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Abstract

An important question concerning inter-areal communication in the cortex is whether these interactions are synergistic, i.e. brain
signals can either share common information (redundancy) or they can encode complementary information that is only available
when both signals are considered together (synergy). Here, we dissociated cortical interactions sharing common information from
those encoding complementary information during prediction error processing. To this end, we computed co-information, an
information-theoretical measure that distinguishes redundant from synergistic information among brain signals. We analyzed au-
ditory and frontal electrocorticography (ECoG) signals in five common awake marmosets performing two distinct auditory oddball
tasks and investigated to what extent event-related potentials (ERP) and broadband (BB) dynamics encoded redundant and syner-
gistic information during auditory prediction error processing. In both tasks, we observed multiple patterns of synergy across the
entire cortical hierarchy with distinct dynamics. The information conveyed by ERPs and BB signals was highly synergistic even at
lower stages of the hierarchy in the auditory cortex, as well as between auditory and frontal regions. Using a brain-constrained neu-
ral network, we simulated the spatio-temporal patterns of synergy and redundancy observed in the experimental results and further
demonstrated that the emergence of synergy between auditory and frontal regions requires the presence of strong, long-distance,
feedback and feedforward connections. These results indicate that the distributed representations of prediction error signals across
the cortical hierarchy can be highly synergistic.

INTRODUCTION

The traditional modular view of brain function is increas-
ingly challenged by the finding that information about external
stimuli and internal variables is distributed across brain areas
(de Schotten and Forkel, 2022; Urai et al., 2022; Shenoy and
Kao, 2021; Breakspear, 2017; Panzeri et al., 2022). When in-
formation in a complex system is carried by multiple nodes, this
could imply that there is a large degree of redundancy in the in-
formation carried by the different nodes. That is, the whole is
actually less than the sum of the parts. An alternative possi-
bility, however, is that information is carried in a synergistic
manner, i.e. the different nodes might carry extra information
about task variables when they are combined. In other words,
the whole is more than the sum of the parts (Luppi et al., 2022).

Both recent large-scale spiking and electrocorticographic
(ECoG) recordings support the notion that information about

task variables is widely distributed rather than highly localized
(Urai et al., 2022; Steinmetz et al., 2019; Parras et al., 2017;
Saleem et al., 2018; Voitov and Mrsic-Flogel, 2022). For exam-
ple, in the visual domain, widespread neuronal patterns across
nearly every brain region are non-selectively activated before
movement onset during a visual choice task (Steinmetz et al.,
2019). Similarly, distributed and reciprocally interconnected
areas of the cortex maintain high-dimensional representations
of working memory (Voitov and Mrsic-Flogel, 2022). In the
case of multisensory integration, sound-evoked activity and its
associated motor correlate can be dissociated from spiking ac-
tivity in the primary visual cortex (V1) (Lohuis et al., 2022;
Bimbard et al., 2023). A last example, and the one used in the
current study, is the case of communication of prediction error
(PE) signals. Hierarchical predictive coding theory has been
proposed as a general mechanism of processing in the brain
(Rao and Ballard, 1999). The communication of prediction er-
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ror (PE) signals using spikes and local field potentials (LFPs)
recorded from subcortical and cortical regions reveal a large-
scale hierarchy PE potentials (Parras et al., 2017).

A major question is whether such distributed signals exhibit
a high degree of redundancy (i.e. shared information) or a
high degree of synergy (i.e. extra information) about their cor-
responding task variables. Electrophysiological studies have
shown that synergy and redundancy have functional relevance
(Nigam et al., 2019; Ince et al., 2017; Park et al., 2018; Gior-
dano et al., 2017; Luppi et al., 2022; Varley et al., 2023). For
instance, laminar recordings in V1 suggest that synergistic in-
teractions can efficiently decode visual stimuli better than re-
dundant interactions, even in the presence of noise and over-
lapping receptive fields (Nigam et al., 2019). In contrast, the
information processing of olfactory stimuli exhibits higher lev-
els of redundant information across olfactory regions (Olivares
et al., 2022). Here we investigate this question by using co-
Information (co-I), an information theoretical metric capable
of decomposing neural signals into what is informationally re-
dundant and what is informationally synergistic between stim-
uli (Ince et al., 2017). Redundant information quantifies the
shared information between signals, suggesting a common pro-
cessing of the stimuli. Synergistic information quantifies some-
thing different: whether there is extra information only avail-
able when signals are combined, indicating that the information
about the variable is in the actual relationship between the sig-
nals. Using ECoG recordings, we investigated synergistic and
redundant interactions in five common marmosets performing
two types of auditory tasks. This allowed us to determine the
processing of communication of prediction error information
across the brain during a range of auditory deviancy effects. Fi-
nally, we applied the same oddball stimulation task used in the
experiments to a brain-constrained neurocomputational model
of the relevant cortical areas. We computed synergy and re-
dundancy in the simulated responses to unravel the mechanism
responsible for generating the synergistic interactions observed
in-vivo.

RESULTS

Mutual Information reveals prediction error effects within cor-
tical areas

To characterize the distribution of PE across multiple cortical
areas, we quantified PE in each electrode of the five marmosets
by contrasting deviant and standard tones (Figure 2). For each
electrode, we computed Mutual Information (MI) to quantify
the relationship between tone category (standard vs deviant)
with their corresponding ECoG signal across trials. Within the
framework of information theory, MI is a statistical quantity
that measures the strength of the dependence (linear or non-
linear) between two random variables. It can be also seen as
the effect size, quantified in bits, for a statistical test of inde-
pendence (Ince et al., 2017). Thus, for each electrode and time
point, we considered ECoG signals corresponding to standard
and deviant trials and utilized MI to quantify the effect size of
their difference.

We have recently proposed that a suitable candidate for
broadcasting unpredicted information across the cortex is the
transient, aperiodic activity reflected at the level of the evoked-
related potentials (ERP) and broadband power (Vinck et al.,
2023). A well-studied ERP marker of auditory PE is the mis-
match negativity (MMN), an ERP that peaks around 150–250
ms after the onset of an infrequent acoustic stimulus (Parras
et al., 2017; Blenkmann et al., 2019; Komatsu et al., 2015;
Canales-Johnson et al., 2021). A second neural marker of audi-
tory PE is the broadband response (BB), an increase in spectral
power spanning a wide range of frequencies usually above 100
Hz (Canales-Johnson et al., 2021; Jiang et al., 2022). Whereas
ERPs reflect a mixture of local potentials and volume con-
ducted potentials from distant sites, BB is an electrophysiolog-
ical marker of underlying averaged spiking activity generated
by the thousands of neurons that are in the immediate vicinity
of the recording electrodes (Miller, 2019; Lachaux et al., 2012).
MI was computed separately for the two neural markers of pre-
diction error (i.e. ERP and BB signals).

Electrodes showing significant differences in MI over time
(see METHODS) are depicted in Figure 2. In the Roving odd-
ball task, ERP signals showed PE effects across multiple corti-
cal regions not necessarily restricted to canonical auditory areas
(Figure 2B). In the case of the BB signal, MI analyses revealed
PE effects located predominantly in the auditory cortex of the
three marmosets, as well as in a few electrodes located in the
frontal cortex of marmoset Kr and Go (Figure 2A). These re-
sults agree with previous studies in different sensory modalities
(Miller, 2019) showing that broadband responses are spatially
localized. In the case of the Local/Global Task, although the
dataset for marmoset Nr and Ji contained ECoG recording only
from the temporal and frontal cortices, the overall PE effects in
the ERP signals were observed in a higher number o electrodes
than in the BB signal (Figure 2 and Figure S9)

Co-Information reveals redundant and synergistic cortical in-
teractions

To investigate how auditory PE signals are integrated within
and between the cortical hierarchy, we quantified redundant and
synergistic cortical interactions using an information theoreti-
cal metric known as co-Information (co-I) (Ince et al., 2017).
Co-I quantifies the type of information that interacting signals
encode about a stimuli variable: positive co-I indicates redun-
dant interactions between signals; and negative co-I accounts
for synergistic interactions (Figure 1D). Redundancy implies
that the signals convey the same information about PE, indicat-
ing a shared encoding of PE information across time or space
from trial to trial. On the other hand, synergy implies that sig-
nals from different time points or areas convey extra informa-
tion about PE only when considered together, indicating that
the relationship itself contains information about PE that is not
available from either of the signals alone (Figure 1D).

