
1. Introduction
Talc [(Mg,Fe)3Si4O10(OH)2] is a hydrous phyllosilicate, which forms at the expense of ultramafic rocks in the 
oceanic crust, orogenic belts, and subduction zones (Boschi et al., 2006; S. M. Peacock and Hyndman, 1999). 
It contains ∼5 wt.% water and can be stable to high temperatures (T) and pressures (P), suggesting that it is a 
potentially important mineral in the global water cycle (Bebout, 1991; Bose & Ganguly, 1995; S. Peacock, 1990). 
In wet conditions, talc is mechanically weak and can localize shear stress, thus affecting the rheological and 
seismogenic properties of faults and plate boundaries (Chen et al., 2017; Hirauchi et al., 2013, 2020; Moore & 
Lockner, 2007).

In subduction zones, pervasive mechanical mixing of sediments, mafic, and ultramafic rocks (Bebout,  2013; 
Bebout and Barton, 2002; Bebout & Penniston-Dorland, 2016) facilitates metasomatism which can favor talc 
formation (Manning, 1995; S. M. Peacock and Hyndman, 1999). Talc can form in high-pressure ultramafic rocks 
that have been enriched in SiO2 through the reaction with silica-bearing aqueous fluids (Manning, 1995, 1997). 
Based on geophysical data, a ∼4 km thick layer of altered ultramafic rock enriched in talc was inferred to be 
present at the slab-mantle interface in the central Mexican subduction zone (Kim et al., 2013).

Abstract Talc formation via silica-metasomatism of ultramafic rocks is believed to play key roles 
in subduction zone processes. Yet, the conditions of talc formation remain poorly constrained. We used 
thermodynamic reaction-path models to assess the formation of talc at the slab-mantle interface and show that 
it is restricted to a limited set of pressure–temperature conditions, protolith, and fluid compositions. In contrast, 
our models predict that chlorite formation is ubiquitous at conditions relevant to the slab-mantle interface of 
subduction zones. The scarcity of talc and abundance of chlorite is evident in the rock record of exhumed 
subduction zone terranes. Talc formation during Si-metasomatism may thus play a more limited role in 
volatile cycling, strain localization, and in controlling the decoupling-coupling transition of the plate interface. 
Conversely, the observed and predicted ubiquity of chlorite corroborates its prominent role in slab-mantle 
interface processes that previous studies attributed to talc.

Plain Language Summary In subduction zones, talc can form during chemical reactions of 
mantle rocks with silica-enriched fluids at the interface between descending oceanic plates and the overriding 
mantle. Its formation and distribution in subduction zones are believed to affect the volatile budget, rheological 
properties, and the down-dip limit of the decoupling of the slab-mantle interface. Therefore, illuminating 
the conditions that facilitate talc formation at high pressure-temperature conditions is key in assessing its 
roles in fundamental subduction zone processes. Using thermodynamic reaction-path models, we show that 
the formation of talc at the slab-mantle interface is restricted to a limited set of environmental conditions, 
because its formation is highly sensitive to the compositions of the mantle rocks and reactant fluids. Contrary 
to common belief, talc is unlikely to form in high abundance in ultramafic rocks metasomatized by Si-rich 
slab-derived fluids. Rather, our models predict the ubiquitous formation of chlorite along with other silicate 
minerals during Si-metasomatism due to the competing effects from other dissolved components that favor their 
formation over talc. This study calls into question the importance of talc during Si-metasomatism in subduction 
zones but highlights the more predominant role of chlorite.
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Rheological contrasts between juxtaposed lithologies lead to strain partitioning and fluid flow along litholog-
ical boundaries further promoting metasomatic reactions (Ague,  2007). Previous laboratory friction experi-
ments have shown that wet talc can be substantially weaker than antigorite, chlorite, and other hydrous minerals 
(Chen et  al.,  2017; Hirauchi et  al.,  2013, 2020; Moore & Lockner,  2007), which would promote mechanical 
weakening and decoupling of the slab-mantle interface (Abers et  al.,  2020; Marschall & Schumacher,  2012; 
Wada et al., 2008). The changes in the rheological properties and stress states of materials along the plate inter-
face may manifest themselves as seismicity, such as slow slip events (Beroza & Ide, 2011; Rubin, 2008). The 
pressure-sensitive breakdown of talc into secondary mineral assemblage has recently been suggested to control 
the extent of mechanical coupling along the plate interface (S. M. Peacock and Wang, 2021). Therefore, illumi-
nating the conditions that facilitate talc formation at high P-T conditions is important in assessing its importance 
in plate interface processes.

