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Abstract: Bacteria that are capable of organizing themselves as biofilms are an important public
health issue. Knowledge discovery focusing on the ability to swarm and conquer the surroundings to
form persistent colonies is therefore very important for microbiological research communities that
focus on a clinical perspective. Here, we demonstrate how a machine learning workflow can be used
to create useful models that are capable of discriminating distinct associated growth behaviors along
distinct phenotypes. Based on basic gray-scale images, we provide a processing pipeline for binary
image generation, making the workflow accessible for imaging data from a wide range of devices and
conditions. The workflow includes a locally estimated regression model that easily applies to growth-
related data and a shape analysis using identified principal components. Finally, we apply a density-
based clustering application with noise (DBSCAN) to extract and analyze characteristic, general
features explained by colony shapes and areas to discriminate distinct Bacillus subtilis phenotypes.
Our results suggest that the differences regarding their ability to swarm and subsequently conquer
the medium that surrounds them result in characteristic features. The differences along the time
scales of the distinct latency for the colony formation give insights into the ability to invade the
surroundings and therefore could serve as a useful monitoring tool.

Keywords: microbiology; machine learning; motility; pathogenicity; swarming; biofilm; monitoring;
shape; Bacillus subtilis; colony formation; workflow development; bioimaging

1. Introduction

Biofilms are an emerging health problem, and knowledge discovery within the field
remains an important topic for microbiologists that emphasize a clinical or hygienic per-
spective. It has been known for more than a century that colony morphology can be
strikingly different between pathogenic and non-pathogenic strains of bacteria and should
therefore be decisive in characterizing bacteria isolated from patients [1–3]. B. subtilis
is a model organism for Gram-positive bacteria and is known for its different mobility,
depending on the respective strain [4,5]. To access the characteristic phenotypic differences
of the colony formation present in Bacillus subtilis, a set of wild-type and domesticated
laboratory strains are used (see Table 1). These strains are different regarding their ability to
swarm and subsequently conquer the surrounding medium. Along time scales of distinct
latency, colony formation gives insights into the strain-specific invasiveness. For instance,
flagella-mediated motility is a physiologically important feature for many bacterial species,
enabling them to effectively colonize new habitats [6]. Therefore, understanding bacterial
motility is of key importance in the struggle for developing more efficiently conducted
counteractive measures. In general, B. subtilis exhibits two forms of active flagella-driven
movement: swimming, which refers to the movement of single cells in a three-dimensional
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space in liquid media, and swarming, in which cells assemble into rafts that move over
a two-dimensional surface by joining their flagella forces. Swarming also relies on the
secretion of a surface-tension-reducing compound [7]. Both behaviors can easily be moni-
tored under laboratory conditions when cells are spotted onto LB agar plates with varying
viscosity. At a concentration lower than 0.5 % agar, the swimming motility is predominant,
whereas between 0.5 and 0.7 %, the swarming movement occurs [8]. Bacterial motility has
been studied for a long time and is subject to several review articles (e.g., [7]).

Table 1. List of strains used in the study. * = flagella deficient. ◦ = Strain from the laboratory of Juan
Alonso, Universidad Autónoma de Madrid.

Strain Description Reference

W3610 B. subtilis wild-type isolate [9]
PY79 B. subtilis lab strain trpC2 [10]

PY79yhbEF B. subtilis lab strain PY79,
yhbEF::kan [11] *

168 B. subtilis lab strain trpC2 [12,13]
BG214 B. subtilis lab strain ◦

The presented workflow is a framework to detect and analyze the strain-specific
differences in their growth on solid agar plates based on simple gray-scale images in a
reproducible manner. Given the empirical fact that a higher amount of biomass leads to an
increased absorption of light, gray-scale images contain specific colony formation contours.
After the initial thresholding, the contour information can be extracted and analyzed
using regression models as well as a principal component analysis (PCA) prior to the
application of a density-based clustering strategy involving noise. Considering the aspects
mentioned above, the workflow (see Figure 1) of this study enables to monitor and model
bacterial motility based on colony diameter growth over time. It is therefore hypothesized
that a semi-automated machine learning workflow is capable of discriminating between
phenotypes along the characteristics of varying motility and colony shapes.

