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Abstract

We study properties of compact stars with the deconfinement phase transition in their interiors. The equation of state of cold
baryon-rich matter is constructed by combining a relativistic mean-field model for the hadronic phase and the MIT Bag model
for the deconfined phase. In a narrow parameter range two sequences of compact stars (twin stars), which differ by the size of
the quark core, have been found. We demonstrate the possibility of a rapid transition between the twin stars with the energy
release of about 1052 ergs. This transition should be accompanied by the prompt neutrino burst and the delayed gamma-ray
burst.
 2002 Published by Elsevier Science B.V.
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1. Introduction

Our main goal in this Letter is to study proper-
ties of compact stars composed of strongly interact-
ing matter undergoing the deconfinement phase tran-
sition. We construct the equation of state (EoS) at
finite baryon densityρB by combining two popular
models of the baryon-rich matter. For the hadronic
phase we use the NLZ version of the relativistic mean-
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field model [1] which gives very good description
of the saturation properties of cold nuclear matter.
The deconfined phase is described within a simpli-
fied version of the MIT Bag model [2]. The possi-
bility of a phase transition between these two phases
has been carefully studied by applying the Gibbs
conditions for charge-neutral andβ-equilibrated mat-
ter. Indeed, we have found a first order phase tran-
sition and determined characteristics of the mixed
phase.

Properties of hybrid stars containing both the
hadrons and quarks have been already studied by us-
ing a large number of models (see, e.g., Refs. [3–7]).
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One may wonder, what is new in our work? First
of all, we want to note that this Letter presents only
a small part of our more comprehensive study [8]
where we systematically analyze many other models
of hadronic and quark phases. It is interesting that in
most cases we do not find any phase transition be-
tween the two phases. The combination of the NLZ
and MIT Bag models represents one of a few excep-
tional cases, when the deconfinement phase transition
is predicted in stellar interiors. Moreover, we find two
families of compact stars, twin stars [9–11], which dif-
fer by the size of the quark core. This opens the possi-
bility of a catastrophic rearrangement of the twin star
from one to the other configuration with a release of
energy of about 1052 erg. In this Letter we present
these results and discuss their observational conse-
quences.

2. Properties of matter in compact stars

2.1. Hadronic phase

There is no doubt that hadrons, mesons and
baryons, are correct degrees of freedom for model-
ing strongly-interacting matter at low densities. From
nuclear phenomenology we know that atomic nuclei
can be well described in terms of interacting nucleons.
Therefore, we believe that the hadronic phase should
be stable at least up to the saturation density of nu-
clear matterρ0 = 0.15 fm−3. Field-theoretical mod-
els, where nucleons interact with mean meson fields,
are proved to be very successful in describing satura-
tion properties of nuclear matter as well as properties
of finite nuclei. Here, to calculate the EoS of hadronic
matter we use a non-linear version of the relativistic
mean-field model known as the NLZ model [1]. Com-
pared with the original version it is generalized by in-
cluding hyperons (Y ) and hyperon–hyperon (YY ) in-
teractions, as proposed in Ref. [12]. We call this model
NLZY.

The original Lagrangian density for the NLZ model
(without theYY interaction) can be written as [1] (here
and below we use the unitsh̄ = c = 1)

L=
∑
B

ψ̄B(i/∂ − mB)ψB + 1

2
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2
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σ σ
2
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3
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+
∑
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ψ̄B

(
gσBσ + gωBωµγµ + gρ �ρ µγµ�τB

)
ψB,

where the sum runs over all the baryonsB = p,n,Λ,

Σ0,±,Ξ0,−. In the above Lagrangianσ,ω and �ρ are
the isoscalar scalarσ , the isoscalar vectorω and the
isovector vectorρ meson fields respectively. In Eq. (1)
ωµν and �ρ µν denote, respectively, the field strength
tensors for theω andρ meson fields.

