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Abstract

We consider J/ψ production in heavy ion collisions at RHIC energies in the statistical coalescence model with exact
(canonical ensemble) charm conservation. Charm quark–antiquark pairs are assumed to be created in primary hard parton
collisions, but open and hidden charm particles are formed at the hadronization stage according to the laws of statistical
mechanics. The dependence of the J/ψ production on both the number of nucleon participants and the collision energy is
studied. The model predicts J/ψ suppression for low energies, whereas at the highest RHIC energy the model reveals J/ψ

enhancement.
 2002 Elsevier Science B.V.
PACS: 12.40.Ee; 25.75.-q; 25.75.Dw; 24.85.+p

The experimental program for studies of the char-
monium production in nucleus–nucleus (A+A) colli-
sions at CERN SPS over last 15 year was mainly mo-
tivated by the suggestion of Matsui and Satz [1] to
use the J/ψ meson as a probe of the state of matter
created at the early stage of the collision. The origi-
nal picture [1] (see also Ref. [2] for a modern review)
assumes that charmonium states are produced in the
primary collisions of nucleons from colliding nuclei.
The number of created charmonia is then reduced be-
cause of inelastic interactions with sweeping nucleons
of colliding nuclei. Additional suppression may occur
due to J/ψ interaction with secondary hadrons (‘co-
movers’) [3]. The probability to destroy a charmonium
state increases obviously with the number of nucleon
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participants Np . Similar behavior is expected when
the collision energy

√
s increases as the number of

produced hadrons (‘co-movers’) becomes larger. This
is known as normal J/ψ suppression. Furthermore,
J/ψ (and other charmonia) are assumed to be formed
mainly from cc̄ pairs with invariant mass below the
D�D threshold [4]. A fraction of these subthreshold
pairs in the total number, Ncc̄ , of created cc̄ pairs also
decreases with

√
s. Therefore, the ratio

(1)R
(
Np,

√
s
)≡ 〈J/ψ〉

Ncc̄

is expected to decrease with increasing Np and/or
√

s.
Note that only a tiny fraction of cc̄ pairs are trans-
formed into charmonia, therefore, Nc + Nc̄ ≡ 2Ncc̄ is
approximately equal to the number of produced open
charm and anticharm hadrons (D, �D, D∗, �D∗, Λc,
Λ̄c etc.). At large values of

√
s and Np formation

of quark–gluon plasma (QGP) is expected which is
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supposed to be signaled by anomalous J/ψ suppres-
sion [2], i.e., a sudden and strong decrease of ratio (1)
is considered as a signal of QGP formation. The above
arguments show that a decrease of the ratio (1) with
increasing Np and/or

√
s (J/ψ suppression) is an un-

ambiguous consequence of the standard picture [1–3].
A very different approach of statistical J/ψ produc-

tion, proposed in Ref. [5], assumes that J/ψ mesons
are created at the hadronization stage similar to other
(lighter) hadrons. The picture of J/ψ creation via c

and c̄ coalescence (recombination) was subsequently
developed within different model formulations [6–11].
Similar to the suggestion of Ref. [5], charmonium
states are assumed to be created at the hadronization
stage of the reaction, but they are formed due to coa-
lescence of c and c̄, which were produced by primary
hard parton collisions at the initial stage.

In this Letter the Np and
√

s dependences of
ratio (1) will be studied for Au + Au collisions
at RHIC energies. We use the canonical ensemble
(c.e.) formulation of the statistical coalescence model
(SCM) [8,11]. The number Ncc̄ of the produced cc̄

pairs, which is the input for the SCM calculations, will
be estimated within the perturbative QCD (pQCD).
The considered pQCD + SCM approach reveals both
J/ψ suppression (at Ncc̄ < 1) and J/ψ enhancement
(at Ncc̄ 	 1) effects.

