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Abstract

For statistical multifragmentation model the critical indie€sg, y’, § are calculated as functions of the Fisher parameter

It is found that these indices have different values than in Fisher’s droplet model. Some peculiarities of the scaling relations are

discussed. The basic model predicts for the indexnarrow range of values, 799 < t < 1.846, which is consistent with two

experiments on nuclear multifragmentation.
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1. Introduction

The statistical multifragmentation model (SMM)
[1,2] rather successfully explains the multiple produc-
tion of intermediate mass fragments [3,4]. On the other
hand, it is also an example of a statistical model ex-
hibiting a phase transition (PT) of the liquid—gas type
[4,5]. Therefore, the SMM was studied extensively
in order to clarify not only the relationship between
multifragmentation and the nuclear liquid—gas PT, but
also to elucidate the connection of the SMM to both
Fisher’s droplet model (FDM) [6] and the lattice gas
model [7,8]. For the last purpose a simplified version
of the SMM was suggested [9,10].

In recent works [11,12] an exact analytical solution
of a simplified version of the SMM was found in the
thermodynamic limit. This model is mathematically
very similar to the original FDM. However, it differs
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from the FDM in two aspects: (i) the nonzero volume
of the nucleons is taken into account, and (ii) the free
surface energy is non-negative. These two main differ-
ences generate distinct results concerning the proper-
ties of the critical point: the SMM predicts the exis-
tence of a critical point for the parametex 1 and a
tricritical point for 1< t < 2 (see below), whereas for
the FDM this parameter is assumed to be larger,2.
Such a difference is not surprising since the FDM con-
siders the droplets to have zero volume, i.e., its valid-
ity is restricted to low particle densities. Consequently,
the FDM conclusions regarding the critical behavior
must be considered as mainly suggestive in relation to
the behavior of real fluid systems or of more realis-
tic models. Therefore, it is necessary to study how the
critical indices of the SMM relate to those of the FDM.
It will be shown that the critical indices in the SMM
and the FDM have different values, i.e., these models
belong to different universality classes.

Another important issue is the comparison of the
critical indices of the SMM with the corresponding
values found in numerical studies [13] and in exper-
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iments. As we shall show the experimental data for
the indext are consistent with our predictions for the
SMM.

The Letter is organized as follows. In Section 2
a brief description of the simplified version of the
SMM is given. In Section 3 some useful formulae are
derived and the critical indices of this model are found.

The scaling laws and the relations between the critical

indices of the SMM are discussed in Section 4. The
conclusions are given in Section 5.
2. The statistical multifragmentation model

In Refs. [11,12] a simplified version of the SMM is
solved analytically with the method suggested in [14].
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one usually chooses=5/4 ando = 2/3, but in the
following treatment; > 1 and O< o < 1 will be re-
garded as free parameters.

The particle densities in the liquid and in the
gaseous phase ag = (dp;/du)r = 1/b and pg =
Opg/0w)T = pia/(1 + bpiq), respectively. The den-
sity

pia(T. ) = g(D)[z2¢ T + Zi(e, )] (@)
has the meaning of the ideal gas density in the limit
b— 0.

When both pressures coincidg, = pg, v =0, the
liquid—gas PT occurs. This equality defines the PT
equilibrium curveu*(T) in the (T, w)-plane. FoIT <
T. the surface tension(¢) is nonzero and the PT is
of 1st order, since;4 (T, 1) < oo and consequently

The interaction of the fragments is taken into account Pg < o on the curven*(T). The critical point at

by replacing the total volum& by the free volume
Vi =V — bA, where A is the number of nucleons
in the system and is the eigenvolume of a nucleon.