To quantify the dynamics of redundancy and synergy tem-
porally and spatially, we computed the co-I within and be-
tween cortical areas (see METHODS. We analyzed ERP and
BB markers of PE separately, focusing our contrasts on the
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Figure 1: Experimental design, information-theory analyses, and modelling. (A) Using a Roving oddball Task, 20 different single tones were presented in the
trains of 3, 5, or 11 identical stimuli. Any two subsequent trains consisted of different tones. This way, while the adjacent standard (depicted in black) and deviant
(depicted in green) tones deviated in frequency due to the transition between the trains, the two expectancy conditions were physically matched, as the first and the
last tones of the same train were treated as deviant and standard tones in the analysis of the adjacent stimuli pairs. This task was performed by 3 marmosets (Fr,
Kr, and Go). (B) Local/Global Task. On each trial, five tones of 50-ms-duration each were presented with a fixed stimulus onset asynchrony of 150 ms between
sounds. The first 4 tones were identical, either low-pitched (tone A) or high-pitched (tone B), but the fifth tone could be either the same (AAAAA or BBBBB, jointly
denoted by xx) or different (AAAAB or BBBBA, jointly denoted by xY). Each block started with 20 frequent series of sounds to establish global regularity before
delivering the first infrequent global deviant stimulus. This task was performed by 2 different marmosets (Ji and Nr). (C) Neural markers of auditory prediction error.
Deviant (green) and standard (black) epochs are used to compute the broadband and ERP responses. Broadband is computed by extracting by reconstructing the
time series of standard and deviants with the first spectral principal component (SPCA) of the ECoG signal; ERPs are computed by averaging the raw voltage values
for standard and deviant trials (see Methods). (D) Schematic representation of redundancy and synergy analyses computed using co-Information. Each inner oval
(A1 and A2) represents the mutual information between the corresponding ECoG signals and the stimuli category (standard or deviant). The overlap between A1
and A2 represents the redundant information about the stimuli (red; left panel). The outer circle around A1 and A2 represents the synergistic information about the
stimuli (blue; right panel). (E) Brain areas modelled, network architecture, and its connectivity. Top left: Cortical areas modelled. Three cortices in the left temporal
lobe (primary auditory: A1, auditory belt: AB, and parabelt: PB) involved in auditory processing, and three in the frontal lobe (prefrontal: PF; premotor: PM;
primary motor: M1) directly linked to them. Bottom left: Network architecture. All the (sparse and random) connections are based on marmoset neuroanatomy (see
Methods). Right: Schematic of links to/from a single excitatory cell ‘e’. Each model area consists of two layers of excitatory (upper) and inhibitory (lower) graded-
response leaky integrator cells with neuronal fatigue. Dense links between these layers (grey arrows) implement mutual inhibition between e and its neighbors.
Panel E, right and bottom left is adapted from Garagnani and Pulvermüller (2013), their Figure 1E.
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Figure 2: Broadband and ERP markers of PE across the monkey brain. Electrode locations for marmoset Kr (64 electrodes), Go (64 electrodes), and Fr (32
electrodes) in Experiment 1; and Nr (96 electrodes in EcoG-array, 39 used for analyses) and Ji (96 electrodes in EcoG-array, 27 used for analyses) in Experiment
2. Electrodes showing significant PE effect after computing MI between standard and deviant trials for the (A, F) Broadband (dark green circles) and (B, G) ERP
(light green circles) markers of auditory prediction error. Electrodes showing significant MI for both markers are depicted in cyan. (C, H) Histogram of electrodes
showing significant MI between tones for BB (left), ERP (middle), and both markers (right) for each animal. (D, I)Electrodes with the highest MI in the temporal
and frontal cortex showing the BB signal for deviant and standard tones. Deviant tone (green) and standard tone (black), and the corresponding MI values in bits
(effect size of the difference) for the temporal (pink trace) and frontal (orange trace) electrodes. Significant time points after a permutation test are shown as grey
bars over the MI plots. (E, J) Electrodes with the highest MI in the temporal and frontal cortex showing the ERP signal for deviant and standard tones.

electrodes that showed significant MI effects in the analyses de-
scribed in Figure 2C.

Experiment 1: Roving Oddball Task
Temporal synergy and redundancy

The finding that multiple recording sites encode information
about PE raises the question of whether these signals convey the
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Figure 3: Temporal synergy and redundancy within ERP and BB signals in the auditory and frontal electrodes with the highest MI for the Roving Task (Experiment
1). Co-information revealed synergistic and redundant temporal patterns within ERP (A) and BB (B) signals in the auditory cortex, and within ERP (C) and BB (D)
signals in the frontal cortex. MI (solid traces) between standard and deviant trials for auditory (pink color) and frontal (orange color) electrodes averaged across the
three monkeys. Temporal co-I was computed within the corresponding signal (ERP, BB) across time points between -100 to 350 ms after tone presentation. The
average of the corresponding electrodes across monkeys is shown for the complete co-I chart (red and blue panel); for positive co-I values (redundancy only; red
panel); and for negative co-I values (synergy only; blue panel). The grey panels show the proportion of monkeys showing significant co-I differences in the single
electrodes analysis depicted in Figure S1.

same or complementary PE information over time within a cor-
tical region. Thus, we first characterized synergistic and redun-
dant temporal interactions within ERP and BB signals. In the
Roving Oddball Task, co-I analyses revealed widespread tem-
poral clusters of synergistic information (in blue) and redun-
dant information (in red) across the three monkeys in the audi-
tory cortex (Figure 3,4,5 A,B), and frontal cortex (Figure 3,4,5
C,D). The ERP signal in the auditory (Figure 3A) and frontal
(Figure 3C) electrodes showed characteristic off-diagonal syn-

ergistic patterns, resulting from the interaction between early
and late time points within the same ERP signal (e.g. Figure
3A,C; grey clusters between ∼140-300 ms after tone presen-
tation), and revealed by the single electrode contrast depicted
in Figure S1. We observed significant temporal redundancy in
the auditory (Figure 3B) and frontal (Figure 3D) BB signals.
For auditory BB signals, the dynamics of the redundant pat-
terns were observed along the diagonal of the co-Information
chart, they were sustained over time and observed between time
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Figure 4: Spatio-temporal synergy and redundancy between auditory and frontal electrodes in the Roving Task (Experiment 1). Co-information revealed synergistic
and redundant spatio-temporal patterns between auditory and frontal electrodes in the ERP (A) and BB (B) signals for the Roving task (Kr, Go, Fr). MI (solid
traces) between standard and deviant trials for temporal (pink color) and frontal (orange color) electrodes. Co-I was computed between each pair of electrodes and
across time points between -100 to 350 ms after tone presentation. The average of the temporo-frontal pairs across the three monkeys is shown for the complete
co-I chart (red and blue panel); for the positive co-I values (redundancy only; red panel); and for the negative co-I values (synergy only; blue panel). The proportion
of electrode pairs showing significant co-I differences is shown in the corresponding grey panels. The average co-I charts for the individual monkeys are shown in
Figures S3 for the ERP signal, and in Figure S6 for the BB signal for monkeys Fr, Go and.

points around the early MI peaks (i.e., during the transient pe-
riod when the effect sizes are larger between tones) (Figure
3B; grey clusters ∼120-280 ms after one presentation). In the
frontal electrodes, we observed significant clusters of sustained
redundant interactions around later time points (Figure 3D; grey
cluster around 300 ms after tone presentation).

Spatio-temporal synergy and redundancy

The finding that multiple recording sites encode information
about PE raises the question of whether these regions are dy-
namically interacting and whether these inter-areal interactions
are redundant or synergistic. In order to test this possibility,
we characterized the redundancy and synergy between auditory
and frontal electrodes. Spatio-temporal co-I was computed be-
tween the auditory and frontal electrodes over time (Figure 6)
and averaged across monkeys separately in the Roving Odd-
ball Task (i.e. ERP and BB signals). The dynamics of spatio-
temporal synergy in the ERP and BB signals showed complex
and heterogenous patterns, emerging along the diagonal of the
co-information charts, and also through off-diagonal patterns
between early time points of the auditory electrodes and later
time points in the frontal electrodes for both ERP and BB sig-
nals (Figure 6).