In the framework of the ideal hadron gas (HG)
model in the grand canonical ensemble (g.c.e.) formu-
lation hadron multiplicities are given by

(2)

Nj = djV

2π2

∞∫
0

k2 dk

[
exp

(√
m2

j + k2 − µj

T

)
± 1

]−1

,

where V and T correspond to the volume 1 and tem-
perature of the HG, mj and dj denote particle masses
and degeneracy factors. Eq. (2) describes a quantum
HG: Bose and Fermi distributions for mesons and
(anti)baryons, respectively. Quantum effects, however,

1 To avoid complications we neglect the excluded volume
corrections. The thermodynamical consistent way to treat the
excluded volume effects was suggested in Ref. [12] (see also [13]
for further details). If the excluded volume parameter is the same
for all hadrons, its effect is reduced only to rescaling of the volume
V : all particle number ratios remain the same as in the ideal hadron
gas.

are found to be noticeable for pions only, so that
Eq. (2) for all other hadrons can be simplified to the
Boltzmann result:

(3)Nj = dj

2π2 V exp
(

µj

T

)
Tm2

jK2

(
mj

T

)
,

where K2 is the modified Bessel function.
In the case of complete chemical equilibrium the

chemical potential µj in Eq. (3) is defined as [14]

(4)µj = bjµB + qjµQ + sjµS + cjµC,

where bj , qj , sj , cj denote, respectively, the baryonic
number, electric charge, strangeness and charm of
hadron j . The baryonic chemical potential regulates a
non-zero (positive) baryonic density of the HG system
created in A + A collisions. The chemical potentials
µS and µC should be found as functions of T and
µB from the requirements of zero value for the total
strangeness and charm in the system, and the chemical
potential µQ from the requirement of fixed ratio of the
electric charge to the baryonic number (this ratio is
defined by the numbers of protons and neutrons in the
colliding nuclei).

Applications of the HG model for fitting the hadron
abundances in particle and nuclear collisions revealed,
however, a deviation of strange hadron multiplicities
from the complete chemical equilibrium [15]. It was
suggested that strange quarks and antiquarks are dis-
tributed among hadrons according to the laws of HG
equilibrium, but the total number of strange quarks
and antiquarks inside the hadrons is smaller than that
in the equilibrium HG and it remains (approximately)
constant during the lifetime of the HG phase. There-
fore, not only the “strange charge” Ns − Ns̄ = 0 but
also the “total strangeness” Ns + Ns̄ should be then
considered as a conserved quantity. In the language of
thermodynamics, it means an introduction of an ad-
ditional chemical potential µ|S| which regulates now
this new “conserved” number Ns + Ns̄ . Then an addi-
tional term,

(
n
j
s + n

j
s̄

)
µ|S|, should be added to µj (4),

where n
j
s and n

j
s̄ are the numbers of strange quarks

and antiquarks inside hadron j . Introducing the nota-
tion, γs ≡ exp(µ|S|/T ) [15], one can implement this
additional conservation law according to the following
simple rule: the hadron multiplicities Nj (3) are multi-

plied by the factor γ
(n

j
s +n

j
s̄ )

s , e.g., the factor γs appears
for K, �K,Λ, Λ̄,Σ, �Σ , the factor γ 2

s for Ξ, �Ξ and the
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factor γ 3
s for Ω, �Ω . For mesons with hidden strange-

ness, like η,η′,ω,φ, having the wave function of the
form

(5)Cu|uū〉 + Cd |dd̄〉 + Cs |ss̄〉,
the factor γ

2|Cs |2
s is used. From fitting the data on

hadron yields in particle and nuclear collisions it was
found that γs � 1 for all known cases. The parameter
γs is called, therefore, a strangeness suppression
factor.

Recently, an analogous procedure was suggested for
charm hadrons [7]. A new parameter γc has been in-
troduced to treat simultaneously both open and hidden
charm particles within statistical mechanic HG formu-
lation. Multiplicities Nj (3) of single open charm and
anticharm hadrons should be multiplied by the factor
γc and charmonium states by the factor γ 2

c . In contrast
to strangeness suppression in the HG (γs � 1), one ob-
serves an enhancement of charm hadron yields in com-
parison with their HG equilibrium values. It means
that γc � 1 and this parameter is called a charm en-
hancement factor [7].