T = T, corresponds to the critical density = p; =
1/b. Since at the critical point = 0 and the surface
tension vanishes, it follows from Egs. (1) and (2) that

In the grand canonical ensemble the pressure of thefor = < 1 the functionZ is divergent and, therefore,

system is found for the liquid and gaseous phase

w~+ W(T)
W)=—

T7
pi( b

pg(Tsl'L)zT]:(pgs Tv:u’)s (1)
respectively, where

F(pg. Top) = Uﬁw# +Soen)] (@)
and Zq (e, v) = Zk'f TPk KT ©)

k=2

with g(T) = [mT/(27)]¥? and non-negative inte-
gerg. The mass of a nucleon is denotedvasz1 = 4

is the number of spin-isospin states of a nucleos;
w+ W(T) — bp, is the shifted chemical potential of
the gaseous phase aW(T) is the free energy per par-
ticle inside of a fragment. The critical temperature of
the system is denoted & ande = (7. — T)/ T, de-

fines the reduced temperature. The actual parameteri-

zation of W(T') and the free surface tensiains) can
be found in Ref. [11,12]. In this Letter it is assumed
that W(T) and all its derivatives are regular functions

of temperature and that the free surface tension obeys¢p

a(e) = aee® for small positive values of and van-
ishes fore < 0. The surface area of a fragment/of
nucleons is taken in the general fokf. In the SMM

pc is infinite. For 1< t < 2 one finds similarly that

pe < 00, p. = 1/b. In the present parameterization of
the surface tension the SMM exhibits a 2nd order PT
for T > T, (see Ref. [11,12] for more details). The
general dependence of the phase structure of the SMM
for T > T. on the parameterization of the surface
tension and additional refinements of the model are the
theme of a separate work. In this Letter the analysis
of the critical exponents of the SMM is restricted to
T < T,.. Forz > 2 on the phase equilibrium line both
F(p*(T), T, nu*(T)) and p;q(T, u*(T)) are finite for
any finite temperature, i.e., the mixed phase region
extends formally to infinite temperatures. Therefore,
this case exhibits no critical point at all in contrast to
the FDM and is not considered in the following.

3. Thecritical indices of the SMM

The critical exponents’, 8 and y’ describe the
temperature dependence of the system near the critical
point on the coexistence curve=0

) lel™, fore <O,

{ e  fore>0, )
ApNS’S, fore >0, (6)
kr ~e7 V', fore>0, (7)
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whereAp = p; — p, defines the order parametey,= The assumptiog — T > —1 is sufficient to guarantee
T (S’_;) denotes the specific heat at fixed particle den- the convergence of the integral at its lower limit.
Because of the finite value of the above integral one

sity ander = 1 (g—ﬁ) is the isothermal compressibil- obtains the following result fog — 0

ity. The shape of the critical isotherm far < p. is

given by the critical index S N S
y _ (e, 00~ 11 ifr=qg+1 (15)
B~ (o — 5 — a nlel, ifr=g+1
pe—p~(pc—p)° fore=0. (8) £0 it 7> g+l
The tilde indicates = 0 hereafter. : . -
. , : . For the calculation o8 one obtains similarly
The calculation ofe and «’ requires the specific
heatc,. With the formula [15] ) 571 i <q+1,
cp(T,n)  1(0%p 3%u 2@ )~ Infp), ifr=g+1, (16)
=—\772) |72 9) 9, ift>qg+1.
T p\ar2), \o12),
one obtains the specific heat on the PT curve by From Ap = 1o ;} it follows Ap ~ pf,~* for

replacing the partial derivatives by the total ones [16]. € — O. Therefore, “inserting = 1 into Eq. (15)
The latter can be done for every state inside or on the immediately gives
boundary of the mixed phase region. For the chemical

potentialy*(T) = bp*(T) — W(T) one gets

¢

p==2-1). (17)
o

* 2 % 2 .

p(1) _ E —b d“p*(T) | d°W(T) (10) Fromp, = p;ia/(1+bpiq) and Eq. (4) it follows that
T 0 dr? ar2 -’

where the asterisk indicates the condensation line k7 = &p—g[zle = +22(e,v)]. (18)
(v = 0) hereafter. Fixing = p. = p; = 1/b one finds T py
ey (T) = 7LV X}(ZT) and hence obtains similarly for  Using Eq. (15) one easily findg from Eq. (18)
botha ando’ 2{ 3
=o' =0. a r=7 (f - §)~ (19)
To calculateg andy’ the behavior of the series Near the critical point it followsp, — 5 ~ 1/5;4. With

oo

Sq(e,0) =y k47T A (12)
k=2

for small positive values ot should be analyzed

(A =ao/T.). Inthe limite — 0 the functionXq(e, 0)

remains finite, ift > ¢ + 1, and diverges otherwise.
Fort = ¢ + 1 this divergence is logarithmic. The case

7 < g + lis analyzed in the following.
With the substitutiorr; = k(A&%)1/7 it follows
# e

q(e,00 = Aef (13)

SinceAz; = (Aef)l/" = Az, the series on the r.h.s. of

(13) converges to an integral for— 0
o0
1—g—1 -
{) 7 / dzz4 e % .