Figure 1. (A) Schematic illustration of the presented workflow showing key stages of the pipeline.
Improvements can be established using densely conducted documentation in combination with
useful information that resulted after re-deployment during bias-minimization steps. These can start
at every stage of the pipeline. However, maintaining the database is of key importance due to the fact
that downstream processing and analysis is directly influenced upon changes that are made to the
data. Data management is indispensable for reproducible research using machine learning. Therefore,
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a modular set of pipeline and workflow segments are the best choice due to enhanced accessibility.
(B) Montage shows listed thresholding algorithms applied to a B. subtilis colony. Depending on a rep-
resentative inclusion/exclusion of pixel values involved in the thresholding, binary image processing
can be conducted dynamically using an automated IJ processing script. Resulting binary images
are further processed and analyzed to quantify occurrences of phenotype-specific differences along
the shape and curvature of respective colonies using unsupervised learning based on celltool [14].
Illustration created using Inkscape 0.92.3, available at: https://www.inkscape.org (accessed on 15
September 2022).

2. Materials and Methods
2.1. Bacillus subtilis

B. subtilis is one of the best studied model organisms and one of the most important
domesticated microorganisms. B. subtilis belongs to rod-shaped bacteria found in soils [15].
In terms of model organisms, B. subtilis is the Gram-positive and aerobic counterpart to
Escherichia coli and is one of the most important species in industry mostly used for heterol-
ogous expression of recombinant enzymes or other products delivered by the organism.
B. subtilis is very resistant to damage induced by electromagnetic radiation, detergents
or other relevant damage and rapidly undergoes its survival state (spores). Furthermore,
B. subtilis is known to form thick biofilms consisting of distinct cell growth-phase-dependent
shapes along the local gradient of oxygen availability. It is known that strain W3610 pro-
duces surfactin and modulates the medium regarding its hydrophobicity, unlike strain
168 which expresses flagella only [16]. The biological model system in this study contains
classes of distinct B. subtilis strains that are different regarding their ability to swarm or
secrete specific bio-molecules (see Table 1).

2.2. Bioimaging Strategies

Cells are inoculated and cultured in lysogeny-broth (LB) [17] at 200 rpm/30 °C
overnight. Overnight culture is transferred on LB agar plates to form colonies during
another overnight incubation at 30 °C. Resulting colonies are used as a model to monitor
growth pattern formation over days (see Figure 2) or hours, respectively, (see Section 2.2.2).
Gray-scale images are acquired using common gel-illuminator setups used in almost
every biochemistry-driven laboratory for camera-based investigation visualization of elec-
trophoresis results, for instance, shown in Figure 2A,D. Cells are incubated at different
time scales on an agar plate at 30°C. Strain images of cell colonies are acquired sequen-
tially according to different temporal scaling. For invasion/swarming curves, time lapse
temporally resolves to hours whilst larger incubation times for colony formation resolve
within days of incubation. According to that, the identified problem is a regression type.
Therefore, non-parametric locally estimated scatterplot smoothing (LOESS) regression
model [18–20] is used for invasion analysis of distinct B. subtilis phenotypes. Based on a
custom FIJI/ImageJ2 pipeline, binary images are generated using time-lapse recordings
followed by thresholding. Resulting binary information is summarized and visualized
using R-statistics and R-studio, respectively, (see Section 2.3).

2.2.1. Motility Assay and Swarming Monitoring

Flagella-based motility of B. subtilis are assayed as described previously [7,8]. A total
of 5 µL of overgrown overnight culture is dropped on 0.3% soft-agar LB plates to follow
swimming motility. Plates are prepared freshly and shortly dried prior to the experiment to
reduce excessive water. Plates are incubated at 30 °C and imaged on a black surface using
the Gel Doc XR+ System (BioRad) containing a CCD-camera with a 6.45 × 6.45 µm pixel size
in colorimetric mode with 300 dpi resolution and exported as tagged image file format (.tiff)
files. Here, colony diameters are documented every 2 h. Colony data are plotted based
on the shape variance (normalized model 1 and 2) of their contours that are extracted and
measured from binary images using celltool [14]. Information on the measurement time
and colony area are included as differences in spot transparencies and size, respectively.

