/?type=Experiment

The report on the ATAC-seq, DNase-seq, and ChIP-seq is available at:
ATAC-seq: https://exbio.wzw.tum.de/tfprio/cancer/atac/#/
DNase-seq: https://exbio.wzw.tum.de/tfprio/cancer/dnase/#/
ChIP-seq: https://exbio.wzw.tum.de/tfprio/cancer/chip/#/

Table to determine which HM ChIP-seq, ATAC-seq, and DNase-seq data can be used to
unravel which TFs:
https://figshare.com/articles/dataset/protocols_hms_to_unraveledTFs_tsv/21941213/2

Docker images:
GitHub packages (only accessible via GitHub command line)
https://raw.githubusercontent.com/biomedbigdata/TF-Prioritizer/pipeJar/docker.py
docker hub https://hub.docker.com/r/nicotru/tf-prioritizer

Pipeline registrations:
bio.tools https://bio.tools/tf-prioritizer
SciCrunch.org RRID:SCR_023222
workflowhub.eu https://workflowhub.eu/workflows/433

Project name: TF-Prioritizer

Project home page: https://github.com/biomedbigdata/TF-Prioritizer

Operating system(s): Linux

Programming language: Java

Other requirements: Java version 11.0.14 or higher, Python version 3.8.5 or higher, R
version 4.1.2 or higher, C++ version 9.4.0 or higher, CMAKE version 3.16 or higher, Angular
CLI version 14.0.1 or higher, Node.js version 16.10.0 or higher, Docker version 20.10.12 or
higher, and Docker-Compose version 1.29.2 or higher.

Open source license: GNU GPL v. 3.0

SUPPLEMENTARY DATA
Supplementary Data is available at GigaScience online.
https://docs.google.com/document/d/18ErBhbZ9IW6SLeRTF2AB7PF7UFJu6KcQ48Z4JcZD
4Xk/edit?usp=sharing
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ABBREVIATIONS
Abbreviation Description

Ahr Aryl Hydrocarbon Receptor

Arhgap12 Rho GTPase Activating Protein 12

Arhgap39 Rho GTPase Activating Protein 39

Arhgap9 Rho GTPase Activating Protein 9

Arhgef1 Rho Guanine Nucleotide Exchange Factor
1

Arhgef18 Rho/Rac Guanine Nucleotide Exchange
Factor 18

Arhgef2 Rho/Rac Guanine Nucleotide Exchange
Factor 2

Arhgef40 Rho Guanine Nucleotide Exchange Factor
40

Arhgef9 Cdc42 Guanine Nucleotide Exchange
Factor 9

Arnt Aryl Hydrocarbon Receptor Nuclear
Translocator

CREs cis-regulatory elements

Creb1 CAMP Responsive Element Binding Protein
1

Csn Casein proteins

Csn1s2a Casein Alpha S2 Like A

Csn1s2b Casein Alpha S2 Like B

Csn2 Casein Beta

Csnk1e Casein Kinase 1 Epsilon

Csnk2a2 Casein Kinase 2 Alpha 2

Csnk2b Casein Kinase 2 Beta

Ddr1 Discoidin Domain Receptor Tyrosine Kinase
1

Elf5 E74 Like ETS Transcription Factor 5

Esr1 Estrogen Receptor 1
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Ets2 ETS Proto-Oncogene 2, Transcription
Factor

F1-score harmonic mean between precision and
sensitivity

FN false negatives

FP false positives

Gli1 GLI Family Zinc Finger 1

HM histone modification

Hif1a Hypoxia Inducible Factor 1 Subunit Alpha

IGV Integrative Genome Viewer

Igfals Insulin Like Growth Factor Binding Protein
Acid Labile Subunit

L1 lactation day 1

L10 lactation day 10

Lcp1 Lymphocyte Cytosolic Protein 1

MWU Mann-WhitneyU test

Nfib Nuclear Factor I B

Socs2 Suppressor Of Cytokine Signaling 2

Stat5 (composition of Stat5a and Stat5b) Signal Transducer And Activator Of
Transcription 5A + Signal Transducer And
Activator Of Transcription 5B

TF transcription factor

TF-Gene score retrieved by TEPIC

TF-TG score retrieved by the Distribution Analysis

TFBS transcription factor binding sites

TG target gene

TP true positives

TPM transcripts per million

Tp53 Tumor Protein P53

log2fc log2 fold-change

p13 pregnancy day 13
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p6 pregnancy day 6
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