2(Ast)Yo

Xq(e,0) = (As (14)

(4) one finds using Eq. (1§). — p ~
~7. Substituting 1= eZXe 2k
values ofv

pe—p=g(T)T. [—FUJFZk —er"c")}
k=2
= o(T,) |:—21f) —-D Zkl rez;ck:|

k=2

[Z1(0, )] ~
yields for small

~ azl(o, g) ~31 forp<0.  (20)

Combining the result above with the expression found

for p. — p one obtains the critical indek
T—1

8= , 21
5 (21)

which is independent on the choicepfndo.
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4. Scaling relationsof the SMM heat diverges forz /o < 2 as defined by w and
remains finite for the isochorg = p. = 1/b. This
In the special case = 20 the well-known exponent ~ demonstrates the exceptional character of the critical

inequalities proven for real gases by isochore in this model.

) ) ) In the special case that = 1 one findsa, =
Fisher [17]: o« +28+y 22 (22) 2—1/o fort <1+ 20 anda, = —B for t > 1+
Griffiths [18]: o' + B(1+8) > 2, (23) 20. Therefore, usingy, instead ofa’, the exponent
Liberman [19]: '+ B(1—8) >0, (24) inequalities (22) and (23) are fulfilled exactlyzf> 1

andt <o+ lorif¢c=1and 1< 20 + 1. In all
are fulfilled exactly for anyr. (The corresponding other cases (22) and (23) are fulfilled as inequalities.
exponent inequalities for magnetic systems are often Moreover, it can be shown that the SMM belongs
called Rushbrooke’s, Griffiths’ and Widom’s inequal- to the universality class of real gases for- 1 and
ities, respectively.) For > 20, Fisher’s and Griffiths’ 20+ 1.

exponent inequalities are fulfilled as inequalities and  The comparison of the above derived formulae for
for ¢ < 20 they are not fulfilled. The contradiction the critical exponents of the SMM fagr= 1 with those

to Fisher's and Griffiths’ exponent inequalities in this obtained within the FDM (Egs. 51-56 in [6]) shows
last case is not surprising. This is due to the fact that that these models belong to different universality
in the present version of the SMM the critical isochore classes (except for the singular case 2).

o = p. = p; lies on the boundary of the mixed phase to Furthermore, one has to note that fpe= 1, 0 <

the liquid. Therefore, in expression (2.13) in Ref. [17] 1/2 and 14+ ¢ <t < 1+ 20 the critical exponents
for the specific heat only the liquid phase contributes of the SMM coincide with those of the exactly
and the proof of Ref. [17] following (2.13) cannot be solved one-dimensional FDM with non-zero droplet-
applied for the SMM. Thus, the exponent inequalities volumes [16].

(22) and (23) have to be modified for the SMM. Using For the usual parameterization of the SMM [1] one
Egs. (11), (17), (19) and (21) one finds the following obtains with; = 5/4 ando = 2/3 the exponents

scaling relations
1 i 5
8 t=3 15
O +2p+y =5 and o +pA+H=>. (25) @=1 5% S p=ge-o.
o o —1-3, ift>=
Liberman’s exponent inequality (24) is fulfilled ex- 8 3
actly for any choice of ando. Y = 1_5<T _ §> 5= T- 1. (28)
Since the coexistence curve of the SMM is not 4 2) 2—1

symmetric with respect to = ., itis interesting with  The critical indices of the nuclear liquid-gas PT
regard to the specific heat to consider the difference \yere determined from the multifragmentation of gold
Acy(T) = ¢, (T) — ¢, (T), following the suggestion  pyclei [20] and found to be close to those ones of