https://www.inkscape.org
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The dataset contains three replicates with each nine technical replicates for the strains PY79,
168 and the flagella mutant PY79 yhbEF, resulting in 81 colonies. These data were already
partially published in [4]. Biomedical datasets are often even smaller; therefore, we include
only nine colonies of the supermotile strain W3610 and the lab strain BG214. All colonies
are converted into binary images using the described image-processing workflow with
an Otsu thresholding algorithm. As already described, W3610 colonies exhibit different
absorption densities due to secretion of biofilm compounds. Therefore, threshold values are
set manually for these colonies. Additionally, due to its fast colonization behavior, W3610
colonies start to grow into one another as shown in Figure 3A. To also include these data
into our model, the covered plate area is manually split into quadrants corresponding to
single colonies and subsequently converted into binary images and corrected manually
using ImageJ prior to shape and area measurements. Colony areas are further plotted
against the time, as shown in Figure 4. Conditional means are smoothed using LOESS
regression at 95% confidence intervals, illustrated in gray.

Figure 2. Characteristic B. subtilis colony differences. (A) BG214 shows characteristic cones located at
the edges of the colony. (B) The overall absorption is remarkably stronger for the total colony area.
Areas outside of the densely packed colony are clearly distinct because light can pass through easier
there. Whilst BG214 forms restricted colony of more or less homogenous biomass density, W3610
shows gradients of biomass density represented by more light passing through the observed area.
(C) Topographic representation of the colorimetric representation of the colony shows a plateau-like
distribution of absorption maximum located throughout the whole colony. (D) In contrast to (A),
W3610 shows different absorption densities, illustrating the strong ability of the phenotype to swarm.
(E) Areas where cells are not densely packed allow more light to pass. (F) Inverted representation of
W3610 shows unidirectional increase in waveform indicated by increased absorption. Furthermore,
the center of the colony is not a plateau but indicates a ring shape separating the interior. It can be
concluded that the wild-type W3610 phenotype is more agile regarding its invasiveness toward the
surrounding medium. Figure created using Inkscape 0.92.3, available at: https://www.inkscape.org
(accessed on 15 September 2022) and ImageJ2/FIJI 2.7.0/1.53t, (available at: https://fiji.sc/ (accessed
on 15 September 2022)). False-colored in ‘ICA3’. Scale bars = 1 cm.

https://www.inkscape.org
https://fiji.sc/
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Figure 3. (A) Processing of an overgrown soft-agar plate. B. subtilis W3610 rapidly spreads over the
surface of soft-agar plates and single colony borders are not distinguishable after 8 h. To approximate
the area, the plate was sectioned, and threshold was adjusted manually. (B) Colony data plotted
based on the shape variance (normalized model 1 and 2) of their contours that are extracted and
measured from binary images using celltool [14]. The distribution of colony contour shape gives
additional information on the motility and shape differences between B. subtilis strains PY79 (blue),
168 (red), BG214 (green), W3610 (olive-green) and the flagella-deficient strain PY79 yhbEF on soft-
agar plates. Colony area is indicated by the size of the spots in the plot and time of detection
is indicated by the transparency, with the most transparent spots being acquired at 0 h and the
most dense spots being acquired at 8h. Figure created using Inkscape 0.92.3, available at: https:
//www.inkscape.org (accessed on 15 September 2022) and the R-package ggplot2 [21] available at:
https://ggplot2.tidyverse.org (accessed on 15 September 2022).

2.2.2. Colony Shape Typization Assay

Cells are inoculated from fresh agar plates in LB and incubated overnight (200 rpm/30 °C).
From inoculated overnight cultures, 5 µL cell suspension is dropped on fresh LB agar-coated
glassware petri-dish and incubated overnight at 30 °C. Images are acquired using a Fusion SL
gel-illuminator (Vilber Lourmat) with three biological replicates, each containing 6 colonies per
petri-dish for each of the four B. subtilis phenotypes. Images are repeatedly acquired for each
growing colony over 6 days each. During this period of time, colonies are imaged every day in
a 24 h interval. Resulting .tiff-images are pooled into a database which contains all replicates at
all recorded acquisition intervals. The pooled database aims to capture phenotypic differences
as recognizable characteristic patterns within 144 h after inoculation.