Experiment 2: Local/Global Task

Temporal synergy and redundancy

Although PE processing has been widely studied using the
Roving Oddball Task (Canales-Johnson et al., 2021), the contri-
bution of stimulus-specific adaptation (SSA) to the amplitude of
the ERP response is usually considered a confounding factor in
the isolation of PE (Parras et al., 2017). For this reason, we also
investigated synergy and redundancy in a separate task capable
of attenuating the effects of SSA (i.e. the Local/Global Task). In
the Local contrast, although we observed temporal synergy in
both ERP and BB signals, the off-diagonal synergistic patterns
were primarily observed in the BB signal within the temporal
cortex (Figure 4). Another advantage of the Local/Global Task
is the possibility of exploring a higher-order PE observed as a
violation of the overall sequence of tones (Global contrast; see
Figure 1B, and METHODS). This context-dependant deviancy
effect has been shown to elicit neural activation in frontal re-
gions (Chao et al., 2018; Jiang et al., 2022). In the case of the
Global contrast, we observed temporal synergy within the au-
ditory and frontal electrodes (Figure 5B,D) mainly in the BB
signals. These results suggest that the Local/Global task elic-
its distributed patterns of PE information across time that are
primarily encoded by firing rates.
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Figure 5: Temporal synergy and redundancy within ERP and BB signals in the auditory and frontal electrodes with the highest MI for the Local/Global Task
(Experiment 2). In the Local and Global contrasts, co-information revealed synergistic and redundant temporal patterns within ERP (A, E) and BB (B, F) signals
in the auditory cortex, and within ERP (C, G) and BB (D, H) signals in the frontal cortex. MI (solid traces) between standard and deviant trials for auditory (pink
color) and frontal (orange color) electrodes averaged across the three monkeys. Temporal co-I was computed within the corresponding signal (ERP, BB) across time
points between -100 to 350 ms after tone presentation. The average of the corresponding electrodes across monkeys is shown for the complete co-I chart (red and
blue panel); for positive co-I values (redundancy only; red panel); and for negative co-I values (synergy only; blue panel). The grey panels show the proportion of
monkeys showing significant co-I differences in the single electrodes analysis depicted in Figure S2.

Spatio-temporal synergy and redundancy

We investigated whether local and higher-order PE are en-
coded by synergistic information between cortical regions.
Thus, we characterized the synergy (and redundancy) between
auditory and frontal electrodes for the local and global contrast
6. Spatio-temporal co-I was computed between the auditory
and frontal electrodes over time and averaged across two mon-
keys separately for each signal (i.e. ERP and BB signals). Con-
sistent with the effects observed in the Roving Oddball Task, we
observed multiple patterns of synergistic and redundant infor-
mation between temporal and frontal regions. We also noticed
an interesting difference between the two tasks. While the Rov-
ing Oddball Task elicited most of the synergistic interactions
between ERP signals (Figure 6A, C, E), the Local/Global Task
elicited most of the synergy between BB signals (Figure 6C-F).

To sum up, we observed widespread patterns of synergy
within and between ERP and BB signals across the auditory
cortical hierarchy. The distributed nature of the temporal and

spatio-temporal synergistic interactions across the cortical hier-
archy raises the question of whether the emergence of synergy
is a consequence of the recurrent and feedback connections in
the auditory network.

Explaining the presence of synergy using a brain-constrained
neurocomputational model

To test the validity of our working hypothesis that synergis-
tic information may be driven mainly by recurrent and feed-
back connections, we applied an existing neural-network model
closely reproducing structural and functional properties of rele-
vant areas in the superior-temporal and inferior-frontal lobes of
the primate brain (Fig 7A) to simulate auditory PE processing
(see METHODS). Our approach was to employ a fully brain-
constrained neurocomputational model that accurately repli-
cates critical neurobiological and neuroanatomical features of
the mammalian cortex (Pulvermüller et al., 2021), and to stim-
ulate this model using the same Roving Oddball Task adopted
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Figure 6: Spatio-temporal synergy and redundancy between auditory and frontal electrodesin the Local/Global Task (Experiment 2). Co-information revealed
synergistic and redundant spatio-temporal patterns between auditory and frontal electrodes in the ERP (A, C) and BB (B, D) signals (Ji, Nr). MI (solid traces)
between standard and deviant trials for temporal (pink color) and frontal (orange color) electrodes. Co-I was computed between each pair of electrodes and across
time points between -100 to 350 ms after tone presentation. The average of the temporo-frontal pairs across the three monkeys is shown for the complete co-I
chart (red and blue panel); for the positive co-I values (redundancy only; red panel); and for the negative co-I values (synergy only; blue panel). The proportion
of electrode pairs showing significant co-I differences is shown in the corresponding grey panels. The average co-I charts for the individual monkeys are shown in
Figures S4, S5 for ERP signal, and Figures S7, S8 for the BB.

in Experiment 1. The network simulated neuronal firing rates,
which are the main contributors of the BB signals; we there-
fore honed our modelling efforts on reproducing the BB signals
observed in Experiment 1 (3B, D and 4B) The model we used
(see Fig. 1E) has been previously applied to successfully sim-
ulate and explain automatic auditory change detection and the
Mismatch Negativity (MMN) response to familiar and unfamil-
iar sounds in the human brain (Garagnani and Pulvermüller,
2011) and a number of other phenomena in the domains of lan-
guage acquisition and processing, attention, memory, and de-

cision making (Tomasello et al., 2019, 2017; Schomers et al.,
2017; Pulvermüller and Garagnani, 2014; Garagnani and Pul-
vermüller, 2013; Garagnani et al., 2008) — see Pulvermüller
et al. (2021) for a recent review.

Here, we recorded the network’s responses (measured in
each area as the sum of all cells’ firing rates) to predefined ran-
dom patterns simulating standard and deviant tones; following
the same procedure used to process the experimental data (see
METHODS), we then analysed the resulting PE signals. We
immediately observed that the network not only exhibited the
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Figure 7: Model architectures and simulation results. A brain-constrained model of temporal and frontal areas of the marmoset brain (see Fig. 1E) was stimulated
with simulated tones as in the Roving Oddball Task used in Experiment 1. (A,D): Different network architectures used for the simulations (see METHODS).
Feedforward and feedback between-area connections are depicted as black and green arrows; recurrent within-area links (panel A only) are shown in gold. Input
stimuli were repeatedly presented to area A1 of the network (model correlate of primary auditory cortex) and firing rate responses of each excitatory cell within the
six areas were recorded. (B,C): Results obtained with networks having a Fully Connected (FC) architecture (shown in panel A), which included both feedforward /
feedback links and recurrent connections. (E,F): Results obtained using networks having a Feedforward-only (FF) architecture (panel D), in which the feedback and
recurrent connections were absent. MI (solid traces) between standard and deviant trials averaged across three simulation runs (each run modelling a single monkey
dataset) are plotted for the three temporal (A1, AB, PB: pink curves) and three frontal (PF, PM, M1: orange curves) areas’ simulated responses. Co-information
analyses were performed on the model temporal and frontal areas’ signals. Temporal co-I was computed within the simulated firing rates across time points between
-100 to 350 ms after stimulus onset. The average of the corresponding electrodes across simulated monkey datasets is shown for the complete co-I chart (red and
blue panel), for positive co-I values (redundancy only; red panel) and for negative co-I values (synergy only; blue panel). Note the similarity (in terms of temporal
patterns of synergy and redundancy) between the results obtained from the FC model responses (panels B and C) and those from the corresponding experimental
data (the BB signal shown in Figure 3, panels B and D, respectively). The grey panels show the proportion of simulated monkey datasets with the highest MI within
the temporal (A1, AB, PB) and frontal (PF, PM, M1) regions.
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previously documented auditory change detection responses,
but that the signal from the model’s superior-temporal region
(including areas A1, AB, PB) encoded both redundant and syn-
ergistic information. This first result was quite striking and un-
expected, as no changes to the existing computational architec-
ture had been implemented in order to achieve this outcome.

