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Injury of the sciatic nerve results in regulations of pro- and anti-
oxidative enzymes at sites of nociceptive signaling including the
injured nerve, dorsal root ganglia (DRGs), dorsal horn of the spinal
cord, thalamus and somatosensory cortex (Valek et al., 2015) [1]. The
present DiB paper shows immunohistochemistry of redoxins
including peroxiredoxins (Prdx1–6), glutaredoxins (Glrx1, 2, 3, 5),
thioredoxins (Txn1, 2) and thioredoxin reductases (Txnrd1, 2) in the
DRGs, spinal cord and sciatic nerve and thalamus in naïve mice and
7 days after Spared sciatic Nerve Injury (SNI) in control mice (Hif1α-
flfl) and in mice with a specific deletion of hypoxia inducible factor
1 alpha (SNS-HIF1α�/�) in DRG neurons. The sciatic nerves were
immunostained for the respective redoxins and counterstained with
hematoxylin. The redoxin immunoreactivity was quantified with
ImageJ. For the DRGs and spinal cord the data show the quantitative
assessment of the intensity of redoxin immunoreactivity transformed
to rainbow pseudocolors. In addition, some redoxin examples of the
ipsi and contralateral dorsal and ventral horns of the lumbar spinal
cord and some redoxin examples of the thalamus are presented.
& 2015 The Authors. Published by Elsevier Inc. This is an open access

article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Immunohistochemistry for redoxins, counterstaining with hematoxylin, micro-
scopy on an Leica Diaplan microscope equipped with a MicroPublisher camera
(QImaging, Surrey, BC, Canada)
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 Tables, microscopy images

xperimental
factors
Mice subjected to sciatic nerve injury versus control.
xperimental
features
The data were obtained from mice with a specific deletion of hypoxia inducible

factor 1 alpha (SNS-HIF1α�/�) in sensory neurons of the dorsal root ganglia
(DRGs) and floxed control mice.
ata source
location
Frankfurt, Germany
ata accessibility
 Data is with this paper
D
Value of the data
� The immunohistology of redoxins may be used for comparison of the expression and regulation of
these enzymes in models of nerve, brain or spinal cord injury.

� The Hif1α dependent regulation of redoxin expression may be used for comparison of redoxin
regulation in other tissues e.g. in cancer or cardiovascular tissue.

� The rainbow pseudocolor conversion of quantitative immunhistology data of dorsal root ganglia
and spinal cord may be used as an example for quantitative assessment and presentation of
immunohistology data.
DRGs, dorsal and ventral horns of the spinal cord, sciatic nerve and thalamus. Slides were incubated
ary antibody and developed with the Streptavidin–HRP system using red AEC as substrate and then
toxylin (blue). Scale bar 20 mm or 50 mm.



Fig. 2. WCIF-ImageJ was used for quantification of histological images. After substraction of background, the RGB image was
split into its channels, the channel representing the redoxin-immunoreactivity was then inverted, the threshold set to auto, and
intensities transformed to rainbow colors as shown in the images. The mean pixel intensity and distribution were plotted as
histograms and the mean intensity was used for statistical comparisons. The quantification is based on results of 3 animals in
each group.
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Fig. 3. Immunohistology of peroxiredoxins, Prdx1–6 (in red) in the ipsilateral sciatic nerve proximal of the nerve lesion 7 days
after Spared Nerve Injury (SNI) in SNS-HIF1α� /� and HIF1α-flfl mice. SNS-HIF1α�/� have a cre/loxP mediated deletion of
hypoxia inducible factor 1 alpha specifically in sensory neurons of the dorsal root ganglia (DRGs). Naïve mice were used as
controls. Slides were developed with the Streptavidin–HRP system using red AEC as substrate and then counterstained with
hematoxylin (blue). Results are representative results of 3 mice per group. Scale bar 50 mm.
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Fig. 4. Immunohistology of glutaredoxins, Glrx1, 2, 3 and 5 (in red) and of the catalytic subunit of glutamate–cysteine ligase,
Gclc (red) in the ipsilateral sciatic nerve proximal of the nerve lesion 7 days after Spared Nerve Injury (SNI) in SNS-HIF1α� /�

and HIF1α-flfl mice. SNS-HIF1α�/� have a cre/loxP mediated deletion of hypoxia inducible factor 1 alpha specifically in sensory
neurons of the dorsal root ganglia (DRGs). Naïve mice were used as controls. Slides were developed with the Streptavidin–HRP
system using red AEC as substrate and then counterstained with hematoxylin (blue). Results are representative results of
3 mice per group. Scale bar 50 mm.
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1. Data