https://www.inkscape.org
https://www.inkscape.org
https://ggplot2.tidyverse.org
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Figure 4. Motility of B. subtilis strains assayed on soft-agar plates illustrated as smoothed scatter
plot of colony area plotted against incubation time. Conditional means were smoothed using
LOESS regression with the 95% confidence intervals illustrated in gray. (A) Strains PY79 (blue), 168
(red), PY79 (turquoise), BG214 (green), W3610 (olive-green) and the flagella-deficient PY79 derivate
PY79 yhbEF (purple) are compared, conditional means were smoothed using LOESS regression.
(B) Separate comparison of 168 wt, PY79 wt, BG214 and PY79 yhbEF. Figure created using Inkscape
0.92.3, available at: https://www.inkscape.org (accessed on 15 September 2022) and the R-package
ggplot2 [21] available at: https://ggplot2.tidyverse.org (accessed on 15 September 2022).

2.3. Computational Methods

Results obtained from this publication are strictly based on open-source technol-
ogy built within a Rstudio (version 2022.07.2+576)/R-library [22,23] and Python [24]
setup. If used in environments that combine them as part of a dedicated knitR mark-
down, reproducible research can be managed in a quite intuitive manner [25–28]. The
minimum requirements are R (version 4.2.1) (available at: https://www.r-project.org (ac-
cessed on 15 September 2022)) [22] and ImageJ2/FIJI (2.7.0/1.53t) [29–32] (available at
https://imagej.net/downloads (accessed on 15 September 2022)) and Python (2.7.18) (avail-
able at https://www.python.org/downloads/ (accessed on 15 September 2022)). Swarming
results resolved at a hourly scale are created using the R-package ggplot2 implemented
’LOESS’ function for respective regression modeling [21]. Colony contours are extracted and
measured by the celltool software [14] (available at https://github.com/zpincus/celltool
(accessed on 15 September 2022)) and results are stored to a .csv-file. The data frame
is organized using the dplyr [33] library. System requirements may vary, but the used
algorithms based on R and ImageJ macro language are capable of performing processing
workflows with reasonable resources to be consumed. However, the modular concept of
the workflow allows the user to adapt only the scripts to solve other research tasks.

2.3.1. Image Processing

Images are deposited within a raw database from which all processing and further
analysis steps are relocated to. Initially, images are re-scaled from inches to cm and
transformed into binary representations. Each colony is cropped individually from whole
raw images of variable sizes. Gray-scale images are automatically processed and converted
to binary using a custom ImageJ2/FIJI [29–32] pipeline. Kuwahara filtering is applied for
noise reduction and images are thresholded using the ‘Otsu’ algorithm (see Figure 1) [34]
for all phenotypes except W3610 which is thresholded using ‘Percentile’ algorithm [35].
Individually processed colonies that are imaged at least three times for each LB agar plate
are all pooled into a database for each phenotype.

https://www.inkscape.org
https://ggplot2.tidyverse.org
https://www.r-project.org
https://imagej.net/downloads
https://www.python.org/downloads/
https://github.com/zpincus/celltool
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2.3.2. Principal Component Analysis (PCA)

PCA is used to decompose the image data into dimensionality-reduced information
that can be further used to identify clusters that are representatives for distinct colony
formation states [36,37]. PCA can help to reduce the amount of irrelevant information (un-
specific noise for instance) whilst maintaining characteristic clusters that are representative
for respective conditional states. PCA can be usefully applied prior to further machine
learning problems, primarily clustering, in order to reduce the amount of information. Con-
tours of binary images are extracted and measured using the celltool software as described
in [14] (available at https://github.com/zpincus/celltool (accessed on 15 September 2022)).
Results are stored to a .csv-file and exported to an R-workflow [22,28] for plotting and
cluster evaluation (see Section 2.3).