Metamorphosed siliceous and pelitic sediments, as well as basaltic crustal rocks commonly contain quartz, and 
fluids in equilibrium with these rocks are quartz saturated or even super-saturated (Hacker et al., 2003; C. E. 
Manning, 1995). While fluids in equilibrium with subducted metabasalt and metapelite likely exhibit elevated 
silica activity, the presence of other silicate minerals (e.g., kyanite, garnet, paragonite, chlorite, epidote miner-
als) coexisting with quartz would also affect the speciation of other dissolved major elements (e.g., Al, Mg, 
Ca, and Fe). The elevated P-T conditions in subduction zones are also expected to enhance the solubilities of 
dissolved elements through the formation of aqueous complexes (Manning, 2004, 2007; Sverjensky et al., 2014), 
which can directly affect metasomatic processes. However, such effects have remained understudied as the dielec-
tric constant of water at pressures higher than 0.5 GPa was poorly constrained (Helgeson et al., 1981; Shock 
et al., 1992). The recent development of the Deep Earth Water (DEW) model allows for the prediction of the 
equilibrium constants of reactions to model fluid-rock interactions at high P-T conditions relevant to subduction 
zones (Huang & Sverjensky, 2019; Sverjensky, 2019; Sverjensky et al., 2014).

We used thermodynamic reaction path models to evaluate the successions of metasomatic reactions between 
ultramafic rocks and fluids previously equilibrated with metapelite or metabasalt over a range of P-T conditions 
relevant to slab-top geotherms of subduction zones. We compare our predictions with exhumed metamorphic 
rock record with known P-T histories. We discuss the petrological controls on talc and chlorite formation and 
highlight the implications of slab-derived fluid metasomatism of ultramafic rocks in subduction zones.

2. Methods
Thermodynamic reaction path models were set up to assess changes in mineralogy and fluid composition during 
Si-metasomatism of ultramafic rocks. Fluids equilibrated with metamorphosed mid-ocean ridge basalt (MORB) 
or a metapelite were subsequently allowed to react with ultramafic rocks at subduction zone conditions. To 
evaluate the effects of ultramafic protolith compositions on reaction pathways, we used monomineralic antig-
orite [Mg48Si34O85(OH)62], lherzolite (depleted MORB mantle, DMM), harzburgite (HZ1), and a more refrac-
tory harzburgite (HZ2) (Table S1 in Supporting Information S1). Models were calculated over a range of P-T 
conditions (1–2.5 GPa, 300°C–600°C), and a range of fluid-to-rock (f/r) mass ratios, using the EQ3/6 software 
package version 6 (Wolery, 1992) and DEW database (Huang & Sverjensky, 2019; Sverjensky et al., 2014). The 
reaction-path portrays a system that is initially fluid-dominated, such as in a fracture or vein, but then becomes 
increasingly rock-dominated as more ultramafic rock is added, such as in the rock matrix adjacent to a fracture or 
vein. We explored a range of f/r (i.e., f/r >> 1) to simulate conditions likely relevant to high permeability zones, 
such as along lithologic contacts and shear zones (Codillo, 2022). We also calculated reaction-path models to 
investigate the metasomatism of ultramafic rocks by fluids that previously equilibrated with quartz only (i.e., 
compositions of other dissolved elements are set to trace concentrations). Details on the reaction-path model 
setup are provided in Supporting Information S1.