We then further constrained the model’s dynamics by fine-
tuning three of its parameters (i.e., the strength of the neuronal
adaptation, the local inhibition, and the between-area links) so
that the temporal and spatial features of synergistic information
encoded in the simulated PE responses would closely resem-
ble those we observed experimentally. Having attained a good
match between experimental and simulated data (e.g, compare
Figure 7 panels B and C, with Figure 3 panels B and D, respec-
tively), we then moved on to address the main question, i.e.,
whether the presence of feedback and recurrent links in the un-
derlying neural network has a direct impact on the emergence
of synergy. To investigate this, we directly manipulated the
model’s structural connectivity and analysed the effects of such
manipulation on its responses to the same stimuli. Specifically,
we used two types of architectures: first, a fully-connected
model (FC), having connectivity as shown in Figure 7A, i.e.,
including both feedforward and feedback between-area, and
recurrent within-area, connections. It is important to stress
that such connectivity reflects the neuroanatomical links known
to exist between (and within) corresponding superior-temporal
and inferior-frontal cortices in the macaque brain, as well as be-
tween the human’s homologue cortical areas (see METHODS
for details). Second, we ran a set of feed-forward-only (FF)
model simulations, in which we artificially cut all the feedback
and recurrent links of the FC architecture, while maintaining
all the feedforward ones intact. By feedback links here we refer
to all the links in the model going from right to left in Figure
7B (i.e., from area PB to A1, from area PF to AB, from PM to
PB, from M1 to PF, and from each area to its preceding one).
For each of these two model types, we ran three distinct sim-
ulations. In each simulation, the projections linking any two
areas (and any area to itself) were sparse and established at
random, with the probability of any two cells being connected
by a synapse decreasing with their (modelled) cortical distance.
The weights of all the synapses were also set to a small ran-
dom value comprised between 0 and 0.1 (see METHODS for
details).

In view of this, we treated each simulation run as the model
correlate of a single marmoset in Experiment 1 (Fr, Kr and Go),
as it was produced using a slightly different (random) variation
of the same prototype network architecture (FC or FF). During
each simulation we generated and recorded 100 trials (50 de-
viants and 50 standards) and analysed the co-information within
and between the resulting network responses in exactly the
same way as in the experimental data. The results showed that
the FC model showed highly synergistic interactions between
temporal and frontal regions (Figure 8A,B). Crucially for our
hypothesis, we observed that the removal of all the between-
area feedback projections and recurrent within-area links of the
network entirely prevented the emergence of synergistic inter-

actions between frontal and temporal model regions (see Figure
8C,D). Additional simulations obtained with a version of the ar-
chitecture containing just nearest-neighbour between-area feed-
back (and feedforward) links, along with recurrent ones (see
Figure S10) again failed to reproduce such synergistic inter-
actions, indicating that it is not simply the presence of feed-
back projections, but specifically of higher-order, or so-called
”jumping” (Schomers et al., 2017), cortico-cortical links con-
necting non-adjacent areas of the processing hierarchy that is
needed for synergy to emerge.

DISCUSSION

In this study, we focused on computing temporally-resolved
metrics of redundancy and synergy, aiming at investigating the
dynamics of the information interactions within and between
cortical signals encoding PE. Due to the interplay between tem-
poral and spatial neural dynamics, our approach revealed a rich
repertoire of redundant and synergistic patterns, showing tran-
sient and sustained information dynamics distributed across the
auditory hierarchy.

Interpreting synergistic interactions

Synergistic information was observed mainly off-diagonally,
i.e. between early and late times points after tone presentation
for both within (Figures 3-5) and between cortical areas (Figure
6). This indicates that late temporal responses carry information
that, in combination with the early one, provides extra informa-
tion about the identity of the tone (standard or deviant) than
when considered in isolation. This raises the question about
what is the functional relevance of synergistic information for
representing prediction errors. We propose that synergistic in-
teractions could represent a neural marker of biological degen-
eracy. The cortical markers of auditory PE have been observed
in auditory subcortical and cortical regions of several species
despite the differences in their neuroanatomical structures (Par-
ras et al., 2017; Blenkmann et al., 2019; Canales-Johnson et al.,
2021). Degeneracy is the ability of structurally different ele-
ments to perform the same function, being a ubiquitous prop-
erty of many biological systems including neural circuits and
networks (Edelman and Gally, 2001). Importantly, degenera-
tive systems are capable of performing different functions (i.e.,
generalizability and pluripotency) when exposed to changes in
contextual circumstances, making them extremely flexible and
resilient (Edelman and Gally, 2001). There is evidence that
degeneracy in neural networks may provide various computa-
tional benefits, for example, enabling stable computations de-
spite unstable neural dynamics (Driscoll et al., 2017; Druck-
mann and Chklovskii, 2012) and allowing the central nervous
system to filter out unwanted noise (Moreno-Bote et al., 2014).

How does synergistic information emerge from local and
distributed neural dynamics? We reason that a plausible
neurobiological mechanism for the generation of synergy is
through recurrent and feedback neural interactions within and
between areas, respectively. This conjecture is supported by the
novel neurocomputational results presented here. Specifically,
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Figure 8: Model architectures and simulation results. The firing rate responses of the networks used to produce the results of Figure 7 were subjected to co-
information analyses between the simulated temporal and frontal areas’ signals. (B) Results obtained using Fully Connected (FC) networks (panel A), which
included both feedforward and feedback (black and green arrows) links and recurrent (golden arrows) connections. (D) Results obtained using Feedforward-only
(FF) networks (panel C), in which the feedback and recurrent connections were absent (see METHODS). MI (solid traces) between standard and deviant trials
averaged across three simulation runs (each run modelling a single monkey dataset) are plotted for the three temporal (A1, AB, PB: pink curves) and three frontal
(PF, PM, M1: orange curves) areas’ simulated responses. Co-information analyses were performed between the model temporal and frontal areas’ signals. Temporal
co-I was computed from the simulated firing rates across time points between -100 to 350 ms after stimulus onset. The average of the corresponding electrodes
across simulated monkey datasets is shown for the complete co-I chart (red and blue panel), for positive co-I values (redundancy only; red panel), and for negative
co-I values (synergy only; blue panel). Note the similarity (in terms of spatio-temporal patterns of synergy and redundancy) between the results obtained from the
model responses and those from the corresponding BB signals in the experimental data of Figure 4: co-I measures of network responses show significant synergy
between temporal and frontal regions (see panel B), as observed in real marmoset data (Figure 4B). Also note that such synergistic effects almost entirely disappear
after the removal of the network’s feedback and recurrent links (FF architecture, panel D). The grey panels show the proportion of significant co-I pairs between
superior-temporal (A1, AB, PB) and frontal (PF, PM, M1) areas using areas that showed significant MI between standard and deviant trials.

we adapted a 6-layer-deep, brain-constrained neural network
model reproducing the neuroanatomy and neurophysiology of
language areas in the temporal and frontal cortex of the hu-
man brain (Garagnani and Pulvermüller, 2011; Schomers et al.,
2017; Garagnani et al., 2008) to simulate and explain the corti-
cal mechanisms underlying the generation of the PE responses
that we observed experimentally in the marmoset monkey. In
response to oddball stimulation with simulated auditory tones,
the model was found to produce responses containing both syn-
ergistic and redundant information (here we looked at the net-
work’s per-area sum of all cells’ firing rates; this measure can be
related directly to the experimentally recorded BB signal). By
tuning the model parameters, we were able to get the network’s
spatio-temporal patterns of synergy and redundancy encoding
the PE response to closely approximate those found experimen-
tally across the auditory cortical hierarchy.

Interpreting redundant interactions

A different type of dynamics was observed in the case of the
redundant information across the cortex. Redundant patterns of
information were observed mainly at time points close to the
diagonal of the co-I chart, both within signals (Figures 3-5) and
between signals (Figure 6). The advantage of computing redun-
dancy is that it reveals to which extent local and inter-areal sig-
nals represent the same information about the stimuli category
on a trial-by-trial basis. Redundant interactions about tone cat-
egory (i.e., deviant or standard) were observed in the ERP and
BB signals and represented the outcome of the shared informa-
tion across time points (temporal redundancy) and between ar-
eas (spatio-temporal redundancy). These observed redundancy
patterns raise the question of what is the functional relevance of
redundant information for processing PE across the cortex.