Originally this model was designed for the nucle-
onic sector and it failed to reproduce the observed
strongΛΛ attractive interaction. This defect can be
removed by adding two new meson fields with hid-
den strangeness, namely, the isoscalar scalarσ ∗ and
the isovector vectorφ, which couple to hyperons
only [12]. These fields can be identified with the
f0(975)andφ(1020)mesons. The corresponding La-
grangian is given by

LYY = 1

2

(
∂µσ ∗∂µσ ∗ − m2

σ ∗σ ∗2)

− 1

4
φµνφµν + 1

2
m2

φφ
µφµ

+
∑
Y

ψ̄Y

(
gσ ∗Y σ ∗ + gφY φ

µγµ
)
ψY ,

where indexY runs over hyperons only. The mean
meson fields are found from the Euler–Lagrange
equations.

The nucleon coupling constants are chosen from
the fit of the finite nuclei properties. The vector cou-
pling constants of the hyperons are chosen accord-
ing to the SU(6) symmetry and the hyperonic scalar
coupling constants are chosen to reproduce the mea-
sured values of the corresponding optical potentials.
Below we use the set of model parameters suggested
in Refs. [1,12].

Within the mean-field approximation, the pressure
and energy density of static and homogeneous bary-
onic matter can be easily calculated from the above
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Lagrangian:

(2)
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where m∗
B = mB − gσBσ − gσ ∗Bσ ∗ is the effec-

tive mass,νB is the degeneracy factor andkBF =√
µ2

B − m∗2
B is the Fermi momentum of the baryon

speciesB.
In order to have a complete description of the

β-equilibrated matter one should also include the
leptons. In both the hadronic and quark phases their
contributions to energy density and pressure are given
by the well-known formulae of ideal Fermi gas.

2.2. Deconfined phase

As follows from a simple geometrical consider-
ation, nucleons begin to overlap at densitiesρB ∼
(4πr3

N/3)−1 	 3ρ0 for the nucleon radiusrN 	 0.8 fm.
Such densities are surely reached in the interiors of
compact stars. Of course, this argument does not
tell anything about the character of transition from
hadronic to quark–gluon degrees of freedom. Below
we follow the common practice of using two differ-
ent models for these two phases. Namely, the decon-
fined phase is described within a simple version of the
MIT Bag model [2], considering it as a mixture of free
Fermi gases ofu,d, s quarks in a bag with an addi-
tional energy densityB (the bag constant). Within this
model the energy density and pressure of cold decon-

fined matter are written as

(4)εQ =
∑

f=u,d,s
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wherek
f

F =
√
µ2

f − m2
f is the Fermi momentum of

quarks with flavorf . For each flavor we choose the
degeneracy factorνf = 2(spin) × 3(color) = 6 and
take the following values of quark masses:mu =
5 MeV,md = 10 MeV andms = 150 MeV.

2.3. Conditions of local equilibrium

In β-equilibrium, the chemical potential of any
particle speciesi can be expressed as

(6)µi = biµb + qiµe,

wherebi is the baryon number of the speciesi, qi de-
notes its charge in units of the electron charge,µb and
µe are the baryonic and electric chemical potentials,
respectively. Here and below we assume that neutrinos
can freely escape from the star. Eq. (6) means that only
reactions conserving charge and baryon number are al-
lowed. On the other hand, strangeness is not conserved
because strangeness-changing reactions are generally
much faster than a characteristic time of the star evo-
lution. Two independent chemical potentials,µb and
µe, are found by fixing the baryon and electric charge
densities:

(7)ρB =
∑
i

biρi , ρe =
∑
i

qiρi ,

whereρi is the number density of the particle speciesi.
It is obvious that stars must be electrically neutral on
a macroscopic scale, i.e.,ρe = 0.

We assume that deconfinement is a first order phase
transition which, in general, should produce a mixed
phase (MP) between the pure hadronic phase (HP) and
pure quark phase (QP). At zero temperature the MP
should follow the Gibbs conditions

(8)PH (µb,µe) = PQ(µb,µe),

(9)µb = µH
b = µ

Q
b ,
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(10)µe = µH
e = µQ

e .

According to Eq. (6), the baryon chemical potential
µb equals the neutron chemical potentialµn andµe

is equal to the electron chemical potential. At given
µb andµe , the quark chemical potentials are found
by using the formulaeµu = (µb − 2µe)/3 and µd =
µs = (µb + µe)/3.

