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Abstract

For statistical multifragmentation model the critical indicesα′, β, γ ′, δ are calculated as functions of the Fisher parameterτ .
It is found that these indices have different values than in Fisher’s droplet model. Some peculiarities of the scaling relations are
discussed. The basic model predicts for the indexτ a narrow range of values, 1.799< τ < 1.846, which is consistent with two
experiments on nuclear multifragmentation.
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1. Introduction

The statistical multifragmentation model (SMM)
[1,2] rather successfully explains the multiple produc-
tion of intermediate mass fragments [3,4]. On the other
hand, it is also an example of a statistical model ex-
hibiting a phase transition (PT) of the liquid–gas type
[4,5]. Therefore, the SMM was studied extensively
in order to clarify not only the relationship between
multifragmentation and the nuclear liquid–gas PT, but
also to elucidate the connection of the SMM to both
Fisher’s droplet model (FDM) [6] and the lattice gas
model [7,8]. For the last purpose a simplified version
of the SMM was suggested [9,10].

In recent works [11,12] an exact analytical solution
of a simplified version of the SMM was found in the
thermodynamic limit. This model is mathematically
very similar to the original FDM. However, it differs
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from the FDM in two aspects: (i) the nonzero volume
of the nucleons is taken into account, and (ii) the free
surface energy is non-negative. These two main differ-
ences generate distinct results concerning the proper-
ties of the critical point: the SMM predicts the exis-
tence of a critical point for the parameterτ � 1 and a
tricritical point for 1< τ � 2 (see below), whereas for
the FDM this parameter is assumed to be larger,τ > 2.
Such a difference is not surprising since the FDM con-
siders the droplets to have zero volume, i.e., its valid-
ity is restricted to low particle densities. Consequently,
the FDM conclusions regarding the critical behavior
must be considered as mainly suggestive in relation to
the behavior of real fluid systems or of more realis-
tic models. Therefore, it is necessary to study how the
critical indices of the SMM relate to those of the FDM.
It will be shown that the critical indices in the SMM
and the FDM have different values, i.e., these models
belong to different universality classes.

Another important issue is the comparison of the
critical indices of the SMM with the corresponding
values found in numerical studies [13] and in exper-
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iments. As we shall show the experimental data for
the indexτ are consistent with our predictions for the
SMM.

The Letter is organized as follows. In Section 2
a brief description of the simplified version of the
SMM is given. In Section 3 some useful formulae are
derived and the critical indices of this model are found.
The scaling laws and the relations between the critical
indices of the SMM are discussed in Section 4. The
conclusions are given in Section 5.

2. The statistical multifragmentation model

In Refs. [11,12] a simplified version of the SMM is
solved analytically with the method suggested in [14].
The interaction of the fragments is taken into account
by replacing the total volumeV by the free volume
Vf ≡ V − bA, whereA is the number of nucleons
in the system andb is the eigenvolume of a nucleon.
In the grand canonical ensemble the pressure of the
system is found for the liquid and gaseous phase

pl(T ,µ) = µ+W(T )

b
,

(1)pg(T ,µ) = TF(pg,T ,µ),

respectively, where

(2)F(pg,T ,µ) ≡ g(T )
[
z1e

ν−W(T )
T +Σ0(ε, ν)

]
(3)andΣq(ε, ν) ≡

∞∑
k=2

kq−τ e
ν
T
k− a(ε)

T
kσ ,

with g(T ) ≡ [mT/(2π)]3/2 and non-negative inte-
gerq . The mass of a nucleon is denoted asm, z1 = 4
is the number of spin-isospin states of a nucleon,ν ≡
µ + W(T ) − bpg is the shifted chemical potential of
the gaseous phase andW(T ) is the free energy per par-
ticle inside of a fragment. The critical temperature of
the system is denoted asTc andε ≡ (Tc − T )/Tc de-
fines the reduced temperature. The actual parameteri-
zation ofW(T ) and the free surface tensiona(ε) can
be found in Ref. [11,12]. In this Letter it is assumed
thatW(T ) and all its derivatives are regular functions
of temperature and that the free surface tension obeys
a(ε) = aoε

ζ for small positive values ofε and van-
ishes forε � 0. The surface area of a fragment ofk

nucleons is taken in the general formkσ . In the SMM

one usually choosesζ = 5/4 andσ = 2/3, but in the
following treatmentζ � 1 and 0< σ < 1 will be re-
garded as free parameters.

The particle densities in the liquid and in the
gaseous phase areρl ≡ (∂pl/∂µ)T = 1/b and ρg ≡
(∂pg/∂µ)T = ρid/(1 + bρid ), respectively. The den-
sity

(4)ρid(T ,µ) ≡ g(T )
[
z1e

ν−W(T )
T +Σ1(ε, ν)

]
has the meaning of the ideal gas density in the limit
b → 0.