A neurobiological interpretation of redundancy is that the
neural populations encoding this type of information share a
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common mechanism (Ince et al., 2017). From the perspective
of cortical dynamics, redundancy then could provide cortical
interactions with robustness (Luppi et al., 2022; Olivares et al.,
2022), as redundant interdependencies convey information that
is not exclusive to any single cortical region. Robustness, un-
derstood as the ability to tolerate perturbations that might affect
network functionality (Luppi et al., 2022), is a desirable charac-
teristic of cortical networks processing predictions to preserve
stimuli separability in the presence of highly variable stimuli
features, environmental noise, or endogenous sources of noise
such as background neural activity. Thus, our results suggest
that redundancy quantifies the robustness of the information
processing in the cortex, enabling multiple areas to process
common information about prediction errors.

Differences in redundancy and synergy between tasks
The employed tasks all showed distinct patterns of synergis-

tic and redundant dynamics. The Roving Oddball Task elicited
synergistic information mostly within the ERP signal, while the
local deviant in the Local/Global Task displayed temporally dis-
tributed synergy within both ERP and BB signals. A possible
explanation for this is that the MMN-response for the Roving
Oddball Task could primarily reflect stimulus-specific adapta-
tion at the level of the auditory cortex (O’Reilly, 2021), while
the Local/Global Task shows smaller effects relating to SSA due
to the 20-sequence adaptation period at the start of each testing
run (Chao et al., 2018; Jiang et al., 2022).

While the local deviant in the Local/Global Task showed
highly distributed synergistic information across brain areas
and for both monkeys, the patterns observed for the global de-
viant were more monkey-dependent. Strong effects were ob-
served within signals (ERP and BB) and between brain areas
(temporo-frontal) for monkey Ji, but monkey Nr exhibited min-
imal effects within and between all cortical regions (See Figure
S2). A speculative explanation for the lack of a global effect is
that higher-order deviants can be driven by top-down attention
(Chennu et al., 2013; Bekinschtein et al., 2009). In this case,
the lack of effects in Nr could be simply explained by a lack of
interest in the experimental stimuli.

Distributed processing across cortical areas: Implications for
predictive coding

Our findings might have ramifications for predictive coding
theories. For example, the information encoding PEs was not
merely redundant but also highly synergistic across areas. In
principle, the lack of redundancy between PEs is in consistent
with hierarchical predictive coding (HPC) because HPC entails
that prediction errors are independently generated in different
levels of the hierarchy (Friston and Kiebel, 2009; Rao and Bal-
lard, 1999). However, synergy corresponds to the extra infor-
mation obtained when signals are considered together, suggest-
ing that there is a more holistic or complementary representa-
tion of PE rather than just ”independently” generated PEs, with
the correlational structure of the signals conveying additional
information. Possibly, this synergy results from the the recur-
rent interactions across many nodes, as suggested by our brain-
constrained neurocomputational model.

Conclusion

Our results support the notion that PE information is broad-
casted by transient, aperiodic neural activity across the cortex
(i.e. ERPs and BB signals) (Vinck et al., 2023). By distin-
guishing the type of information encoded by these inter-real
interactions, we have shown that PEs not only share informa-
tion across regions but also encode complementary information
between distributed signals. Thus, our results demonstrate that
distributed representations of prediction error signals across the
cortical hierarchy are highly synergistic.
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METHODS

Data acquisition

This study used ECoG recordings from five adult male com-
mon marmosets (Callithrix jacchus). The details of the datasets
for three of the monkeys (Kr, Go and Fr) have been described
previously in Canales-Johnson et al. (2021); Komatsu et al.
(2015), and in Jiang et al. (2022) for two of the monkeys (Ji
and Nr).

For marmosets Kr, Go and Fr, (i.e., animals that performed
the Roving Oddball Task) the ECoG recordings were acquired
in a passive listening condition while the monkeys were awake.
During the recording sessions, the monkeys Go and Kr sat on
a primate chair in a dimly lit room, while monkey Fr was held
in a drawstring pouch, which was stabilized in a dark room.
Every session lasted for about 15 minutes of which the first
3 minutes of data were used for various standard stimuli and
the remaining 12 minutes of data acquisition were dedicated to
the Roving oddball sequences. For the data analysis, we ac-
quired a total of three sessions for monkey Fr, which resulted
in 720 (240 × 3) standard and deviant trials, and six sessions
for monkeys Go and Kr, resulting in 1440 (240 × 6) standard
and deviant trials. For the recordings, a multi-electrode data ac-
quisition system was used (Cerebus Blackrock Microsystems,
Salt Lake City, UT, USA) with a band-pass filter of 0.3–500 Hz
and then digitized at 1 kHz. In the signal pre-processing, those
signals were re-referenced using an average reference montage,
and high-pass filtered above 0.5 Hz, using a 6th-order Butter-
worth filter.

The recording was done with chronically implanted, cus-
tomized multielectrode ECoG electrode arrays (Cir-Tech Inc.,
Japan). Before implantation with the ECoG electrode arrays,
the monkeys were anesthetized and further suffering was min-
imized. All electrodes were implanted in epidural space; 28 in
the left hemisphere and an additional 4 in the frontal cortex of
the right hemisphere of monkey Fr, 64 in the right hemisphere
of monkey Go, and 64 in the right hemisphere of monkey Kr.
In the 32-electrode array, each electrode contact was 1 mm in
diameter and had an inter-electrode distance of 2.5 - 5.0 mm
(Komatsu et al., 2015). In the 64-electrode array, each electrode
contact was 0.6 mm in diameter and had an inter-electrode dis-
tance of 1.4 mm in a bipolar pair (Komatsu et al., 2019). The
electrode arrays covered the temporal, parietal, frontal, and oc-
cipital lobes.

For marmosets Ji and Nr, (i.e., the animals that performed
the Local/Global Task) the EcoG recordings were also acquired
in a passive listening condition while the monkeys were fully
awake. The monkeys were seated in sphinx position with their
head fixed in a sound-attenuated and electrically shielded room.
The recording was done with chronically implanted, multielec-
trode (96) ECoG electrode arrays (Cir-Tech Inc., Japan). For
data analysis, electrodes in temporal and frontal cortices of the
marmosets were used. This was done due to the public avail-
ability of the data from these electrodes (Jiang et al., 2022).
Monkey Ji had a total of 27 electrodes (16 temporal, 11 frontal),
and monkey Nr had a total of 39 electrodes (25 temporal, 14
frontal). The data was recorded with a Grapevine NIP sys-

tem (Ripple Neuro, Salt Lake City, UT) with a sampling rate
of 1khz.

All surgical and experimental procedures were performed in
accordance with the National Institutes of Health Guidelines for
the Care and Use of Laboratory Animals and approved by the
RIKEN Ethical Committee (No. H26-2-202, for monkeys Kr,
Go and Fr and No. W2020-2-008(2) for monkeys Ji and Nr).
The locations of the implanted electrodes of each monkey are
found in Figure 2.

Experimental tasks
For the Roving Oddball Task, monkeys Kr, Go and Fr

were subjected to a Roving oddball paradigm (Canales-Johnson
et al., 2021). Trains of 3, 5, or 11 repetitive single-tones of
twenty different frequencies (250-6727 Hz with intervals of 1/4
octave) were presented in a pseudo-random order. Within each
tone train the presented tones had the same frequency, but be-
tween tone trains the frequency was different. As the tone trains
followed each other continuously, the first tone of a train was
considered an unexpected deviant tone, because the preceding
tones were of a different frequency, while the expected stan-
dard tone was defined as the final tone in a train because the
preceding tones were of the same frequency (Figure 1A). The
presented tones were pure sinusoidal tones that lasted for 64
ms (7 ms rise/fall) and the time between stimulus onsets was
503 ms. Stimulus presentation was controlled by MATLAB
(MathWorks Inc., Natick, MA, USA) using the Psychophysics
Toolbox extensions (Brainard and Vision, 1997). Two audio
speakers (Fostex, Japan) were used to present the tones with an
average intensity of 60 dB SPL around the animal’s ear.