The present DiB paper shows immunohistochemistry of redoxins including peroxiredoxins
(Prdx1–6), glutaredoxins (Glrx1, 2, 3, 5), thioredoxins (Txn1, 2) and thioredoxin reductases (Txnrd1, 2)
in the DRGs Figs. 1 and 2), spinal cord (Figs. 1, 2 and 7), sciatic nerve (Figs. 3–5, quantification Fig. 6)
and thalamus (Fig. 8) in naïve mice and 7 days after Spared sciatic Nerve Injury (SNI) in control mice
(Hif1α-flfl) and in mice with a specific deletion of hypoxia inducible factor 1 alpha (SNS-HIF1α� /�) in
DRG neurons. The sciatic nerves were immunostained for the respective redoxins and counterstained
with hematoxylin. The redoxin immunoreactivity was quantified with ImageJ. For the DRGs and
spinal cord the data show the quantitative assessment of the intensity of redoxin immunoreactivity



Fig. 5. Immunohistology of thioredoxins (Txn1, 2) and thioredoxin reductases (Txnrd1, 2) (in red) in the ipsilateral sciatic nerve
proximal of the nerve lesion 7 days after Spared Nerve Injury (SNI) in SNS-HIF1α�/� and HIF1α-flfl mice. SNS-HIF1α�/� have a
cre/loxP mediated deletion of hypoxia inducible factor 1 alpha specifically in sensory neurons of the dorsal root ganglia (DRGs).
Naïve mice were used as controls. Slides were developed with the Streptavidin–HRP system using red AEC as substrate and
then counterstained with hematoxylin (blue). Results are representative results of 3 mice per group. Scale bar 50 mm.

Fig. 6. Quantification of redoxin histology of the sciatic nerve with WCIF ImageJ. Mean pixel intensities were determined after
substraction of background, RGB split into its channels and threshold settings based on negative control images using “auto”
settings. The analysis did not differentiate between different types of cells and is a global readout for immunoreactivities in
axonal fibers, Schwann cells and infiltrating immune cells. Pixel intensities were compared with one-way ANOVA for each
redoxin separately. In case of significance, groups were mutually compared employing a Sidak correction of alpha, which was
set at 0.05 for all comparisons. Asterisks indicate significant differences versus the respective naive animals. The analysis was
based on results of 3 animals per group.
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Fig. 7. Exemplary immunohistology of redoxins (red, hematoxylin counterstain in blue) in the contralateral and ipsilateral
lumbar spinal cord 7 days after Spared Nerve Injury (SNI) of the ipsilateral sciatic nerve in SNS-HIF1α�/� and HIF1α-flfl mice.
SNS-HIF1α�/� have a cre/loxP mediated deletion of hypoxia inducible factor 1 alpha specifically in sensory neurons of the
dorsal root ganglia (DRGs). Scale bar 50 mm.
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[1] transformed to rainbow pseudocolors (Fig. 2). In addition, some redoxin examples of the ipsi and
contralateral dorsal and ventral horns of the lumbar spinal cord (Fig. 7) and some redoxin examples of
the thalamus (Fig. 8) are presented. Characteristics of the antibodies are listed in Table 1 along with
some features of the redoxins.
2. Experimental design, materials and methods

2.1. Mice and surgery

The data were obtained from mice with a specific deletion of hypoxia inducible factor 1 alpha
(SNS-HIF1α�/�) in sensory neurons of the dorsal root ganglia (DRGs). The deletion was achieved by
mating floxed mice (Hif1α-flfl) with SNScre mice, which express cre-recombinase under control of
the Nav1.8/SNS promoter, which is specific for small and medium sized DRG and trigeminal neurons
[2]. Hif1α-flfl littermates were used as controls.

Mice were subjected to a sciatic nerve during isoflurane anesthesia using the SNI model [3]. Two of
the three peripheral branches of the sciatic nerve, the common peroneal and the tibial nerves, were
ligated with silk and distally transected, leaving the sural nerve intact. Seven days after nerve injury
mice were terminally anesthetized with isoflurane and cardially perfused with ice cold 1� phosphate
buffered saline (PBS), pH 7.4 followed by 4% paraformaldehyde (PFA) in PBS for fixation. Naïve mice
were used as controls.