The volume averaged energy density in the MP can
be written as

(11)ε = (1− λ)εH (µb,µe) + λεQ(µb,µe),

where λ = VQ/V is the volume fraction of quark
phase. In the case of two chemical potentials one
can only construct the MP by adopting a generalized
(global) charge neutrality condition [13], when the net
positive charge of one phase is compensated by the
negative charge of the other phase:

(12)(1− λ)ρH
e (µb,µe) + λρQ

e (µb,µe) = 0.

This condition is assumed in our calculations of hybrid
stars presented below.

2.4. EoS and composition of matter

Fig. 1 shows the pressure surfaces for the pure
HP and pure QP (for bag constantB1/4 = 180 MeV)
as functions of chemical potentialsµb and µe. It
is important that these two surfaces intersect, which
is not the case for most of the other models [8].
In this case one can construct a MP connecting the
pure phases along the intersection line. The thick
curve on the surfaces shows pressure of charge neutral
matter inβ-equilibrium. The lower part of this curve
(from low pressure to point C) corresponds to the
pure HP. The MP starts at point C corresponding to
baryonic densityρB 	 1.5ρ0, and ends at point D
corresponding toρB 	 5.1ρ0. At higher densities the
matter is composed purely of quarks. Our calculations
show that atB1/4 > 190 MeV the pressure surfaces
of the HP and QP do not intersect at all and the MP
cannot be defined by the Gibbs rules.

The particle composition in these three regions is
presented in Fig. 2. It is interesting to note that the only
hyperon species which survive in the MP isΛ-particle
which appears at densities 2.8ρ0 < ρB < 5.1ρ0. All
the negatively charged hyperons are suppressed as a
result of the charge neutrality. The strangeness content

Fig. 1. Pressure as a function ofµb and µe for the hadronic
phase (wired surface) as predicted by the NLZY model and for
the quark phase (grey surface) as predicted by the MIT Bag model
(B1/4 = 180 MeV). The thick line represents the charge neutral
matter. Its portion between points C and D corresponds to the mixed
phase.

Fig. 2. Relative particle abundances versus baryon densityρB as
predicted by the combined NLZY and MIT Bag (B1/4 = 180 MeV)
models. The region 1.5 < ρB/ρ0 < 5.1 corresponds to the mixed
phase.
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of matter rapidly grows in the MP and reaches the
asymptotic value of 1/3 in the QP. On the other hand,
leptons (mainly electrons) are practically extinguished
atρB � 3ρ0.

3. Properties of compact stars

Below we study properties of static spherically
symmetric stars. Under assumption that the matter
may be treated as an ideal fluid, the star structure
can be found by solving the TOV equations [14].
For a given EoS,P = P(ε), and a fixed central
baryon densityρc = ρB(r = 0) we integrate the
TOV equations from the center of the star up to its
surfacer = R. The star radiusR is determined from
the conditionP(R) = 0. The details of numerical
calculation as well as the online program can be
found on the internet home page [15] of one of the
authors (M.H.).

In Fig. 3 we present the mass–radius relations
calculated for several values ofB as well as for pure
hadronic and quark stars. By open dots we show the

Fig. 3. The mass–radius relations for different families of stars.
Open dots correspond to the maximum mass. The beginning and
the end of the mixed phase in hybrid stars are shown by full squares
and dots.

critical configurations with highest possible masses.
The pure hadronic curve are calculated assuming
the NLZY EoS at all densities. The part of this
curve corresponding toM > 1.6M� is omitted due
to appearance of densities with negative effective
masses of baryons [12]. The beginning of the MP
at the star center is marked by full squares whereas
its end and, therefore, the beginning of the pure
QP, is marked by full dots. As seen in Fig. 3,
the model predictions depend strongly on the bag
constant. Stable hybrid stars are possible only for low
bag constants,B1/4 � 180 MeV. For higherB stars
become unstable even before they reach high enough
density for the formation of a pure deconfined phase
in their interiors. On the other hand, pure quark stars
are possible at anyB.