3. Results
3.1. Predicted Compositions of Fluids in Equilibrium With Metabasalt, Metapelite, or Quartz

The Si concentration of a quartz-saturated fluid is predicted to increase steadily with increasing temperature 
and pressure. However, pressure appears to have a limited effect on the fluid composition when compared with 
changes in temperature. The concentrations of dissolved Mg, Si, and Al in equilibrium with metabasalt are 
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predicted to increase steadily with increasing temperature while the concentration of dissolved Ca shows no 
systematic trends in response to changes in temperature (Figure S1 and Table S2 in Supporting Information S1). 
The concentrations of dissolved Al and Si in equilibrium with metapelite are predicted to increase with increasing 
temperature. The concentration of dissolved Mg is predicted to decrease with increasing temperature from 300°C 
to 400°C, and then slightly increase between 500°C and 600°C.

3.2. Modeled Metasomatism of Ultramafic Rocks

To illustrate the effects of P, T, rock and fluid compositions on the metasomatic formation of talc, representa-
tive model results at 300°C and 1.5 GPa are presented in Figures 1, 1, and S2 in Supporting Information S1. In 
addition, the predicted mineral assemblages of reaction-path models that simulated Si-metasomatism at higher 
temperatures (400°C–600°C) at 1.5 GPa are shown in Figures S3–S5 in Supporting Information S1. All model 
results, including those for higher pressures, are available in the data repository. Models simulating the reaction 
of quartz-saturated fluid with antigorite predicted the formation of talc coexisting with quartz at all modeled P-T 
conditions (Table S3 in Supporting Information S1). At 300°C and 1.5 GPa, metasomatism of DMM lherzolite 
is predicted to result in the formation of talc, clinopyroxene, and chlorite. At similar P-T condition, our models 
suggests the formation of talc together with clinopyroxene + orthopyroxene + chlorite in the reaction between 
quartz-saturated fluid and a harzburgite (HZ1). Over the modeled conditions, metasomatism of DMM lherzolite 
by a quartz-saturated fluid predicted talc formation from 1.5 to 2.5 GPa, from 300 to up to 600°C (Table S3 in 

Figure 1. Predicted pore fluid composition during high P-T (300°C, 1.5 GPa) Si-metasomatism of ultramafic rocks as a function of fluid-to-rock ratio. A fluid 
equilibrated with quartz (a–c), metabasalt (d–f), or metasediments (g–i) is subsequently allowed to react with ultramafic compositions (DMM, HZ1, and HZ2). The f/r 
decreases as ultramafic rock is titrated into the fluid.
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Supporting Information S1). Metasomatism of HZ1 by a quartz-saturated fluid also predicted talc formation but 
at lower temperature (≤400°C) compared with reaction with DMM. In contrast, talc is not predicted to form 
during metasomatism of the more refractory harzburgite (HZ2) in any of the modeled conditions (Table S3 in 
Supporting Information S1). In general, the predicted concentrations of dissolved Mg and Al increase, dissolved 
Si concentrations decrease, while dissolved Ca concentrations initially decrease then increase with decreasing 
f/r (Figure 1).

Metasomatism of antigorite by fluids previously in equilibrium with a metabasalt is predicted to form talc coex-
isting with chlorite + clinopyroxene (diopside) + olivine at 300°C and 1.5 GPa (Figure S2 in Supporting Infor-
mation S1). However, under the same P-T condition, talc is not predicted to form during metasomatism of DMM, 
HZ1, and HZ2. Instead, the models suggest the formation of Ca and Al-bearing minerals such as clinopyroxene, 
chlorite, garnet, pumpellyite, wollastonite, and diaspore (Figures 2d–2f). Our models predict that metasomatism 
of DMM, HZ1, and HZ2 by fluids that previously equilibrated with metabasalt yields talc over a narrow range 
of P-T condition, between 300°C and 400°C at 2 GPa (Table S3 in Supporting Information S1). With decreasing 
f/r, the concentrations of dissolved Mg and Al are predicted to increase while concentrations of dissolved Si are 
predicted to decrease during reaction with DMM and HZ1. During metasomatism of HZ2, concentrations of 
dissolved Al and Ca are predicted to initially increase and then decrease, while concentrations of dissolved Mg 
and Si initially decrease then increase with decreasing f/r (Figure 1).