To take into account the requirement of zero “charm
charge” of the HG in the exact form the c.e. formu-
lation was suggested in Ref. [8]. In the c.e. formula-
tion the charmonium multiplicities are still given by
Eq. (3) as charmonium states have zero charm charge.
The multiplicities (3) of open charm hadrons should
be, however, multiplied by the ‘canonical suppression’
factor (see, e.g., [18]). This suppression factor is the
same for all individual single charm states. It leads to
the total open charm multiplicity Nce

O in the c.e.:

(6)Nce
O = NO

I1(NO)

I0(NO)
,

where NO is the total g.c.e. multiplicity of all charm
and anticharm mesons and (anti)baryons calculated
with Eq. (3) and I0, I1 are the modified Bessel func-
tions. For NO � 1 one has I1(NO)/I0(NO) � NO/2
and, therefore, the c.e. total open charm multiplicity is
strongly suppressed in comparison with the g.c.e. re-
sult. For NO 	 1 one finds I1(NO)/I0(NO) → 1 and,
therefore, Nce

O → NO , i.e., the c.e. and the g.c.e re-
sults coincide. In high energy A + A collisions the to-
tal number of strange and antistrange hadron is much
larger than unity. Hence the strangeness conservation
can be considered in the g.c.e. approach. The same is
valid for the baryonic number and the electric charge.

This is, however, not the case for the charm. At SPS
energies the c.e. suppression effects are always impor-
tant: even in most central Pb + Pb collisions the to-
tal number of open charm hadrons is expected to be
smaller than one. It will be shown that the c.e. treat-
ment of charm conservation remains crucially impor-
tant also at RHIC energies for the studies of the Np

dependence of the open charm and charmonium pro-
duction. Therefore, in what follows the baryonic num-
ber, electric charge and strangeness of the HG are
treated according to the g.c.e. but the charm is con-
sidered in the c.e. formulation where an exact “charm
charge” conservation is imposed.

Let us summarize the basic assumptions of our
model consideration. Charm quark–antiquark pairs are
assumed to be created in hard parton collisions at the
early stage of A + A reaction. In the subsequent evo-
lution of the system the number of these pairs remains
approximately constant and it is not necessarily equal
to the equilibrium value. The deviation from the HG
chemical equilibrium for charm should be taken into
account by the charm enhancement factor γc. The dis-
tribution of created cc̄ pairs among open and hidden
charm hadrons is regulated by the statistical model ac-
cording to Eq. (3) with account for the canonical sup-
pression (6). Our statistical coalescence model in the
c.e. is therefore formulated as:

(7)Ncc̄ = 1
2
γcNO

I1(γcNO)

I0(γcNO)
+ γ 2

c NH ,

where NH is the total multiplicities of hadrons with
hidden charm. Note that, as was already mentioned,
most of cc̄ pairs are transformed into open charm
hadrons, therefore the second term in the right-hand
side of Eq. (7) gives only a tiny correction to the
first term. To find NO and NH we use Eq. (3) for
the individual hadron thermal multiplicities in the
g.c.e. and take summation over all known particles
and resonances [19] with open and hidden charm,
respectively. 2

Provided that NO , NH and Ncc̄ are known, γc can
be found from Eq. (7). The J/ψ multiplicity is then

(8)〈J/ψ〉 = γ 2
c N tot

J/ψ,

2 Note that possible (very small) contributions of particles with
double open charm are neglected in Eq. (7).
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where N tot
J/ψ is given by

N tot
J/ψ = NJ/ψ + Br(ψ ′)Nψ ′ + Br(χ1)Nχ1

(9)+ Br(χ2)Nχ2,

NJ/ψ,Nψ ′ ,Nχ1 ,Nχ2 are calculated according to
Eq. (3) and Br(ψ ′) � 0.54, Br(χ1) � 0.27, Br(χ2) �
0.14 are the decay branching ratios of the excited char-
monium states into J/ψ .

Hence, to calculate the J/ψ multiplicity (8) in the
SCM we need:
(1) the chemical freeze-out (hadronization) parameters
V,T ,µB for A + A collisions at high energies (to
calculate NO and NH in the right-hand side of
Eq. (7));
(2) the number of cc̄ pairs, Ncc̄ , created in hard parton
collisions at the early stage of A+A reaction (the left-
hand side of Eq. (7)).

For RHIC energies the chemical freeze-out temper-
ature T is expected to be close to that for the SPS en-
ergies: T = 175 ± 10 MeV. To fix the volume V and
baryonic chemical potential µB we use the parame-
trization of the total pion multiplicity [20]:

(10)
〈π〉
Np

� C
(
√

s − 2mN)3/4

(
√

s )1/4 ,

where C = 1.46 GeV−1/2 and mN is the nucleon mass.
For RHIC energies the nucleon mass in Eq. (10) can be
neglected so that

(11)〈π〉 � CNp

(√
s
)1/2

.