For the local/global task, monkeys Ji and Nr were subjected
to a standard local/global auditory oddball paradigm (Jiang
et al., 2022). The monkeys heard tone trains with either a local
regularity (five identical tones played in a sequence; xxxxx) or
global regularity (five tones, the first four of which were iden-
tical, and where the fifth was of a different frequency; xxxxY).
To create a local deviant, the last tone of the local tone train
(xxxxx) was sometimes played at a different frequency as the
earlier tones in the train (local deviant; xxxxY). To create a
global deviant, the last tone of the global tone train (xxxxY)
was sometimes played with the same frequency as the earlier
tones in the train (global deviant; xxxxx). The frequencies for
the tones x or Y were either 707 or 4000 Hz. The presented
tones were pure sinusoidal tones that lasted for 50 ms with an
intertone interval of 150 ms, and they were presented to the
monkeys bilaterally with two speakers (Fostex, Japan) from the
distance of approximately 20 cm from the head with the average
intensity of 70 DB.

Each testing period started with a 14 second resting phase,
which was followed by a habitation period during which the
specified standard (local or global) was presented 20 times to
ensure that the monkey learns the regularity of the tone trains.
For a testing run, three blocks of 25 tone trains were played,
with a 14s resting phase in between. Out of the 25 trials, 20
(80 percent) were of the specified standard (local or global) and
five (20 percent) were deviants. For the global deviants, more
than one local standard was always played after to ensure global
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consistency. Each run lasted for 6 minutes and 46 seconds, and
each session consisted of 3-4 local standard and 3-4 global stan-
dard runs, depending on the marmoset’s performance during the
day. The order of the tasks was randomised, and the frequen-
cies for tones x and Y were balanced. For the purposes of the
analysis, the number of trials for standard and deviant trials had
to be equal. This resulted in 330 (local deviant) and 243 (global
deviant) trials for Monkey Ji, and 251 (local deviant) and 212
(global deviant) for Monkey Nr.

ERP and BB analyses
For further analysis, the raw ECoG voltage responses have

been transformed into ERP and BB as described in Canales-
Johnson et al. (2021). In brief, common average referencing
was used to re-reference the ECoG recordings across all elec-
trodes, and the data was downsampled to 500 Hz. For obtaining
ERPs, a low-pass filter of 1-40 Hz was applied for the ERP anal-
ysis. Standard and deviant tones were categorized as described
before. Epochs of -100 ms to 350 ms around the onset of the
tones were taken, and a baseline correction was applied by sub-
tracting the mean voltage during the 100 ms period before the
stimulus onset from the total epoch.

In order to obtain the BB, spectral decoupling of the raw
ECoG was carried out (Canales-Johnson et al., 2021; Miller,
2019). To extract the course of broadband spectral activity, the
spectral decoupling of the raw ECoG signal was carried out. As
for the ERP analysis, common average referencing was used to
re-reference the ECoG potentials of all the electrodes. Epochs
of -100 ms to 350 ms around the onset of the tones were used
to calculate discrete samples of power spectral density (PSD).
Trials from both conditions were grouped together and individ-
ual PSDs were normalized with an element-wise division by the
average power at each frequency, and the obtained values were
log-transformed. In order to identify components of stimulus-
related changes in the PSD, a principal component method is
applied. This consists of calculating the covariance matrix be-
tween the frequencies. The eigenvectors of this decomposition
are called Principal Spectral Components (PSCs), and reveal
distinct components of neural processing, hence enabling us to
identify stimulus-related changes in the PSD. Afterward, the
time series were z-scored per trial to get intuitive units, then
exponentiated and subtracted by 1. Finally, a baseline correc-
tion was performed by subtracting the mean value of the pre-
stimulus period of -100 to 0 ms.

Both for the ERP and BB signals some electrodes were ex-
cluded from further analysis. This was done because the signal
was absent or clearly erroneous. Electrode 18 in Fr was ex-
cluded from the ERP analysis, while electrodes 18 in Fr, 30,
44, 45 in Go, and 30 in Kr were excluded from the BB analysis.

Mutual Information analyses
In order to quantify the MI between the stimulus class and the

ECoG signal (both ERP and BB), the GCMI toolbox (Gaussian
Copula Mutual Information) (Ince et al., 2017) was used. This
toolbox calculates the MI based on the Gaussian copula the raw
ERP or BB data transforms to. The approach combined a per-
mutation test with 1000 permutations together with a method

of maximum statistics in order to correct for multiple compar-
isons. Using all available trials, the signal at every time point
was permuted 1000 times for each electrode, randomly assign-
ing the stimulus class labels each time. The maximum value
at each time point was taken, and the 95th percentile of this
value was used as the threshold for significance. This method
corrects for multiple comparisons and provides a Family-Wise
Error Rate (FWER) of 0.05. Electrodes with significant mutual
information between standard and deviant trials were selected
as electrodes of interest, and the co-information between them
was estimated for the ERP and broadband signals separately.

Co-information analyses
We quantified co-Information (co-I) within signals (single

electrodes) and between signals (between pairs of electrodes)
using the GCMI toolbox (Ince et al., 2017). The co-I was cal-
culated by comparing signals on trial by trial basis. This re-
sulted in a quantification of the information content, redundant
or synergistic, between the two signals. The co-information
(co-I) was calculated in the following way:

coI(X; Y; S ) = I(X; S ) + I(Y; S ) − I(X,Y; S )

For each time point, I(X; S ) corresponds to the mutual infor-
mation (MI) between the signal at recording site X and stim-
uli class S. I(Y; S ) corresponds to the MI between the signal
at recording site Y and stimuli class S. Finally, I(X,Y; S ) cor-
responds to the MI between stimuli class S combining signals
from recording sites X and Y.

For each neural marker of auditory PE (i.e., ERP and BB),
co-information was computed for each pair of tones (standard
and deviants) within recordings sites in A1 and frontal re-
gions (Figures 3, 5 and Figures S1-S2), and between A1 and
frontal regions (Figures 4, 6 and Figures S3-S8,). Positive co-
information shows that signals between recording sites contain
redundant, or overlapping, information about the stimuli. Nega-
tive co-information corresponds to the synergy between the two
variables: the information when considering the two variables
jointly is larger than considering the variables separately.

Figure 1C shows a schematic representation of co-I between
two signals. It shows the independent information that response
1 and response 2 (both in white) contain. If there is an overlap
in the information that is being represented by the two signals,
there is a redundancy (red color) in the information that the
two responses contain. If the two signals considered together
contain more information than could be expected based on the
information present in the individual signals, there is synergy
(blue color).

Statistical analyses of co-I charts were performed by using
a permutation test with 1000 permutations and using the same
maximum statistics method described for the MI analyses, re-
sulting in an FWER of 0.05.

Neurocomputational experiments
Model architecture and function

To investigate the neural mechanisms underlying the gen-
eration of the PE responses observed experimentally in the
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marmoset brain during oddball presentation of auditory tones
we took an existing six-layer-deep, neural network architec-
ture (Garagnani and Pulvermüller, 2013; Garagnani et al., 2008;
Schomers et al., 2017) closely mimicking neuroanatomy and
neurophysiology of six perisylvian areas in the left hemisphere
of the human brain involved in spoken language and auditory
processing, and adapted it for the present study’s needs.

This choice was motivated by the observation that, like other
non-human primates, marmosets are known to be highly vo-
cal and exhibit active vocal communication among conspecifics
(Fukushima et al., 2019; Miller et al., 2009; Takahashi et al.,
2013); furthermore, the existing architecture has been previ-
ously used to simulate and explain well-documented neuro-
physiological patterns of event-related potentials observed dur-
ing language processing and oddball stimulation with famil-
iar and unfamiliar sounds (Garagnani et al., 2008; Garagnani
and Pulvermüller, 2011). The model closely reflects functional
and structural features of the mammalian cortex, and incor-
porates the following neurobiological and neurophysiological
constraints:

1) Six cortical areas are modelled, three in the superior tem-
poral and three in the inferior frontal lobes, constituting the
marmoset homologues of Brodmann Areas (BAs) 41 (labelled
A1 in Fig. 1E), 42 (labelled AB), and 22 (PB) in the superior
temporal gyrus, and of BAs 44 and 45 (labelled PF), 6V (PM),
and 4 (M1) in the inferior frontal gyrus in humans;

2) Between-area links in the model (green, purple and black
arrows in Figure 1E) reflect known neuroanatomical links be-
tween corresponding brain areas in the marmoset (see next
section below); recurrent (within-area) connections (golden ar-
rows) are also modelled, in line with known properties of the
mammalian cortex (Douglas and Martin, 2004; Braitenberg and
Schüz, 1998);

3) Between- and within-area links do not implement all-to-
all connectivity between cells, but sparse, patchy, and topo-
graphic projections, with synaptic links established probabilis-
tically (the probability of two cells being connected decreasing
with the distance; see (Kaas, 1997; Amir et al., 1993; Brait-
enberg and Schüz, 1998) and initialised to weak and random
efficacy values;

4) Local lateral inhibition (Eysel et al., 1987; Yuille and
Geiger, 1998) and area-specific global regulation mechanisms
(referred to as local and global inhibition, respectively) (Yuille
and Geiger, 1998; Palm et al., 2014; Braitenberg and Schüz,
1998);

5) Single cells’ neurophysiological dynamics, including sig-
moid transformation of membrane potentials into neuronal out-
puts, as well as adaptation and temporal summation of inputs
(Matthews, 2000);

6) Constant presence of uniform uncorrelated white noise
(simulating spontaneous baseline neuronal firing) in all model
neurons (Rolls and Deco, 2010).