Figure 2. Predicted mineral assemblages of reaction-path models that simulated high P-T (300°C, 1.5 GPa) metasomatism as a function of fluid-to-rock ratio. A fluid 
equilibrated with quartz (a–c), metabasalt (d–f), or metasediments (g–i) is subsequently allowed to react with ultramafic compositions (DMM, HZ1, and HZ2). The f/r 
decreases as ultramafic rock is titrated into the fluid. Mineral abbreviations are from Whitney and Evans (2010).
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Metasomatism of antigorite by fluids that were previously in equilibrium with a metapelite is predicted to form 
talc coexisting with chlorite  +  quartz  +  diaspore at 300°C and 1.5  GPa (Figure S2 in Supporting Informa-
tion S1). Metasomatism of HZ2 by a metapelite-equilibrated fluid is predicted to yield talc coexisting with chlo-
rite + quartz + antigorite + tremolite at 300°C and 1.5 GPa. Our models suggest that metasomatism of DMM 
and HZ1 yields chlorite, quartz, clinopyroxene, lawsonite, and diaspore under similar P-T condition. If the fluid 
previously equilibrated with metapelite, the models predict that talc formation is favored during metasomatism 
of more refractory ultramafic compositions (Table S3 in Supporting Information S1). With decreasing f/r, the 
concentrations of dissolved Si, Ca, and Al are predicted to increase while dissolved Mg decreases (Figure 1).

4. Discussion
4.1. Effects of Fluid and Rock Compositions on Talc Formation

Talc can form during serpentinization, closed-system metamorphism of serpentinite, and metasomatism of 
ultramafic rocks. Talc formation is favored during low-pressure serpentinization of pyroxene at temperatures 
of 400°C or higher where olivine is stable in the presence of water (Evans, 1977; Frost & Beard, 2007; Klein 
et al., 2009). Prograde metamorphism of antigorite can yield olivine, talc, and water whereas retrograde meta-
morphism of antigorite can form chrysotile and talc (Schwartz et al., 2013). The volume of talc formation during 
serpentinization or closed-system metamorphism is small when compared with other reaction products. In 
contrast, the formation of sizable talc deposits, such as those in the exhumed high-pressure terrane on Santa 
Catalina Island (USA), would require an open-system reaction involving the external addition of silica-bearing 
fluids into serpentinite (Bebout and Barton, 2002). The formation of talc at the expense of ultramafic rocks can 
be assessed using the simplified MgO-SiO2-H2O (MSH) system (Bowen & Tuttle, 1949; Evans, 1977).

Serpentinization

90MgSiO3
(orthopyroxene)

+ 45H2O = Mg48Si34O85(OH)62
(antigorite)

+ 14Mg3Si4O10(OH)2
(talc)

 (R1)

Metamorphism

5Mg7Si8O22(OH)2
(anthophyllite)

+ 2H2O = 9Mg3Si4O10(OH)2
(talc)

+ 4Mg2SiO4

(olivine)
 (R2)

Mg48Si34O85(OH)62
(antigorite)

= 18Mg2SiO4

(olivine)

+ 4Mg3Si4O10(OH)2
(talc)

+ 27H2O (R3)

Si-metasomatism

3Mg2SiO4

(olivine)

+ 5 SiO2(aq) + 2H2O = 2Mg3Si4O10(OH)2
(talc)

 (R4)

3MgSiO3
(orthopyroxene)

+ SiO2(aq) + H2O = Mg3Si4O10(OH)2
(talc)

 (R5)

Mg48Si34O85(OH)62
(antigorite)

+ 30 SiO2(aq) = 16Mg3Si4O10(OH)2
(talc)

+ 15H2O (R6)

While serpentinization and metamorphism of serpentinite can proceed without the addition or removal of compo-
nents, except for water (e.g., R1–R3), the formation of talc may also be favored via the addition of SiO2 to—or 
the removal of MgO from—an ultramafic rock. However, factors other than SiO2 addition and MgO removal need 
to be considered when assessing the stability of talc, notably the compositions of the reactant rock and fluid, f/r, 
and temperature (Klein et al., 2013).