Eq. (10) is in agreement with both the SPS data and the
preliminary RHIC data in Au + Au collisions at

√
s =

56 GeV and
√

s = 130 GeV. The pion multiplicity (10)
should be equated to the total HG pion multiplicity
N tot

π which includes the pions coming from resonance
decays (similar to Eq. (9)). The HG parameters V and
µB are found then as the solution of the following
coupled equations:

(12)〈π〉 = N tot
π (V,T ,µB) ≡ Vntot

π (T ,µB),

(13)Np = VnB(T ,µB),

where nB is the HG baryonic density. In these cal-
culations we fix the temperature parameter T . The
baryonic chemical potential for Au + Au collisions
at RHIC energies is small (µB < T ) and decreases

with the collision energy. Therefore, most of the ther-
mal HG multiplicities become close to their limiting
values at µB → 0. Consequently most of hadron ra-
tios N tot

j /N tot
i become independent of the collision en-

ergy [21]. The volume of the system is approximately
proportional to the number of pions:

(14)V ∼ 〈π〉 ∼ Np

(√
s
)1/2

.

Note that T = 170–180 MeV leads to the HG value
of the thermal ratio:

〈ψ ′〉
〈J/ψ〉 =

(
mψ ′

mJ/ψ

)3/2
exp

(
−mψ ′ − mJ/ψ

T

)
(15)= 0.04–0.05,

in agreement with the data [16] for central (Np > 100)
Pb + Pb collisions at the CERN SPS. This fact was
first noticed in Ref. [17]. At small Np as well as in
p + p and p + A collisions the measured value of
the 〈ψ ′〉/〈J/ψ〉 ratio is several times larger than its
statistical mechanics estimate (15). Our analysis of the
SCM will be, therefore, restricted to A + B collisions
with Np > 100. We do not intend to describe the open
and hidden charm production in p + p, p + A and in
very peripheral A + B collisions within the SCM.

The number of directly produced cc̄ pairs, Ncc̄ , in
the left-hand side of Eq. (7) will be estimated in the
Glauber approach. For A + B collision at the impact
parameter b, this number is given by the formula:

(16)Ncc̄(b) = ABTAB(b)σ (NN → cc̄ + X),

where σ(NN → cc̄ + X) is the cross section of cc̄

pair production in N +N collisions and TAB(b) is the
nuclear overlap function (see Appendix A for details).

The cross section of cc̄ pair production in N + N

collisions can be calculated in pQCD. Such calcula-
tions (in the leading order of pQCD) were first done in
Ref. [22]. We use the next-to-leading order result pre-
sented in Ref. [23]. This result was obtained with the
GRV HO [24] structure functions, the c-quark mass
and the renormalization scale were fixed at mc = µ =
1.3 GeV to fit the available experimental data. We
parametrize the

√
s-dependence of the cross section

for
√

s = 20–200 GeV as:

(17)σ(pp → cc̄) = σ0

(
1 − M0√

s

)α(√
s

M0

)β

,

with σ0 ≈ 3.392 µb, M0 ≈ 2.984 GeV, α ≈ 8.185 and
β ≈ 1.132. Note that free parameters of the pQCD
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calculations in Ref. [23] were fitted to the existing
data, therefore, our parametrization (17) is also in
agreement with the data on the total charm production
in p + p collisions.

The average number of participants (‘wounded
nucleons’) in A + B collisions at impact parameter b

is given by [25]

Np(b) = A

+∞∫
−∞

dx

+∞∫
−∞

dy TA

(√
x2 + y2

)

×
[
1 −

(
1 − σ inel

NNTB

(√
x2 + (y − b)2

))B]

+ B

+∞∫
−∞

dx

+∞∫
−∞

dy TB

(√
x2 + (y − b)2

)

(18)×
[
1 −

(
1 − σ inel

NNTA

(√
x2 + y2

))A]
,

where TA(�s ) (TB(�s )) is the nuclear thickness function
for the nucleus A (B) and σ inel

NN is the total inelastic
cross section of N + N interaction. To parametrize
the

√
s-dependence of σ inel

NN we follow an assumption
that in the energy range

√
s = 10–200 GeV it is

proportional to the total NN cross section σNN and
use the standard fit for σNN [19]:

σ inel
NN ≈ 0.7σNN

(19)� 0.7
(
Xppsε + Y1pps−η1 − Y2pps−η2

)
,

where ε = 0.093, η1 = 0.358, η2 = 0.560, Xpp =
18.751, Y1pp = 63.58 and Y2pp = 35.46.