of Ref. [16]. With Eq. (10) and noting thay g — b = real gases. The method used to extract the critical
1/p}; it follows exponentgd andy’ in Ref. [20] was, however, found
T (T to have large uncertainties of about 25 per cents [21].
Acy(T) = _- Fr vy (26) Nevertheless, those results allow us to estimate the
piy(T)  dT? value oft from the experimental values of the critical
The most divergent term in Eq. (26) yields for= 1 exponents of real gases taken with large error bars.
Using Egs. (17), (19) and (21) one can generalize the
,)2-¢, if <o +1, 27) exponent relations of Ref. [16]
: 2—Lf(@+2-1), ifr>0+1 B 1
T=2—— and 1=2— —— (29)
Then it is«, > 0 for ¢/o < 2. Thus, approaching v +28 1+36

the critical point along any isochore within the mixed for arbitrary o and ¢. Then, one obtains with [22]
phase region except fos = p. = 1/b the specific B=032-039,y'=13-14 ands =4 -5 the
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estimater = 1.799— 1.846. This demonstrates also
that the value of is rather insensitive to the special
choice of 8, ¥’ and $. Theoretical values fof, y’
ands for Ising-like systems within the renormalized
¢* theory [23] lead to the narrow range= 1.828+
0.001.

The critical indices of the SMM were studied nu-
merically in Ref. [13]. The version V2 of Ref. [13] cor-
responds precisely to our model with=0, ¢ =5/4
ando = 2/3, but their results contradict to our analy-
sis. Their results for version V3 of Ref. [13] are in con-
tradiction with our proof presented in Ref. [11]. There
it was shown that for non-vanishing surface energy (as
in version V3) the critical point does not exist at all.
The latter was found in [13] for the finite system and

237

5. Conclusions

The critical indices of an exactly soluble version of
the SMM are derived. The inclusion of excluded vol-
ume effects generates a principal difference between
the SMM and the FDM — these models belong to dif-
ferent universality classes. It is found that for the crit-
ical exponent’ obtained traditionally on the critical
isochore Fisher's and Griffiths’ exponent inequalities
are broken. The modification of the definitiondafin
the spirit of Ref. [16] recovers both scaling relations.
The scaling laws (29) connectingwith 8, ¥’ andé
are generalized for arbitragy and¢. The ranges =
1.799-1.846 for real gases amd= 1.828+ 0.001 for
Ising-like systems are estimated. It is shown that ex-

the critical indices were analyzed. Such a strange re- perimental data on nuclear multifragmentation agree

sultis, probably, due to finite volume effects, although

well with these ranges. Therefore, it is possible that

some doubts about the validity of the methods used to the values for the exponent< 2 seen in the data ev-

extract the critical indices (especially) remain.

It is widely believed that the effective value of
defined astef = —dInng(¢)/9Ink attains its mini-
mum at the critical point (see references in [24]). This
has been shown for the version of the FDM with the
constraint of sufficiently small surface tensiaerE= 0
for T > T, [25] and also can be seen easily for the
SMM. Taking the SMM fragment distributioty (¢) =
g(T)k~" expl ik — 2] ~ k=" one finds

v oa(e)
Teff =7 — —k + T

T k° = 1 =min(tex),

(30)
where the last step follows from the fact that the
inequalitiesa(e) > 0, v < 0 become equalities at
the critical pointv = a(0) = 0. Therefore, the SMM
predicts that the minimal value atg corresponds to
the critical point.

In the E900x ~ 4+ Au multifragmentation experi-
ment [26] the ISiS Collaboration measured the depen-
dence ofreff upon the excitation energy and found the
minimum value mirizef) = 1.9 (Fig. 5 of Ref. [26]).
Also the EOS Collaboration [24] performed an analy-
sis of the minimum ofcef 0N Au+ C multifragmen-
tation data. The fittedresr, plotted in Fig. 11.b of
Ref. [24] versus the fragment multiplicity, exhibits a
minimum in the range mife) = 1.8-1.9. Both re-
sults contradict the original FDM [6], but agree with
the above estimate af for real gases and for Ising-
like systems in general.

idence that the critical point of the nuclear liquid—gas
phase transition has been reached experimentally.
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