2.3.3. Density-Based Spatial Clustering Applications with Noise (DBSCAN)

DBSCAN is an unsupervised machine learning technique that aims to extract cluster
information from data. For broad ML tasks that are focused on anomaly detection within
the provided data, dimensionality reduction using PCA-based decomposition can be used to
improve the ability of the DBSCAN algorithm to detect structure in data more performative and
correctly [38–40]. In contrast to other clustering methods, DBSCAN allows noise between the
clustered objects and is therefore considered as being more robust in discriminating different
clusters more precisely [41]. In this study, DBSCAN is established using the R-packages
dbscan [42], fpc [43] and further convenience packages [33,44–46]. Probably the most important
aspect for appropriate application of DBSCAN is the parameter adjustment for minPts and
ε-value. ε should be as small as possible [47]. To access this information, k-nearest-neighbor
(k-NN) [48,49] distance plots can be used to find the optimal value. A critical point in this
approach is to choose an appropriate number of k-clusters for distance measurements. A useful
approach involves the ‘elbow-method’ that limits k-NN along the total within sum of squares.
Subsequently, the optimal ε-value can be approximated from plotting the k-NN distance against
the number of data points sorted by distance. However, besides technical parameter-tuning
options, the ability of the data scientist who conducts the work is important to judge if the
clusters are making sense [47]. For instance, it is a good option to involve appropriate controls
such as noise, for instance, that can be clearly identified as not relevant. Along this logical
assumption, clusters can be adjusted and ideally optimized using basic ground truth based on a
priori knowledge. In our study, we evaluate the optimal configuration of DBSCAN according
to a combination of the above-mentioned aspects, referring to the recommendation statement
made by Sander et al. [50] for initial k-NN distance search:

minPts = 2 × dim

where minPts = minimal points density, dim = problem dimensionality.

3. Results and Discussion
3.1. Commonly Used B. subtilis Strains Show Distinct Colony Shape Phenotypes

B. subtilis propagates as distinct and strain-specific colony phenotypes when grown on
solid media over several days (see Figures 2, 5 and 6). As pointed out in Figure 2B,C,E,F, the
zones of different densities can be differentiated based on gray-scale images (see Figure 6).
W3610 is by far the strain with the highest variation in shape types, as shown in Figure 5.
Strain 168 shows two shape types followed by the least heterogeneously shaped PY79 and
BG214 contour populations. The wild-type isolate W3610 is known to secrete a complex
matrix containing, among other compounds, exopolysaccharides; surfactants, such as the
lipo-peptide surfactin; or proteins, such as the polymer-forming TasA. This matrix expands
in an arbitrarily shaped forecourt around the colony. Non-biofilm-building lab strains,
such as BG214, on the other hand, form a more compact colony from which small cellular
rafts originate. By choosing an appropriate threshold method, the expanding edge of these
colonies can be detected and followed over time. Corresponding to that, the flagella-based
motility of B. subtilis on soft-agar plates can be documented. As shown in Figure 4A, the

https://github.com/zpincus/celltool
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flagellated phenotypes show a faster growing area on plates over time. Furthermore, the
ability to swarm using surfactin-coated surfaces to modulate hydrophobic interactions is
shown by the exponential colony growth of W3610. Strain 168 grows faster than PY79 and
BG214 and shows an increased heterogeneity of the colony areas over time (see Figure 4B).
Here, 168 cells conquer the surrounding media faster than its relatives PY79 and BG214 but
slower than the wild-type strain W3610. Our workflow can quantify these differences as
the area growth over time and approximates the motility between single measurements by
using locally estimated regression curves. These strains can also be differentiated based on
a PCA of different swarming behaviors, especially when comparing the flagella-deficient
strain PY79yhbEF with W3610. Exchanging the genes yhbE and yhbF by a resistance cassette
in the strain PY79 was described to abolish the flagella hock and filament formation in
this strain [11]. Therefore, we utilized this strain as a negative control, and the colony
area extension here results from an increase in the cell density and does not rely on active
flagella movement. As shown prior to this study, the effect of a bactofilin double mutant on
motility is present in PY79, but not in 168 or W3610, indicating strain-specific differences in
the regulation of flagella biosynthesis as described in [4].