Eqs. (16) and (18) provide parametric dependence
of the number of produced cc̄ pairs on the number
of participating nucleons, Ncc̄ = Ncc̄(Np), which is
shown in Fig. 1 for Au + Au collisions. It is seen that
the dependence is represented by a straight line in a
double-logarithmic scale, so that

(20)Ncc̄ ∼ (Np)k

for Np > 50. We find that 3 k = 1.31–1.35 ∼= 4/3.
Using Eq. (17) one finds then the following behavior

3 It is interesting to note that for the most central A + A

collisions (Np ≈ 2A) the number of Ncc̄ has approximately the
same dependence on the atomic weight of the colliding nuclei:
Ncc̄ ∼ A4/3 ∼ (Np)4/3.

Fig. 1. Ncc̄ versus Np for
√

s = 56,130,200 GeV.

of Ncc̄ at high energies:

(21)Ncc̄ ∼ (Np)k
(√

s
)β

.

Now we are able to calculate the ratio R (1) in
the SCM and study its dependence on Np and

√
s.

The dependence of R on the number of participants
is shown in Fig. 2. It is seen that the ratio has qualita-
tively different behavior at different energies. At the
lowest RHIC energy

√
s = 56 GeV, the SCM pre-

dicts decreasing of the ratio with the number of par-
ticipants (J/ψ suppression). In contrast, at the high-
est RHIC energy

√
s = 200 GeV the ratio increases

with the number of participant (J/ψ enhancement) for
Np > 100. Both suppression (at Np < 150) and en-
hancement (at Np > 200) are seen at the intermediate
RHIC energy

√
s = 130 GeV.

Similarly, there are qualitatively different depen-
dencies of R on the collision energy for small
(Np = 100) and for large (Np = 350) numbers of par-
ticipants. This can be seen in Fig. 3. Non-monotonic
dependence of the ratio R on

√
s is expected at Np =

100. At Np = 350, the ratio R increases monotoni-
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Fig. 2. 〈J/ψ〉/Ncc̄ versus Np for
√

s = 56,130,200 GeV. The
vertical line shows the lower bound of the applicability domain of
the SCM.

cally with
√

s at all RHIC energies
√

s = 56–200 GeV.
The minimum of R in this case corresponds to the
energy region between the SPS and RHIC:

√
s ≈

30 GeV.
To understand the behavior of R it is instructive

to study the limiting cases: Ncc̄ � 1 and Ncc̄ 	 1.
Neglecting the hidden-charm term in Eq. (7) one finds
for Ncc̄ � 1:

(22)Ncc̄ � 1
4
γ 2
c N2

O,

hence,

(23)R ≡ 〈J/ψ〉
Ncc̄

� N tot
J/ψ

N2
O/4

∼ 1
V

∼ N−1
p

(√
s
)−0.5

.

Eq. (23) shows universal 1/V suppression of the
ratio R. This ratio decreases as N−1

p and (
√

s )−0.5

and the shape of this J/ψ suppression is essentially
independent of the functional dependence of Ncc̄ on
Np and

√
s.

Fig. 3. 〈J/ψ〉/Ncc̄ versus
√

s for Np = 100 and 350.

If Ncc̄ 	 1 one finds from Eq. (7):

(24)Ncc̄ � 1
2
γcNO,

so that γc � 2Ncc̄/NO ∼ Ncc̄/V and, hence,

R ≡ 〈J/ψ〉
Ncc̄

(25)� γcN
tot
J/ψ

γcNO/2
∼ Ncc̄

V
∼ (Np)k−1 (√s

)β−0.5
.