Our model predictions at 300°C and 1.5 GPa suggest that the reaction of a quartz-saturated fluid with DMM, 
HZ1, or HZ2 can yield minerals such as chlorite, garnet, clinopyroxene, orthopyroxene, pumpellyite, in addi-
tion to talc. The formation of talc is predicted to be more favorable during Si-metasomatism of DMM and HZ1 
when compared with HZ2 which we attribute to the higher bulk-rock Al contents and lower Mg/Si ratios in less 
melt-depleted mantle rocks (Figure S6 in Supporting Information  S1). The lower bulk-rock Al contents and 
higher Mg/Si of more melt-depleted mantle rocks (here HZ2) favor the formation of Al-bearing phases such as 
chlorite, paragonite, and garnet rather than talc (Figure 2). Si-metasomatism of fertile mantle rocks is predicted to 
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favor the formation of Ca-bearing phases such as clinopyroxene, lawsonite, and grossular-rich garnet due to their 
elevated bulk-rock Ca contents relative to refractory harzburgite.

Our models predict that metasomatism of antigorite by fluids that previously equilibrated with metabasalt can 
favor the formation of chlorite and clinopyroxene, in addition to talc (Figure S2; Table S3 in Supporting Infor-
mation S1). However, if the fluid equilibrates with metabasalt before reacting with peridotite (DMM, HZ1, and 
HZ2), talc formation is predicted to occur only between 300°C and 400°C at 2 GPa (Table S3 in Supporting 
Information S1). A possible explanation is the relatively high Si concentrations and low Mg/Si ratios of the fluid 
at these conditions when compared with similar temperatures at different pressures. We attribute talc formation 
during metasomatism of refractory HZ2 peridotite by fluids that previously equilibrated with metapelite with the 
relatively low bulk-rock Al contents and high Mg/Si ratios, as well as the low dissolved Al content and low Al/Si 
ratio of the reactant fluid (Table S3; Figures S1 and S6 in Supporting Information S1).

The reaction-path models suggest that the compositions of reacting fluids and whole-rocks at a given P-T condi-
tion are pivotal in controlling the chemical affinity to form talc. This implies that the formation of talc may 
be restricted to specific domains where rock and fluid compositions, as well as pressure and temperature are 
favorable, for example, where sediments and refractory harzburgite are juxtaposed at 300°C–400°C and 1–2 GPa. 
However, juxtaposition of mafic and ultramafic rocks is predicted to favor the formation of Ca- and Al-bearing 
phases such as chlorite, clinopyroxene, lawsonite, garnet, epidote, and paragonite over talc. A fluid that is Si-rich 
but Ca- and Al-poor could produce talc upon reaction with fertile ultramafic compositions; however, such fluid 
compositions seem unlikely considering the abundance of Ca- and Al-bearing phases in subducting slabs that 
become unstable during metamorphism.

4.2. Limited Talc Formation Along the Subduction Interface

The thermal structure of subducting slabs is of central importance regarding the P-T stability of hydrous minerals. 
In addition to P and T, our calculations suggest that rock and fluid compositions should not be ignored when the 
stability of hydrous minerals in subduction zones is evaluated (Figure 3a). Figure 3b summarizes the conditions 
where talc formation is predicted relative to distinct slab-top geotherms (Syracuse et al., 2010). As talc forma-
tion during Si-metasomatism is favored at relatively low temperatures and pressures, we expect to find more 
talc in cold subduction zones, such as Izu-Bonin-Mariana and Tonga, than in warm subduction zones such as in 
Cascadia and Mexico. If this is correct, more extensive talc formation via Si-metasomatism of ultramafic rocks 
along the slab-mantle interface at subarc depths may be limited to cold subduction zones. We also infer that talc 
formation at the slab-mantle interface may be limited in subduction zones where sediments are scraped off before 
subduction or if the sediment layer of the subducting oceanic plate is thin.