Figure 5. Distribution of shape contours including noise (smaller cell assemblies and artifacts) shows
that distinct curvatures can be identified along the distinct phenotypes. W3610 (blue) shows the most
heterogeneous and strong curved shape followed by 168 (orange). Both swarmer phenotypes are
clearly distinct compared to the less motile strains PY79 (green) and BG214 (magenta). Remarkably,
W3610 localizations are less centered compared to the other strains, especially PY79, which indicates
the ability to swarm and conquer the surrounding media faster and can be relocated to specific
localization patterns as shown here using principal components based on the area and curvature.
Keeping in mind that the dataset consists of a repeatedly acquired and temporarily pooled set of gray-
scale images, it is powerful enough to monitor the underlying heterogeneity of variances between
the isolated contours of the respective phenotypes. Figure created using Inkscape 0.92.3, available at:
https://www.inkscape.org (accessed on 15 September 2022) and celltool [14].

https://www.inkscape.org
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Figure 6. PCA results (after noise elimination of results shown in Figure 5) show distinct colony
shape types. Isolated and iterated colony shapes are compared between the monitored phenotypes.
Corresponding to Figure 5, colony shapes can be distinguished along their shape variance which
tends to be remarkably higher for W3610 and 168 compared to BG214 and PY79, supporting the idea
that this could be connected to the aspect of domestication and the ability to swarm. Figure created
using Inkscape 0.92.3, available at: https://www.inkscape.org (accessed on 15 September 2022) and
celltool [14].

3.2. Strain-Specific Colony Formation Growth Patterns Contain Characteristic Colony
Formation Shapes

The results obtained from the conducted workflow show the distinct formation of
cell colonies that illustrate the variation which is possibly connected to the phenotypic
expression of distinct growth behavior. Crone formations at the edge of the biofilm can be
explained by the presence of flagellating cells, resulting in more diffusive areas indicating
swarming. The phenotypes that do not divide into isolated cells nor swarm show less
formation of this characteristic pattern. Although the availability of nutrition is more or less
equally distributed in the agar plates, the results could also support a nutrition-gradient-
directed growth explanation and a selective advantage for cells that can more easily conquer
novel areas and build more resistant structures, such as a colony or a biofilm [51]. The
applied machine learning workflow proved to be a useful monitoring tool for this purpose
if applied to a relatively small but heterogeneous dataset. However, the scope of the work is
to provide a useful workflow to address more detailed and informative biological questions
in a systematic manner. The efficient and precise monitoring of cell viability is the key for
every successful biotechnological assay formulation. By applying the presented workflow,
important generalization and feature discovery aspects are addressed: First, although the
same species is monitored, clearly distinct patterns of dynamic colony growth are detectable
between strains (see Figure 4). Second, using a set of different time scales allows to produce
a pooled but representative dataset regarding the overall shape heterogeneity and variances
along the phenotypic distribution patterns (see Figures 5 and 6). Interestingly, there is a
hierarchical difference between the typization and motility if focusing on BG214 and PY79.
BG214 resembles the flagella knock out more in terms of reduced motility, even compared
to the PY79 wt (see Figure 4). However, in regards to conquering new media, BG214 shows
more shape heterogeneity than PY79 (see Figure 6). A time series (1 hour (h) intervals)
of B. subtilis (BG214) shows an increasing cellular area resulting from the colony density
rather than motility (see Figures 2 and 4). In this study, we know which strains are different
regarding their growth behavior through the extensively studied model-organism B. subtilis
(see Table 1) which provides a certain ground truth.

3.3. Phenotypes Can Be Discriminated According to Their Swarming Behavior

B. subtilis lab strains exhibit different swarming behaviors which can be monitored on
soft-agar plates (see Figure 3). The PCA of the shape/area data shows a clear and simple
representation over the dataset (see Figures 3 and 4). The increased variance resulting from
the angled contour shape of the W3610 8h samples can easily be recognized by the broader
point distribution in the PCA plot. In contrast to this, the colonies of the non-motile strain