When both pressures coincide,pl = pg , ν = 0, the
liquid–gas PT occurs. This equality defines the PT
equilibrium curveµ∗(T ) in the(T ,µ)-plane. ForT <

Tc the surface tensiona(ε) is nonzero and the PT is
of 1st order, sinceρid (T ,µ) < ∞ and consequently
ρg < ρl on the curveµ∗(T ). The critical point at
T = Tc corresponds to the critical densityρc = ρl =
1/b. Since at the critical pointν = 0 and the surface
tension vanishes, it follows from Eqs. (1) and (2) that
for τ � 1 the functionF is divergent and, therefore,
pc is infinite. For 1< τ � 2 one finds similarly that
pc < ∞, ρc = 1/b. In the present parameterization of
the surface tension the SMM exhibits a 2nd order PT
for T > Tc (see Ref. [11,12] for more details). The
general dependence of the phase structure of the SMM
for T > Tc on the parameterization of the surface
tension and additional refinements of the model are the
theme of a separate work. In this Letter the analysis
of the critical exponents of the SMM is restricted to
T � Tc. For τ � 2 on the phase equilibrium line both
F(p∗(T ), T ,µ∗(T )) andρid (T ,µ∗(T )) are finite for
any finite temperature, i.e., the mixed phase region
extends formally to infinite temperatures. Therefore,
this case exhibits no critical point at all in contrast to
the FDM and is not considered in the following.

3. The critical indices of the SMM

The critical exponentsα′, β and γ ′ describe the
temperature dependence of the system near the critical
point on the coexistence curveν = 0

(5)cρ ∼
{ |ε|−α, for ε < 0,
ε−α′

, for ε � 0,

(6)(ρ ∼ εβ, for ε � 0,

(7)κT ∼ ε−γ ′
, for ε � 0,
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where(ρ ≡ ρl −ρg defines the order parameter,cρ ≡
T
ρ

(
∂s
∂T

)
ρ

denotes the specific heat at fixed particle den-

sity andκT ≡ 1
ρ

(
∂ρ
∂p

)
T

is the isothermal compressibil-

ity. The shape of the critical isotherm forρ � ρc is
given by the critical indexδ

(8)pc − p̃ ∼ (ρc − ρ̃)δ for ε = 0.

The tilde indicatesε = 0 hereafter.
The calculation ofα and α′ requires the specific

heatcρ . With the formula [15]

(9)
cρ(T ,µ)

T
= 1

ρ

(
∂2p

∂T 2

)
ρ

−
(
∂2µ

∂T 2

)
ρ

one obtains the specific heat on the PT curve by
replacing the partial derivatives by the total ones [16].
The latter can be done for every state inside or on the
boundary of the mixed phase region. For the chemical
potentialµ∗(T ) = bp∗(T )−W(T ) one gets

(10)
c∗
ρ(T )

T
=

(
1

ρ
− b

)
d2p∗(T )

dT 2 + d2W(T )

dT 2 ,

where the asterisk indicates the condensation line
(ν = 0) hereafter. Fixingρ = ρc = ρl = 1/b one finds

c∗
ρl
(T ) = T d2W(T )

dT 2 and hence obtains similarly for
bothα andα′

(11)α = α′ = 0.

To calculateβ andγ ′ the behavior of the series

(12)Σq(ε,0) =
∞∑
k=2

kq−τ e−Aεζ kσ

for small positive values ofε should be analyzed
(A ≡ ao/Tc). In the limit ε → 0 the functionΣq(ε,0)
remains finite, ifτ > q + 1, and diverges otherwise.
For τ = q + 1 this divergence is logarithmic. The case
τ < q + 1 is analyzed in the following.

With the substitutionzk ≡ k(Aεζ )1/σ it follows

(13)Σq(ε,0) = (
Aεζ

) τ−q
σ

∞∑
k=2

z
q−τ
k e−zσk .

Since(zk = (Aεζ )1/σ ≡ (z, the series on the r.h.s. of
(13) converges to an integral forε → 0

(14)Σq(ε,0) = (
Aεζ

) τ−q−1
σ

∞∫
2(Aεζ )1/σ

dz zq−τ e−zσ .

The assumptionq − τ > −1 is sufficient to guarantee
the convergence of the integral at its lower limit.
Because of the finite value of the above integral one
obtains the following result forε → 0

(15)Σq(ε,0) ∼


ε

ζ
σ (τ−q−1), if τ < q + 1,

ln |ε|, if τ = q + 1,
ε 0, if τ > q + 1.

For the calculation ofδ one obtains similarly

(16)Σq(0, ν̃) ∼


ν̃τ−q−1, if τ < q + 1,
ln |ν̃|, if τ = q + 1,
ν̃ 0, if τ > q + 1.