A first difference from the human language cortex is that
the location of the marmoset homologue of BA 44 – one of
the major components of Broca’s area (Petrides, 2013) – still
has not been definitively agreed upon (Fukushima et al., 2019).
However, area 6Vb in the marmoset – which, like in man and

macaque, is just caudal to 45 – exhibits cytoarchitectonic fea-
tures (a scattered, agranular layer 4) that make it a potential can-
didate for the BA 44 homologue (Fukushima et al., 2019). In
addition, area 6Vb shows a pattern of neuroanatomical connec-
tivity different from that of its dorsal (and more caudal) coun-
terpart 6Va, a premotor area (Burman et al., 2015). In previ-
ous “human” versions of the architecture, area PF (modelling
prefrontal cortex) was defined as including mainly BA45 (and
46v), whereas BA 44 was subsumed by model area PM. In view
of the above, and of the fact that BA 44 is generally considered
a prefrontal cortex area, here we decided to treat Marmoset’s
area 6Vb as the homologue of the insofar missing BA 44, and
to label both 45 and 6Vb as PF (hence limiting PM to include
just area 6Va, homologue of BA 6V).

Structurally, each model area consists of two neuronal lay-
ers, one of excitatory and one of inhibitory cells, each contain-
ing 625 (25x25) cells (see Figure 1E, schematic on the right).
Functionally, model cells are graded-response units, each rep-
resenting a cluster of excitatory pyramidal cells or inhibitory
interneurons. The specifics of the computational implementa-
tion (including within-area structure and single-cell functional
features) are analogous to those implemented in previous pub-
lished versions of the architecture (for details, see e.g., Garag-
nani and Pulvermüller (2011, 2013) and can be found in the
Supplementary Text for completeness.

A second crucial aspect that distinguishes human, macaque
and marmoset brains is the structural connectivity between the
relevant homologue areas. Our present approach, which builds
upon and is in line with a number of previous studies carried
out with this neurocomputational architecture (Garagnani and
Pulvermüller, 2011, 2013; Pulvermüller and Garagnani, 2014;
Schomers et al., 2017; Garagnani et al., 2008; Henningsen-
Schomers and Pulvermüller, 2022; Tomasello et al., 2019; Pul-
vermüller et al., 2021), is to implement a fully brain constrained
model. More precisely, we impose that, for any two model ar-
eas, synaptic projections between them are realised only if ex-
perimental evidence indicates the presence of neuroanatomical
links between the two corresponding cortical areas in the mar-
moset brain. In the following section, we provide such evidence
and the rationale on the basis of which the present network ar-
chitecture (shown in Figure 1E) was adopted.

Connectivity of the simulated brain areas
The implemented model areas can be thought of as grouped

into two sub-systems (frontal and temporal), each simulating
a hierarchy of three cortical areas consisting of a primary cor-
tex (motor and auditory, respectively), the adjacent higher sec-
ondary, and associative multimodal regions. Neuroanatomical
studies in the mammalian brain indicate that adjacent corti-
cal areas tend to be reciprocally connected (Pandya and Yete-
rian, 1985; Young et al., 1994). We implemented such next-
neighbor connections (black arrows in the network architecture
shown in Fig. 1E) in each of the two subsystems on the basis
of known evidence from nonhuman primates (including mar-
mosets): within the frontal / motor (PF–PM–M1) (Pandya and
Yeterian, 1985; Burman et al., 2015) and within the temporal /
auditory (A1–AB–PB) (Kaas and Hackett, 2000; Pandya, 1995;
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Rauschecker and Tian, 2000; de la Mothe et al., 2006, 2012;
Reser et al., 2009)

The links connecting the parabelt (area PB) with prefrontal
cortex (PF), shown in purple in Figure 1E, are also realised
in line with evidence on known long-distance cortico-cortical
white matter fibres in the monkey (arcuate fascicle and extreme
capsule) connecting posterior-lateral parts of the temporal cor-
tex (area PB) and inferior prefrontal cortex (area PF) (Petrides
and Pandya, 2002; Petrides et al., 2012a; Rilling, 2014; Rilling
et al., 2008; Romanski et al., 1999b; Petrides et al., 2012b; Bur-
man et al., 2015)

Finally, although less strong and richly developed than in hu-
mans (Rilling et al., 2012; Thiebaut de Schotten et al., 2012),
the presence of higher-order “jumping” connections between
non-adjacent areas in the model (green arrows in 1E) has been
documented also in monkeys (including in marmosets). Specif-
ically, neuroanatomical studies indicate that A1 is directly con-
nected to PB (Pandya and Yeterian, 1985; Scott et al., 2017;
de la Mothe et al., 2006, 2012; Reser et al., 2009), that AB
is connected to PF (Romanski et al., 1999a; Kaas and Hackett,
2000; Petrides and Pandya, 2009; Rauschecker and Scott, 2009;
Smiley et al., 2007), that PB and PM are linked (Rilling et al.,
2008; Suzuki et al., 2015) and that PF – here including areas
45 and 6Vb – is also directly connected to M1 (Deacon, 1992;
Schmahmann et al., 2009)

A previous modelling study (Schomers et al., 2017) us-
ing a neurocomputational architecture analogous to the present
looked at the effects of qualitative and quantitative differences
between monkey’s and man’s perisylvian areas connectivity on
verbal working memory. In that study, the architecture used
to simulate the monkey brain did not implement any of the
jumping links which we did include in the present model of
the marmoset’s cortex. Schomers et al. (2017) however, did
acknowledge that the extant evidence does not imply a “com-
plete absence of jumping links in nonhuman primates”. In addi-
tion, none of the neuroanatomical studies used to constrain that
modelling work included results from marmoset monkeys (the
evidence about non-human primate connectivity used relied
on macaques or chimpanzees). Finally, as Schomers and col-
leagues’ clarified, their work focussed on modelling the major
structural connectivity differences between monkeys and hu-
mans in perisylvian areas rather than on modelling the full com-
plexity of the neuroanatomical connections of either species
(Schomers et al., 2017). Hence, given that – albeit weaker and
less rich than in humans – jumping links in non-human primates
(including in the marmoset) have also been found, the present
and the Schomers et al. (2017) studies should not be considered
as conflicting, but simply as using the same network architec-
ture to address different computational questions.