Talc-bearing metamorphic rocks from the Arosa Zone (Switzerland) and on Santa Catalina Island (USA) can be 
used to further evaluate our model predictions. The Arosa Zone exhibits an exhumed plate interface that includes 
calcareous and pelitic schists, metabasite, marble, serpentinite, and chlorite and talc schists (Condit et al., 2022). 
Talc schist forms a 2–4 m thick layer between ultramafic and mafic rocks. While the P-T conditions of talc and 
chlorite formation at Arosa are unknown, it is estimated that the latest stage of subduction-related deformation 
of the region may have occurred at 300°C–350°C and pressures above 0.7 GPa (Bachmann et al., 2009). If we 
consider this estimate as a minimum bound for talc (and chlorite) formation due to its deformation texture, this 
would be comparable and consistent with our model prediction where talc can form at temperature ≤400°C at 
1 GPa.

On Santa Catalina Island (USA), a talc-bearing metasomatic reaction zone developed between serpentinite and 
metasediments. The heterogeneous mixture of metamorphosed rocks at Catalina recorded a wide range of P-T 
conditions of between ∼200°C and ∼700°C and between 0.6 and 1.2 GPa. The talc-bearing metamorphosed rocks 
in this locality record amphibolite-facies conditions (600°C–700°C). This temperature range is significantly 
higher than the anticipated temperature range for talc formation based on our model predictions for pressures 
of less than 2 GPa. However, previous petrologic studies on Catalina have suggested that talc must have formed 
during or after the exhumation-related, chrysotile-bearing deformation observed in the serpentinite domains 
(Hirauchi et al., 2020; Hirauchi & Yamaguchi, 2007).

Talc can also form during mineral carbonation of ultramafic rocks (Okamoto et al., 2021). This process can trans-
form a Si-undersaturated peridotite or serpentinite into soapstone (mainly talc and magnesite) or even listvenite 
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(quartz and magnesite) without adding Si, as CO2 reacts with Mg, Fe, and Ca to form carbonate, allowing Si to 
react with serpentine to form talc (Grozeva et al., 2017; Klein & Garrido, 2011). While a more detailed account of 
mineral carbonation is beyond the scope of this study, talc formation through this process may be most effective 
in subduction zones where the incoming plates carry large volumes of carbonate rocks, such as in the Aegean arc 
(Clift & Vannucchi, 2004).

4.3. Formation of Chlorite Along the Subduction Interface

Chlorite is predicted to form in almost all of our reaction path models (Figure  3c). The elevated activity of 
Al species in fluids in equilibrium with metabasalt or metapelite with increasing temperature promotes the 

Figure 3. (a) Illustration of the slab-mantle interface in subduction zones where talc and chlorite may be favored to form. 
Summary of the conditions that are predicted to favor the formation of talc (b) and chlorite (c) via Si-metasomatism of 
ultramafic rocks by slab-derived fluids. The predicted presence or lack of talc and chlorite is indicated by the color-coded pie 
charts which refer to distinct fluid compositions used in the reaction path models. The P-T conditions of field sites mentioned 
in the text are shown for comparison. Slab-top geotherms are taken from Syracuse et al. (2010).
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formation of chlorite upon reaction with ultramafic rocks. The increased solubility of Al in fluids with increasing 
temperature is facilitated by the formation of Al-complexes, such as Al(OH)Si(OH) – (Huang & Sverjensky, 2019; 
Manning, 2018). The predicted formation of chlorite is corroborated by the common occurrence of chlorite at 
the interface between juxtaposed mafic, pelitic, and ultramafic rocks in metamorphic terranes that record a wide 
range of P-T conditions (Bebout, 1991; Bebout & Penniston-Dorland, 2016; Marschall & Schumacher, 2012). 
Here, Si-metasomatism of ultramafic rocks or Mg-metasomatism of mafic (or pelitic) rocks can yield chlorite-rich 
assemblages.