https://www.inkscape.org
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PY79 yhbEF, as illustrated in purple, only cluster within a very small area due to their low
change in variance over the course of this experiment. The colonies of its motile counterpart
PY79 wt, here illustrated in blue, start to spread over the surface of the soft agar over time,
resulting in bigger variances. According to that, the colonies of 168 cluster in the larger
area as compared to PY79 wt. Figure 4A summarizes the motility of all five strains. Similar
to Figure 3B, the originally isolated strain W3610 (olive-green) is highly motile, covering on
average 500 mm2 of the plate per colony after 8h of incubation. The model also points out
the smaller differences between the strains, as shown in Figure 4B. The 168 colonies (red)
cover the soft agar faster than the PY79 colonies (blue). BG214 (green) behaves similar to
the non-motile strain PY79 yhbEF and only develops a positive tendency between 6 and 8 h
of incubation. BG214, also known as YB886 [52], is an SPβ prophage-cured derivate of 168.
Besides that, the single cells of BG214 stick together after division, forming dimers which
could explain the long time lag until the colony diameters increase. A slight increase in
the non-flagellated PY79 yhbEF colonies derives from an increasing cell density within the
colonies. The LOESS represents a non-parametric regression technique which can flexibly
be applied to visually assess the relationship between two variables, in this case, the colony
area and time, making it suitable for studying a wide range of phenomena. In this case,
we estimate the colony size between measurements. Because we know this process to
gradually proceed, the model enables us to estimate this growth behavior even with a
relatively small sample size without constant monitoring of the specimen.

3.4. Spatial Clustering Is Capable of Detecting Anomalous Colony Formation

The PCA-DBSCAN results provide proof of principle for the workflow. According to
the celltool PCA analysis, the orthogonal decomposition of the investigated phenotypes
results in clearly distinct but also overlapping residues (see Figures 5 and 7A). Phenotypes
can be discriminated as distinct clusters, as shown in Figure 7. The workflow is powerful
enough to discriminate noise from a core cluster which covers all the phenotypes analyzed
in the study (shown in Figure 7B). This core cluster shows a population that is not clearly
distinguishable by clustering. The temporal dependencies are indicated by a gradual
decreasing transparency of the objects which shows that early stage colonies cluster in the
first quadrant of the PCA coordinate system. In contrast to that, the colonies cluster around
the center at a later stage (see Figure 5, compare to Figure 7A,C). The domesticated strains
converge to a core cluster that shows less differences regarding the shape of the colonies
after adjusting a k-nearest-neighbor distance using the ‘knee-of-the-curve’ k-NN distance
method (see Figure 7C). We know that the artifact cluster in Figure 7B (green) consists of
objects that are definitely not defined as a region of interest (compare Figure 5). On the
other hand, two distinct swarmer clusters can be detected for W3610 in Figure 7B, I (blue)
and II (purple). Due to the strong shape variation of the colony formations, it is difficult
to capture one unifying cluster for W3610. However, this observation confirms the idea
that domesticated lab strains have a stronger resemblance to each other if compared to the
wild type. The core cluster, as shown in Figure 7B (red), covers all strains along the gradual
increase in the colony size over time. Interestingly, the W3610 objects are the main source
of the noise objects, as shown in Figure 7B (black), which is possibly a result of the objects
that could not be connected to a bigger colony object at the edges or is just image noise.
As shown in Figures 5, 6 and 7A,B, W3610 shows the highest shape variation and general
heterogeneity of variances. Analogously, this is also shown using temporal resolutions
scaled to hours in Figures 3 and 4.
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Figure 7. PCA-DBSCAN analysis of B. subtilis. (A) Principal components of PY79 (purple), 168
(red), BG214 (blue) and W3610 (olive-green) colony contours are plotted in a scatter plot. Time of
colony growth is indicated by spot transparency. (B) Cluster anomaly detection and discrimination of
principal components. DBSCAN identified three clusters, the core colony shapes (red), the arbitrary-
shaped swarmer colonies (blue and purple) and artifacts from contour detection (green). The epsilon
value was adjusted according to the distances of the 4 nearest neighbors as illustrated on the right.
(C) Separate clustering of single strains. ε-values were adjusted manually according to the 4 nearest-
neighbor distances shown below. Identified clusters are depicted for strains PY79, BG214, W3610
and 168. Figure created using Inkscape 0.92.3, available at: https://www.inkscape.org (accessed
on 15 September 2022) and ggplot2 [21] available at: https://ggplot2.tidyverse.org (accessed on 15
September 2022).