2.2. Immunohistochemistry

Tissues were excised, postfixed in 4% PFA for 2 h, cryoprotected overnight in 20% sucrose at 4 °C,
embedded in small tissue molds in cryomedium and cut on a cryotome (12 mm for DRGs and sciatic
nerves; 18 mm spinal cord). Slides were air-dried and stored at �80 °C. After thawing, slides were



Fig. 8. Exemplary immunohistology of redoxins (red, hematoxylin counterstain in blue) in the thalamus 7 days after Spared
Nerve Injury (SNI) of the sciatic nerve in SNS-HIF1α� /� and HIF1α-flflmice. SNS-HIF1α�/� have a cre/loxP mediated deletion of
hypoxia inducible factor 1 alpha specifically in sensory neurons of the dorsal root ganglia (DRGs). The right panel shows a
higher magnification. Slides were developed with the Streptavidin–HRP system using red AEC as substrate. Scale bars 50 and
20 mm.
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immersed and permeabilized in 1� phosphate buffered saline (PBS) with 0.3% Triton-X-100 (PBST),
incubated in 3% hydrogen peroxide for 10 min to quench endogenous peroxidase, then blocked with
1% blocking reagent (Roche) or with 10% normal goat serum (Sigma) in PBST, subsequently incubated
overnight with the primary antibody in PBST at 4 °C. Primary antibodies are listed in Table 1, validated
in [4]. Sections were then washed with PBST, incubated with a biotinylated species specific secondary
antibody diluted 1:500 for 1–2 h at room temperature. Vectastain HRP streptavidin was used for
antigen detection according to the manufacturer's recommendations using red aminoethyl carbazole
HRP substrate (AEC, Invitrogen). Subsequently, slides were counter-stained with Mayer's hematoxylin



Table 1
Characteristics of redoxins and antibody specifications.

Name Gene GO molecular function GO cellular
component

Type Catalytic activity aArnt, Ahr
or HIF1
sites

Phosphosites Antibody

Peroxiredoxin 1 Prdx1 Thioredoxin peroxidase
activity, heme binding,
antioxidant activity,
oxidoreductase activity

N, C, S 2Cys-intermolecular
–S–S–

2R0–SHþROOH¼R0–S–S–
R'þH2OþROH

- Thr90 [4]

Peroxiredoxin 2 Prdx2 Thioredoxin peroxidase
activity, antioxidant
activity, oxidoreductase
activity

C, S 2Cys-intermolecular
–S–S–

2R0–SHþROOH¼R0–S–S–
R'þH2OþROH

48 Ser112, Thr182 Santa Cruz Bio-
technology, Inc.
(sc-33572)

Peroxiredoxin 3 Prdx3 Thioredoxin peroxidase
activity, antioxidant
activity, oxidoreductase
activity

M, C, E 2Cys-intermolecular
–S–S–

2R0–SHþROOH¼R0–S–S–
R'þH2OþROH

- Thr146 [4]

Peroxiredoxin 4 Prdx4 Thioredoxin peroxidase
activity, antioxidant
activity, oxidoreductase
activity

S, C, ER, M, L atypical 2Cys, intra-
molecular–S–S–

2R0–SHþROOH¼R0–S–S–
R0 þH2OþROH

121, 211 Ser68, Tyr266 Abcam plc
(ab59542)

Peroxiredoxin 5 Prdx5 Thioredoxin peroxidase
activity, antioxidant
activity, oxidoreductase
activity, RNA poly-
merase and receptor
binding

C, M, N, P atypical 2Cys, intra-
molecular–S–S–

2R0–SHþROOH¼R0–S–S–
R'þH2OþROH

125, 404,
221

Ser34, Thr97, Ser101,
Ser182

[4]

Peroxiredoxin 6 Prdx6 Glutathione peroxidase
activity, phospholipase
A2 activity, antioxidant
activity, oxidoreductase
activity

C, L, S 1Cys 2R0–SHþROOH¼R0–S–S–
R'þH2OþROH; 2 glutathio-
neþH2O2¼glutathione
disulfideþ2 H2O.

102 Ser32, Thr44, Ser83,
Tyr89, Ser146,
Thr177, Ser186

Abcam plc
(ab59543)

Glutaredoxin 1 Glrx1 Glutathione disulfide
oxidoreductase activity

C, N, M, S dithiol 2 Glutathio-
neþH2O2¼glutathione
disulfideþ2 H2O, in the
presence of NADPH and Gsr

- Tyr25 [4]

Glutaredoxin 2 Glrx2 Glutathione disulfide
oxidoreductase activity,
protein disulfide iso-
merase activity

M, N dithiol 2 Glutathio-
neþH2O2¼glutathione
disulfideþ2 H2O, in the
presence of NADPH and Gsr

- Ser20, Tyr103,
Tyr113

[4]

Glutaredoxin 3 Glrx3 Protein disulfide oxi-
doreductase activity,

C, N monothiol 2� 2 Glutathio-
neþH2O2¼glutathione

34 Ser32, Ser117,
Ser120, Ser196

[4]
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protein disulfide iso-
merase activity, protein
kinase C binding

disulfideþ2 H2O, in the
presence of NADPH and Gsr

Glutaredoxin 5 Glrx5 Protein disulfide oxi-
doreductase activity,
2 iron, 2 sulfur cluster
binding, metal ion
binding