Examples of exhumed chlorite-bearing high-pressure rocks with well-constrained P-T histories support our 
model predictions (Figure  2c). The exhumed high-pressure mélange in Syros (Greece), metamorphosed at 
1.3–2.0 GPa and 470°C–520°C (Breeding et al., 2004; Marschall et al., 2006), displays chlorite-rich reaction 
zone between mafic blocks and serpentinite matrix where serpentinite is altered to chlorite ± talc ± tremolite 
(Gyomlai et  al.,  2021). Similarly, the ultramafic mélange from the Nishisonogi (Japan), metamorphosed at 
∼1.3–1.4 GPa and ∼440°C–520°C (Mori et al., 2019; Moribe, 2013), consists of a matrix of chlorite-actinolite 
schists and serpentinite juxtaposed to metapelite (Mori et al., 2014). In addition, chlorite and amphibole-rich 
reaction rinds around mafic blocks on Santa Catalina Island (USA) display elevated MgO, Ni, Cr, Os, Ir and 
Ru, reflecting ultramafic protoliths (Bebout and Barton,  2002; Penniston-Dorland et  al.,  2014). Other exam-
ples of exhumed mantle wedge peridotite metasomatized by slab-derived fluids include the Higashi-Akaishi 
peridotite (Japan) and chlorite harzburgites in Cima di Gagnone (Switzerland). These exhumed metaperidotites 
record peak P-T conditions of ∼700°C–800°C and <3 GPa (Guild et al., 2020; Scambelluri et al., 2014). Meta-
somatism of these metaperidotites by slab-derived fluids may have occurred at or before the rocks had reached 
peak-metamorphic temperatures. In the Higashi-Akaishi peridotite, high-Mg chlorite and amphibole included 
within garnet and orthopyroxene were interpreted as a stable prograde assemblage (Enami et al., 2004; Hattori 
et al., 2010). At Cima di Gagnone, chlorite harzburgite lenses are embedded within metamorphosed pelite. These 
chlorite harzburgite lenses record enrichments in radiogenic Sr and Pb from the interactions with fluids derived 
from the enclosing metapelite (Cannaò et al., 2015; Scambelluri et al., 2014). Evidence for chlorite formation and 
stabilization in mantle rocks by slab-derived fluids is also found in multiphase inclusions in exhumed metaperid-
otite (Campione et al., 2017). For instance, primary mineral inclusions in mantle garnet from exhumed ultra-high-
pressure peridotite (e.g., Maowu Ultramafic Complex in Eastern China, Bardane, Ugelvik and Svartberget in the 
Western Gneiss Region) include spinel + chlorite which were interpreted as crystallization products of dilute 
slab-derived aqueous fluids that percolated through mantle peridotites (Campione et al., 2017; Carswell and van 
Roermund, 2005; Malaspina et al., 2006; Van Roermund & Drury, 1998; Vrijmoed et al., 2008).