From (ρ = 1
b

1
1+bρid

it follows (ρ ∼ ρ∗ −1
id for

ε → 0. Therefore, insertingq = 1 into Eq. (15)
immediately givesβ

(17)β = ζ

σ
(2− τ ).

Fromρg = ρid/(1+bρid) and Eq. (4) it follows that

(18)κT = g(T )

T

ρg

ρ3
id

[
z1e

ν−W(T )
T +Σ2(ε, ν)

]
.

Using Eq. (15) one easily findsγ ′ from Eq. (18)

(19)γ ′ = 2ζ

σ

(
τ − 3

2

)
.

Near the critical point it followsρc − ρ̃ ∼ 1/ρ̃id . With
(4) one finds using Eq. (16)ρc − ρ̃ ∼ [Σ1(0, ν̃)]−1 ∼
ν̃2−τ . Substituting 1= e

−ν̃
2Tc

k
e

ν̃
2Tc

k yields for small
values ofν̃

pc − p̃ ∼= g(Tc)Tc

[
− z1

Tc
ν̃ +

∞∑
k=2

k−τ
(
1− e

ν̃
Tc

k)]

∼= g(Tc)

[
−z1ν̃ − ν̃

∞∑
k=2

k1−τ e
ν̃

2Tc
k

]

(20)∼ ν̃Σ1

(
0,

ν̃

2

)
∼ ν̃τ−1, for ν̃ < 0.

Combining the result above with the expression found
for ρc − ρ̃ one obtains the critical indexδ

(21)δ = τ − 1

2− τ
,

which is independent on the choice ofζ andσ .
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4. Scaling relations of the SMM

In the special caseζ = 2σ the well-known exponent
inequalities proven for real gases by

(22)Fisher [17]: α′ + 2β + γ ′ � 2,

(23)Griffiths [18]: α′ + β(1+ δ) � 2,

(24)Liberman [19]: γ ′ + β(1− δ) � 0,

are fulfilled exactly for anyτ . (The corresponding
exponent inequalities for magnetic systems are often
called Rushbrooke’s, Griffiths’ and Widom’s inequal-
ities, respectively.) Forζ > 2σ , Fisher’s and Griffiths’
exponent inequalities are fulfilled as inequalities and
for ζ < 2σ they are not fulfilled. The contradiction
to Fisher’s and Griffiths’ exponent inequalities in this
last case is not surprising. This is due to the fact that
in the present version of the SMM the critical isochore
ρ = ρc = ρl lies on the boundary of the mixed phase to
the liquid. Therefore, in expression (2.13) in Ref. [17]
for the specific heat only the liquid phase contributes
and the proof of Ref. [17] following (2.13) cannot be
applied for the SMM. Thus, the exponent inequalities
(22) and (23) have to be modified for the SMM. Using
Eqs. (11), (17), (19) and (21) one finds the following
scaling relations

(25)α′ + 2β + γ ′ = ζ

σ
and α′ + β(1+ δ) = ζ

σ
.

Liberman’s exponent inequality (24) is fulfilled ex-
actly for any choice ofζ andσ .

Since the coexistence curve of the SMM is not
symmetric with respect toρ = ρc, it is interesting with
regard to the specific heat to consider the difference
(cρ(T ) ≡ c∗

ρg
(T ) − c∗

ρl
(T ), following the suggestion

of Ref. [16]. With Eq. (10) and noting that 1/ρ∗
g − b =

1/ρ∗
id it follows

(26)(cρ(T ) = T

ρ∗
id (T )

d2p∗(T )

dT 2 .

The most divergent term in Eq. (26) yields forζ > 1

(27)α′
s =

{
2− ζ

σ
, if τ < σ + 1,

2− ζ
σ
(σ + 2− τ ), if τ � σ + 1.

Then it is α′
s > 0 for ζ/σ < 2. Thus, approaching

the critical point along any isochore within the mixed
phase region except forρ = ρc = 1/b the specific

heat diverges forζ/σ < 2 as defined by α′s and
remains finite for the isochoreρ = ρc = 1/b. This
demonstrates the exceptional character of the critical
isochore in this model.

In the special case thatζ = 1 one findsα′
s =

2 − 1/σ for τ � 1 + 2σ andα′
s = −β for τ > 1 +

2σ . Therefore, usingα′
s instead ofα′, the exponent

inequalities (22) and (23) are fulfilled exactly ifζ > 1
and τ � σ + 1 or if ζ = 1 and τ� 2σ + 1. In all
other cases (22) and (23) are fulfilled as inequalities.
Moreover, it can be shown that the SMM belongs
to the universality class of real gases forζ > 1 and
τ � σ + 1.

The comparison of the above derived formulae for
the critical exponents of the SMM forζ = 1 with those
obtained within the FDM (Eqs. 51–56 in [6]) shows
that these models belong to different universality
classes (except for the singular caseτ = 2).