M, N, C monothiol 2 Glutathio-
neþH2O2¼glutathione
disulfideþ2 H2O, in the
presence of NADPH and Gsr

- Ser41, Ser145 [4]

Glutamate cysteine
ligase, catalytic
domain

Gclc Glutamate–cysteine
ligase activity, glu-
tathione synthase
activity, ATP binding

C ATPþL-glutamateþ4L-
cystei-
ne¼ADPþphosphateþga-
mma-4L-glutamyl-L-
cysteine

317, 328 Ser5, Ser8, Ser621 Santa Cruz Bio-
technology, Inc.
(sc-22755)

Thioredoxin 1 Txn1 Protein disulfide oxi-
doreductase activity,
poly(A) RNA binding,
dithiol–disulfide
exchange

C, N, S cytopslasmic Dithiol–disulfide exchange - Ser44, Ser46, Ser67 [4]

Thioredoxin 2 Txn2 Protein disulfide oxi-
doreductase activity,
dithiol–disulfide
exchange

M, C, N mitochondrial Dithiol–disulfide exchange 155
(mouse)

- [4]

Thioredoxin reduc-
tase 1

Txnrd1 Selenium-dependent
oxidoreductase activity,
thioredoxin–disulfide
reductase activity,
NADP(H) oxidase
activity

C, N cytopslasmic ThioredoxinþNADPþ¼thi-
oredoxin
disulfideþNADPH.

461 Tyr161, Tyr163,
Tyr277, Tyr281

[4]

Thioredoxin reduc-
tase 2

Txnrd2 Selenium-dependent
oxidoreductase activity,
thioredoxin–disulfide
reductase activity, act-
ing on a sulfur group of
donors, NAD(P) as
acceptor

M mitochondrial ThioredoxinþNADPþ¼thi-
oredoxin
disulfideþNADPH.

118 Tyr40 Santa Cruz Bio-
technology, Inc.
(sc-67127)

M, Mitochondria; C, Cytoplasm; N, Nucleus; V, Vesicular structure (endosome, peroxisome, lysosome); E, Endosome; P, Peroxisome; S, Secreted; ER, Endoplasmic reticulum; L, Lysosome.
a Search 500 kB upstream.
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and mounted with Mowiol. Negative control slides were incubated with 10% goat serum in PBST,
examples of negative control stainings are shown in Fig. 1.

2.3. Quantitation of immunohistology images

The WCIF plugin bundle of ImageJ was used for quantification of immunohistology images [5].
After background subtraction the RGB image was split into its channels to separate the immunor-
eactive red from the blue hematoxylin counterstain. The single channel image was then inverted, the
intensity threshold set to automatic detection, the intensity distribution plotted as histogram and the
mean intensity was used for statistical comparisons. The intensities were transformed to rainbow
pseudocolor for visualization (Fig. 2). The analysis did not differentiate between different types of
cells, e.g. neuronal fibers, Schwann cells and immune cells in the nerves. The analysis was based on
2 images per mouse and tissue of 3 mice per group. Mean pixel intensities were submitted to analysis
of variance followed by post hoc analysis between treatment groups employing a Sidak correction for
multiple testing. P was set to 0.05 for all comparisons.

The thioredoxin system consists of the cytosolic Txn1, which can be shuttled to the nucleus and
can be secreted [6] or the mitochondrial Txn2 and the respective thioredoxin reductases (Txnrd1 or
Txnrd2) [7]. Following disulfide reduction by the respective Txn, Txnrd reduces the disulfide in the
active site using electrons provided by NADPH. Glutaredoxins (Glrx) do not depend on a specific
reductase for catalysis. Instead, Glrxs use glutathione (GSH) as electron source [8–10], which is
synthesized in two steps by glutamate cysteine ligase (Gclc) and glutathione synthetase [11]. Oxidized
GSH, glutathione disulfide (GSSG), is subsequently reduced by glutathione reductase (Gsr) at the
expense of NADPH. Peroxiredoxins reduce peroxides rather than protein disulfides [12]. During the
peroxidase reaction, the 2Cys Prdxs (1, 2 and 3 and atypical Prdx4 and 5) form a sulfenic acid
intermediate, which reacts with a second resolving cysteine, resulting in a disulfide bond, which is
subsequently reduced by Txns. The 1Cys Prdx6 uses glutathione (GSH) for the reduction of the sul-
fenic acid intermediate. Sulfiredoxins prevent the over-oxidation of peroxiredoxins.
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