Procedures

To simulate the Roving Task of Experiment 1, the network
was repeatedly presented with stimulus patterns to its auditory
cortex (area A1). A stimulus pattern (simulating an auditory
tone) consisted of a pre-determined set of 31 cells chosen at ran-
dom amongst the 25-by-25 cells of area A1 (5% of cells). We

used 12 different randomly generated stimulus patterns; pre-
senting a stimulus involved activating the 31 cells of the chosen
pattern in A1. A single trial consisted of a baseline (ten simu-
lation time-steps long) with no input, followed by 20 timesteps
of stimulus presentation, and 20 timesteps of inter-trial interval
(no input); stimulus onset asynchronicity was therefore 50 sim-
ulation time-steps. A roving paradigm was used, in which 89%
of standard (STD) trials were intermixed with 11% of deviant
(DEV) trials. A new DEV trial was always preceded by 6-to-
10 identical STD stimuli; the new DEV stimulus was chosen at
random. The network’s output (firing rates of all cells of the six
areas) was recorded from the start of the last STD trial to the
end of the critical (DEV) trial following it. For each simulation
run (a model correlate of a monkey recording) we collected a
total of 50 STD and 50 DEV trials. MI and co-I analyses on
the simulated data, as well as the statistical contrasts between
STD and DEV tones, were performed exactly as described for
the in-vivo data.
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Figure S1: Synergy and redundancy within ERP and within BB signals in temporal and frontal electrodes with the highest MI for the roving task for monkeys Kr,
Go and Fr. Co-information within auditory (A, C, E), and frontal (G, I, K) electrodes in the ERP signal. Co-information within auditory (B, D, F), and frontal (H,
J, L) electrodes in the BB signal. MI (solid traces) between standard and deviant trials for temporal (pink color) and frontal (orange color) electrodes. Co-I was
computed between each pair of electrodes and across time points between -100 to 350 ms after tone presentation. Significant temporal clusters after a permutation
test (see Methods) are depicted in black contours.
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Figure S2: Synergy and redundancy within ERP and within BB signals in temporal and frontal electrodes with the highest MI for the local and global deviants of
the local-global task Co-information within auditory (A, C), and frontal (E,G) electrodes in the ERP signal for the local task. Co-information within auditory (B,D),
and frontal (F,H) electrodes in the BB signal for the local task. Co-information within auditory (H, J), and frontal (L,N) electrodes in the ERP signal for the global
task. Co-information within auditory (I,K), and frontal (M,O) electrodes in the BB signal for the global task. MI (solid traces) between standard and deviant trials
for temporal (pink color) and frontal (orange color) electrodes. Co-I was computed between each pair of electrodes and across time points between -100 to 350 ms
after tone presentation. Significant temporal clusters after a permutation test (see Methods) are depicted in black contours.
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Figure S3: Synergy and redundancy between ERP signals and across cortical areas in marmosets Kr, Go and Fr. Co-information revealed synergistic and redundant
PE patterns across temporal (A, D, G), temporo-frontal (B, E, H), and frontal (C, F) electrodes. MI (solid traces) between standard and deviant trials for temporal
(pink color) and frontal (orange color) electrodes. Co-I was computed between each pair of electrodes and across time points between -100 to 350 ms after tone
presentation. The average of the corresponding electrode pairs per (i.e. temporal, temporo-frontal, and frontal) is shown for the complete co-I values (red and blue
panel), for positive co-I values (redundancy only; red panel), and negative co-I values (synergy only; blue panel).
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Figure S4: Synergy and redundancy between ERP signals and across cortical areas for marmosets Ji and Nr for the local deviant of the Local-Global task. Co-
information revealed synergistic and redundant PE patterns across temporal (A, D), temporo-frontal (B, E), and frontal (C, F) electrodes. MI (solid traces) between
standard and deviant trials for temporal (pink color) and frontal (orange color) electrodes. Co-I was computed between each pair of electrodes and across time points
between -100 to 350 ms after tone presentation. The average of the corresponding electrode pairs per (i.e. temporal, temporo-frontal, and frontal) is shown for the
complete co-I values (red and blue panel), for positive co-I values (redundancy only; red panel), and negative co-I values (synergy only; blue panel).
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Figure S5: Synergy and redundancy between ERP signals and across cortical areas for marmosets Ji and Nr for the Global deviant of the Local-Global task. Co-
information revealed synergistic and redundant PE patterns across temporal (A, D), temporo-frontal (B, E), and frontal (C, F) electrodes mostly for marmoset Ji,
while Nr only showed relatively weak synergetic patterns between frontal electrodes. MI (solid traces) between standard and deviant trials for temporal (pink color)
and frontal (orange color) electrodes. Co-I was computed between each pair of electrodes and across time points between -100 to 350 ms after tone presentation.
The average of the corresponding electrode pairs per (i.e. temporal, temporo-frontal, and frontal) is shown for the complete co-I values (red and blue panel), for
positive co-I values (redundancy only; red panel), and negative co-I values (synergy only; blue panel).
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Figure S6: Synergy and redundancy between BB signals and across cortical areas in marmosets Kr, Go and Fr in the Roving task. Co-information revealed
synergistic and redundant PE patterns across temporal (A, D), temporo-frontal (B, E, H), and frontal (C, I) electrodes. MI (solid traces) between standard and
deviant trials for temporal (pink color) and frontal (orange color) electrodes. Co-I was computed between each pair of electrodes and across time points between
-100 to 350 ms after tone presentation. The average of the corresponding electrode pairs per (i.e. temporal, temporo-frontal, and frontal) is shown for the complete
co-I values (red and blue panel), for positive co-I values (redundancy only; red panel), and negative co-I values (synergy only; blue panel).
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Figure S7: Synergy and redundancy between BB signals and across cortical areas for marmosets Ji and Nr for the local deviant of the Local-Global task. Co-
information revealed synergistic and redundant PE patterns across temporal (A, D), temporo-frontal (B, E), and frontal (C, F) electrodes. MI (solid traces) between
standard and deviant trials for temporal (pink color) and frontal (orange color) electrodes. Co-I was computed between each pair of electrodes and across time points
between -100 to 350 ms after tone presentation. The average of the corresponding electrode pairs per (i.e. temporal, temporo-frontal, and frontal) is shown for the
complete co-I values (red and blue panel), for positive co-I values (redundancy only; red panel), and negative co-I values (synergy only; blue panel).
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Figure S8: Synergy and redundancy between ERP signals and across cortical areas in marmosets Ji and Nr for the global deviant of the Local-Global task. Co-
information revealed synergistic and redundant PE patterns across temporal (A, D), temporo-frontal (B, E), and frontal (C, F) electrodes. MI (solid traces) between
standard and deviant trials for temporal (pink color) and frontal (orange color) electrodes. Co-I was computed between each pair of electrodes and across time points
between -100 to 350 ms after tone presentation. The average of the corresponding electrode pairs per (i.e. temporal, temporo-frontal, and frontal) is shown for the
complete co-I values (red and blue panel), for positive co-I values (redundancy only; red panel), and negative co-I values (synergy only; blue panel).
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Figure S9: Broadband and ERP markers of PE across the monkey brain for monkeys Ji and Nr for the global task. Electrode locations for marmoset Nr (96
electrodes; upper panel) and Ji (96 electrodes; lower panel). Electrodes showing significant PE effect after computing MI between standard and deviant trials for
the (A) Broadband (dark green circles) and (B) ERP (light green circles) markers of auditory prediction error in both monkeys. Electrodes showing significant MI
for both markers are depicted in cyan. (C) Histogram of electrodes showing significant MI between tones for BB (left), ERP (middle), and both markers (right)
for each animal. (D) Electrodes with the highest MI in the temporal and frontal cortex showing the BB signal for deviant and standard tones. Deviant tone (green)
and standard tone (black), and the corresponding MI values in bits (effect size of the difference) for the temporal (pink trace) and frontal (orange trace) electrodes.
Significant time points after a permutation test are shown as grey bars over the MI plots. (E) Electrodes with the highest MI in the temporal and frontal cortex
showing the ERP signal for deviant and standard tones. Color codes are the same as in C.
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Figure S10: Results of network simulations. (A) Model architecture: fully connected (FC) with ”serial” connectivity structure (i.e., only next-neighbour between-
area links). Connections included both feedforward and feedback (black and green arrows) and recurrent (golden arrows) links, but, unlike previous simulations,
no ”jumping” links (modelling long-distance cortico-cortical projections between cortical areas A1-PB, AB-PF, PB-PM, and PB-M1). (B, C, D) Results obtained
by stimulating the network of Panel A using a simulated Roving Task paradigm (as in Experiment 1). MI (solid traces) between standard and deviant trials are
plotted for the three temporal (A1, AB, PB: pink curves) and three frontal (PF, PM, M1: orange curves) areas’ simulated responses. Co-information analyses were
performed between the simulated temporal and frontal areas’ signals. Temporal co-I was computed from the simulated firing rates across time points between -100
to 350 ms after stimulus onset. The average of the corresponding electrodes for the simulated responses is shown for the complete co-I chart (red and blue panel),
for positive co-I values (redundancy only; red panel), and for negative co-I values (synergy only; blue panel). Note the almost entire absence of synergistic (or
redundant) information between temporal and frontal regions (see panel D). The grey panels show significant clusters of co-I for areas with the highest MI.
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