According to Eq. (25) the ratio R increases with both
Np and

√
s. This J/ψ enhancement takes place due

to the fact that Ncc̄ increases with
√

s and Np much
stronger Ncc̄ ∼ (Np)k (

√
s )β (β ∼= 1.1, k ∼= 4/3) than

the system volume V ∼ 〈π〉 ∼ Np (
√

s )0.5.
It is seen from Fig. 1 that Ncc̄ � 1 at the lowest

RHIC energy (
√

s = 56 GeV) for small numbers of
participants (Np = 100), hence, the SCM predicts the
J/ψ suppression. In contrast, for the highest RHIC
energy (

√
s = 200 GeV) and large Np the opposite

limit Ncc̄ 	 1 is reached. This leads to the J/ψ

enhancement.
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In conclusion, the production of J/ψ mesons is
studied in Au + Au collisions at RHIC energies in the
statistical coalescence model with exact charm conser-
vation. Charm quark–antiquark pairs are assumed to
be created in primary hard parton collisions at the early
stage of A + A reaction and the number of cc̄ pairs
is estimated within the pQCD. At the hadronization
stage the c and c̄ (anti)quarks are distributed among
open charm and charmonium particles according to
the hadron gas statistical mechanics in the canonical
ensemble formulation. This SCM formulation requires
additional γc parameter to adjust the c.e. HG picture
with a given pQCD number, Ncc̄ , of created earlier cc̄

pairs.
Decreasing of the 〈J/ψ〉 to Ncc̄ ratio with the

number of nucleon participants Np is found at the
lowest RHIC energy

√
s = 56 GeV (see Fig. 2). At

fixed small number of participants (Np ≈ 100) the
ratio R decreases with

√
s up to

√
s ≈ 100 GeV (see

Fig. 3). Both these SQM predictions are similar to the
standard picture [1,2] of J/ψ suppression. In contrast,
an increase of the 〈J/ψ〉 to Ncc̄ ratio with the collision
energy is predicted for central Au + Au collisions
(Np = 350 in Fig. 3). Moreover, at the highest RHIC
energy, the ratio R is expected to grow with the
number of participants (

√
s = 200 GeV in Fig. 2),

which is in drastic contradiction with the standard
picture. The matter is that in the standard picture
hidden charm mesons are supposed to be created
exclusively in the primary (hard) nucleon–nucleon
collisions. It is assumed that all other interaction
can only destroy them. Especially strong suppression
of charmonia is expected, according to the standard
picture, in the quark–gluon plasma (‘anomalous J/ψ

suppression’). In contrast, the statistical coalescence
model considers a possibility for charmonium states
to be formed from c and c̄ at the stage of the quark–
gluon plasma hadronization. This possibility definitely
cannot be ignored when the number of produced cc̄

pairs per A+A collision becomes large: Ncc̄ 	 1 (this
happens in central Au + Au collisions at the highest
RHIC energy). In this case, c and c̄ initially produced
in different hard parton collisions can also recombine
into a hidden charm meson. Therefore, an increase of
the 〈J/ψ〉 to Ncc̄ ratio should be expected.

Hot quark–gluon plasma is most probably formed
at RHIC energies and this destroys all primarily pro-
duced charmonium states [26]. However, the hadro-

nization of the quark–gluon plasma within the SCM
reveals itself not only in J/ψ suppression, but also
in J/ψ enhancement. Another interesting phenomena
may also take place: when the number of cc̄ pairs be-
comes large, two c quarks (or two c̄ ) can combine
with a light (anti)quark and form a double charmed
(anti)baryon. These baryons are predicted by the quark
model but have not been observed yet. We expect that
double (and probably triple) charmed baryons may be
discovered in the Au + Au collisions at RHIC [27].
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Appendix A. Nuclear geometry

The spherically symmetrical distribution of the nu-
cleons in the Au-197 nucleus can be parametrized by a
two-parameter Fermi function [28] (this parametriza-
tion is also known as Woods–Saxon distribution):

(A.1)ρ(r) = ρ0

[
1 + exp

(
r − c

a

)]−1

with c ≈ 6.38 fm, a ≈ 0.535 fm and ρ0 is given by the
normalization condition:

(A.2)4π
∞∫

0

dr r2ρ(r) = 1.

The nuclear thickness distribution TA(b) is defined
by the formula

(A.3)TA(b) =
∞∫

−∞
dzρ

(√
b2 + z2

)
,
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and the nuclear overlap function is defined as

TAB(b) =
∞∫

−∞
dx

∞∫
−∞

dy TA

(√
x2 + y2

)

(A.4)× TB

(√
x2 + (y − b)2

)
.

From Eq. (A.2), one can deduce that the above func-
tions satisfy the following normalization conditions:

2π
∞∫

0

db bTA(b) = 1,

(A.5)2π
∞∫

0

db bTAB(b) = 1.
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