4.4. Implications for the Rheology, Slow Slip, and Coupling-Decoupling Transition of the Slab-Mantle 
Interface

The structurally complex shear zones in subduction interface exposures preserve a mixture of rock types that 
vary strongly in their rheological properties (Agard et al., 2018). Previous studies have suggested that episodic 
slip occurs downdip of the seismogenic zone along the plate interface, where the brittle-ductile transition occurs 
(Audet & Kim, 2016; Bürgmann, 2018). Slow slip occurs over longer timescales and at lower slip rates than 
seismic ruptures but are episodic and faster than continuous aseismic creep (Beroza & Ide,  2011; Rogers & 
Dragert, 2003). Slow slip events are typically observed in warm subduction zones at conditions of very low shear 
stresses (<1 MPa) (Beroza & Ide, 2011; Hawthorne & Rubin, 2010). Their distributions vary between subduction 
zones, but the majority are found at an inferred depth range of 30–50 km and temperatures between 325°C and 
500°C (Brown et al., 2009; Condit et al., 2020). However, the exact mechanisms and conditions controlling their 
occurrence remain debated (Behr & Bürgmann, 2021). Proposed mechanisms include high pore fluid pressure 
that may promote dilatant hardening (Segall et al., 2006) or by changing strain partitioning among different rock 
units (French & Condit, 2019). These fluids are believed to be generated by in-situ dehydration of subducting 
slab or updip flow of fluids sourced from portions of the subducted slabs that dehydrate at greater depths (Condit 
et al., 2020; Fagereng et al., 2017; Kodaira et al., 2004; Taetz et al., 2018). The latter mechanism, proposed in 
conjunction with high pore-fluid pressures, invokes the presence of weak minerals such as chlorite and talc 
(Condit et al., 2022; French & Condit, 2019; Hirauchi et al., 2020; Tarling et al., 2019). For instance, French and 
Condit (2019) suggested that the very low shear stresses determined for during slow slip events can be accom-
modated by frictional deformation of chlorite or talc at near-lithostatic pore-fluid pressures. This is particularly 
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important as near-lithostatic fluid pressures have been inferred for the plate interface (Behr & Bürgmann, 2021; 
Condit & French, 2022; Furukawa, 1993).

This study provides additional constraints on strain localization and the potential link to slow slip events by illumi-
nating the formation potential of talc and chlorite along the plate interface. Talc formation via Si-metasomatism 
may not be as pervasive as previously thought, because it is predicted to form at a restrictive set of conditions 
only. When fluid in equilibrium with metapelite reacts with an ultramafic rock, talc formation is predicted to be 
less favorable at temperatures above 400°C at pressures below 2 GPa. If slow slip events depend on the presence 
and rheological properties of talc at near-lithostatic fluid pressures, then these events would be more favored 
in subduction zones with cold slab-top geotherms and where the incoming plates contain abundant sediments. 
However, this is inconsistent with the common occurrence of slow slip events in warm subduction zones such as 
in Cascadia and Mexico where the incoming plates are sediment-poor (Clift & Vannucchi, 2004). The absence 
of large volumes of talc in exhumed high-pressure rocks that record peak pressures above 1 GPa, in conjunction 
with our model predictions (that cover P-T conditions that are not represented by the exhumed metamorphic rock 
record), tentatively suggest that talc formation via Si-metasomatism is less favorable in warm subduction zones 
than in cold ones. Therefore, talc formed during Si-metasomatism may be less important in promoting of slow 
slip events in warm subduction zones than previously thought (French & Condit, 2019).

The pressure-dependent breakdown of talc via the reaction with forsterite to form antigorite and enstatite has 
been suggested as a mechanism to explain the coupling of the slab and overlying mantle at ∼80 km depth (S. 
M. Peacock and Wang, 2021). If our predictions are correct, the common decoupling-coupling transition along 
the plate interface in warm subduction zones would be difficult to explain with the breakdown of talc, since its 
formation via Si-metasomatism seems to be limited to a restricted set of environmental conditions. Alternatively, 
much of the talc may form via mineral carbonation rather than Si-metasomatism (Okamoto et al., 2021).

Since chlorite also displays low frictional strength (Fagereng & Ikari, 2020), its formation along the plate inter-
face largely independent of the slab thermal structure may be more likely to facilitate strain localization and 
facilitate slow slip events when the pore fluid pressure approaches lithostatic condition. However, other processes 
or mechanisms are required for chlorite to host slow slips at depths where they are generated.

Downdip of the brittle-ductile transition, increasing temperature in the presence of fluids may further promote 
the metasomatic growth of chlorite at the expense of precursor rocks. This would promote decoupling and possi-
bly the deepening of the decoupling-coupling transition of the plate interface over time (cf. Abers et al., 2020; 
Marschall & Schumacher, 2012).

Data Availability Statement
The data that support the findings of this study are freely available at https://doi.org/10.5281/zenodo.6760195. 
The Deep Earth Water (DEW) database and EQ3/6 thermodynamic codes are available online (http://www.
dewcommunity.org/resources.html).
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