4. Outlook

Due to the modular nature of the workflow, it is easy to also implement other algo-
rithms if needed and to combine them accordingly. It is important to notice that the entire
procedure, starting from the wet-lab work prior to the computational methods performed
further downstream (see Figure 1), is an integral part of the workflow. Depending on the
necessary bias-correction measures, the changes in the workflow logic can be accessed at

https://www.inkscape.org
https://ggplot2.tidyverse.org
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every key stage (see Figure 1). It could be shown that the remarkable differences between
the B. subtilis strains can be modeled on the basis of different evaluation strategies. Further-
more, the whole procedure is based on the freely available software and basic hardware
requirements necessary for this kind of computation. Therefore, it would be plausible to
extend the project toward a clinical perspective using a standardized scale-up in order to
study and monitor locally traced biofilm-producing bacteria that occur in a clinical environ-
ment, for instance. Changes in the phenotype-specific growth behavior can be identified
and monitored and anomalies can be detected prior to further sequencing, for instance.
Screening strategies could also involve detergents and antibiotics to study the respective
response in the growth behavior. In theory, the effects of the possible decontamination
efficiency for improved biofilm elimination could be monitored. The high flexibility of the
workflow is also interesting for applications that are conducted in locations of limited com-
putational resources, e.g., in remote areas. By observing the response toward an antibiotic or
detergent for a microorganism, minimal dosages and concentrations could be defined using
the workflow. However, how reproducible the outcome is, if the same strains from other
laboratories show the same behavior, needs to be validated. Nevertheless, the workflow
shows how to approach these tasks systematically and dissect information, respectively.
Different types of assay strategies that involve antibiotics are also possible in combination
with colony formation that is monitored using time-resolved gray-scale imaging, as shown
prior to this workflow [53]. Our results suggest that distinct characteristic features based
on the ability to invade the surroundings are suitable to apply spatial clustering based on
the DBSCAN (see Figure 7). The applied local regression model in this workflow can be
easily transferred to research tasks that focus on other time-related phenomena.

5. Conclusions

B. subtilis has been a workhorse for many molecular-biological laboratories for ages.
As their wild relatives in nature, domesticated laboratory strains also tend to evolve over
time; therefore, it is important to control if strains from different collections are still similar
enough to draw general conclusions from studying them. The phenotype-based top–down
approach, as presented here, can serve as a tool for comparing these strains from different
sources. We have used B. subtilis in this study as a proxy for pathogenic bacteria, such
as Streptococcus pneumoniae, Staphylococcus aureus or Mycobacterium tuberculosis, where the
colony morphology can distinguish between the strains of different pathogenicity. The
workflow is potentially capable of detecting differences that are not necessarily easily
accessible within the genome sequence and can therefore be seen as complementing time-
and cost-intensive genome sequencing efforts. Besides the colony growth rate, our work-
flow could also be applied to describe other bacterial features, such as biofilm formation.
Biofilms are a key component for understanding the persistence dynamics of associated
pathogens in their ability to conquer a new area to form more persistent layers or biofilms.
To uncover the basic mechanisms that govern the multi-cellular interaction networks is still
enigmatic and requires appropriate validation strategies. It is therefore crucial to combine
multiple analytical approaches on top of high-dimensional datasets involving temporal
and spatial aspects. However, any small camera device (e.g., in a smartphone) is capable of
acquiring images of sufficiently enough quality to produce useful insights into the colony
formation variation of distinct B. subtilis phenotypes.

Depending on the type of research other groups are working on, key principles can
be adapted and modified from this workflow in a streamline. It is therefore shown how
to transparently process the data and transfer the information into a machine learning
pipeline to learn about the general rules of the data. Further biological questions can be
assayed with this setup at low cost. B. subtilis is one of the major model organisms to study
pathogenic microbes with similar growth behavior. Furthermore, our workflow is a very
useful resource to optimize the parameter setting of the DBSCAN-based clustering. Our
dataset contains sufficient ground truth, which is shown by the very important observa-
tion that artifacts can be clearly detected and isolated. The same accounts for swarmer
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colonies that help to identify strains that are potentially more pathogenic in a sense that
they predominantly assemble in persistent structures or contaminate the surrounding
environment faster.

To sum up, we conclude that presenting this workflow is a potentially useful resource
for research groups that try to establish a reproducible pipeline to assay their own strains
for similar research tasks. They may profit from the programming workflow and easy
accessibility for similar tasks, empowered by the open-source technology.
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