Furthermore, one has to note that forζ = 1, σ �
1/2 and 1+ σ < τ � 1 + 2σ the critical exponents
of the SMM coincide with those of the exactly
solved one-dimensional FDM with non-zero droplet-
volumes [16].

For the usual parameterization of the SMM [1] one
obtains withζ = 5/4 andσ = 2/3 the exponents

α′
s =




1

8
, if τ <

5

3
15

8
τ − 3, if τ � 5

3

, β = 15

8
(2− τ ),

(28)γ ′ = 15

4

(
τ − 3

2

)
, δ = τ − 1

2− τ
.

The critical indices of the nuclear liquid–gas PT
were determined from the multifragmentation of gold
nuclei [20] and found to be close to those ones of
real gases. The method used to extract the critical
exponentsβ andγ ′ in Ref. [20] was, however, found
to have large uncertainties of about 25 per cents [21].
Nevertheless, those results allow us to estimate the
value ofτ from the experimental values of the critical
exponents of real gases taken with large error bars.
Using Eqs. (17), (19) and (21) one can generalize the
exponent relations of Ref. [16]

(29)τ = 2− β

γ ′ + 2β
and τ = 2− 1

1+ δ

for arbitrary σ and ζ . Then, one obtains with [22]
β = 0.32− 0.39, γ ′ = 1.3 − 1.4 andδ = 4 − 5 the
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estimateτ = 1.799− 1.846. This demonstrates also
that the value ofτ is rather insensitive to the special
choice ofβ , γ ′ and δ. Theoretical values forβ , γ ′
and δ for Ising-like systems within the renormalized
φ4 theory [23] lead to the narrow rangeτ = 1.828±
0.001.

The critical indices of the SMM were studied nu-
merically in Ref. [13]. The version V2 of Ref. [13] cor-
responds precisely to our model withτ = 0, ζ = 5/4
andσ = 2/3, but their results contradict to our analy-
sis. Their results for version V3 of Ref. [13] are in con-
tradiction with our proof presented in Ref. [11]. There
it was shown that for non-vanishing surface energy (as
in version V3) the critical point does not exist at all.
The latter was found in [13] for the finite system and
the critical indices were analyzed. Such a strange re-
sult is, probably, due to finite volume effects, although
some doubts about the validity of the methods used to
extract the critical indices (especially,τ ) remain.

It is widely believed that the effective value ofτ
defined asτeff ≡ −∂ lnnk(ε)/∂ lnk attains its mini-
mum at the critical point (see references in [24]). This
has been shown for the version of the FDM with the
constraint of sufficiently small surface tensiona ∼= 0
for T � Tc [25] and also can be seen easily for the
SMM. Taking the SMM fragment distributionnk(ε) =
g(T )k−τ exp[ ν

T
k − a(ε)

T
kσ ] ∼ k−τeff one finds

(30)

τeff = τ − ν

T
k + σa(ε)

T
kσ �⇒ τ = min(τeff),

where the last step follows from the fact that the
inequalitiesa(ε) � 0, ν � 0 become equalities at
the critical pointν = a(0) = 0. Therefore, the SMM
predicts that the minimal value ofτeff corresponds to
the critical point.

In the E900π− + Au multifragmentation experi-
ment [26] the ISiS Collaboration measured the depen-
dence ofτeff upon the excitation energy and found the
minimum value min(τeff) ∼= 1.9 (Fig. 5 of Ref. [26]).
Also the EOS Collaboration [24] performed an analy-
sis of the minimum ofτeff on Au+ C multifragmen-
tation data. The fittedτeff, plotted in Fig. 11.b of
Ref. [24] versus the fragment multiplicity, exhibits a
minimum in the range min(τeff) ∼= 1.8–1.9. Both re-
sults contradict the original FDM [6], but agree with
the above estimate ofτ for real gases and for Ising-
like systems in general.

5. Conclusions

The critical indices of an exactly soluble version of
the SMM are derived. The inclusion of excluded vol-
ume effects generates a principal difference between
the SMM and the FDM — these models belong to dif-
ferent universality classes. It is found that for the crit-
ical exponentα′ obtained traditionally on the critical
isochore Fisher’s and Griffiths’ exponent inequalities
are broken. The modification of the definition ofα′ in
the spirit of Ref. [16] recovers both scaling relations.
The scaling laws (29) connectingτ with β , γ ′ andδ

are generalized for arbitraryσ andζ . The rangesτ =
1.799–1.846 for real gases andτ = 1.828± 0.001 for
Ising-like systems are estimated. It is shown that ex-
perimental data on nuclear multifragmentation agree
well with these ranges. Therefore, it is possible that
the values for the exponentτ < 2 seen in the data ev-
idence that the critical point of the nuclear liquid–gas
phase transition has been reached experimentally.
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