A very interesting feature is found in a narrow
interval of B around B1/4 = 180 MeV, where a
second sequence of stable hybrid stars appears. Their
properties can be summarized as follows.

• The first sequence of stars can only reach maxi-
mum central baryon densities of about 0.77 fm−3

which is just at the end of the MP. As one can see
from Fig. 3, stars of this sequence have masses be-
low Mmax= 1.36M� and radiiR > 13 km. These
stars are mainly composed of hadronic and MP
matter with admixture of theΛ-hyperons. The cal-
culation shows that stars near the maximum mass
contain a tiny core of pure quark phase.

• Stars of the second sequence have considerably
higher central densities, 0.9 < ρc < 1.53 fm−3.
Their masses lies in a narrow interval, 1.35 <

M/M� < 1.38 and their radii are noticeably
smaller, 10.2 < R < 12.3 km. These stars are
mainly composed of quark and MP matter, sur-
rounded by a rather thin layer of HP and the nu-
clear crust.

• The two sequences of compact stars are separated
by unstable region corresponding to the interval of
central densities 0.78< ρc < 0.9 fm−3.

From our more comprehensive study [8] involving
many other models of EoS we conclude that two
sequences of compact stars, sometimes called twin
stars, appear only in very exceptional cases. There
is no guarantee that this picture is the one that
corresponds to the reality. But we find it interesting to
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study its possible consequences for the dynamics and
observable signatures of compact stars.

4. The twin star collapse

One can imagine the situation when a compact star
on the first sequence has a mass close toMmax. If
this star is a member of binary system, then its mass
and, therefore, its central density may grow due to
accretion from a companion star. Eventually the mass
will exceed the maximum value when the star becomes
unstable with respect to radial compression. Usually
it is assumed that this loss of stability leads to the
collapse into a black hole. However, our calculations
open another possibility: the collapse into the twin star
on the second sequence.

Let us assume that no matter is ejected during this
process, i.e., the total baryon number,NB is con-
served. Fig. 4 shows the gravitational mass of the star
as a function of its total baryon number. The star from
the first sequence which reaches the maximum mass
(point A) will collapse to its twin star. The latter is
the corresponding star on the second sequence, i.e., the
one which has the same total baryon number (point B).

Fig. 4. Mass as a function of baryon number for different families of
stars. The inset shows the enhanced region of twin stars. The twin
star collapse corresponds to the transition from A to B.

The difference in energy between these two stars,4E,
is given by the difference in their gravitational masses.
In the case considered here, the released energy is
4E 	 6 × 10−3M� 	 1052 erg. This amount of en-
ergy should finally be emitted in one or the other way.

The baryonic density profiles of the twin stars A
and B are compared in Fig. 5. One can see that an
extended MP is present in both cases but the star B
has much larger quark core as compared to the star
A, where this core is only marginally present. So, the
instability develops practically at the end of the MP
region. In other words, this shows that stars with small
quark cores are unstable. In the considered example
the new equilibrium state appears only when the core
radius exceeds about 4 km. This reminds the well-
known result from the theory of nonrelativistic stars
with a density jump inside. Namely, ifρ1 andρ2 are
baryon densities just below and above this jump, then
small dense core becomes unstable ifρ1/ρ2 is larger
than a certain critical value (3/2 for incompressible
matter [16]). Of course, in our case there appears no
jumps of density, although its gradients are large near
the core boundary.

This kind of instability associated with a first order
phase transition in hadronic matter was first studied

Fig. 5. Baryon density profiles of the twin stars A and B as defined
in Fig. 4.
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in Ref. [17] and later on in Refs. [18,19]. It was
shown that the transition from a small-core to a large-
core configuration proceeds via large-scale damped
oscillations around the new equilibrium state. We
expect that the collapse of twin stars may proceed in
a similar way. After reaching the critical state A the
star looses stability and enters the stage of catastrophic
rearrangement. Since the QP in the core has higher
density than the replaced MP, surrounding layers of
the star will acquire collective inward motion. Due
to inertial effects, the star will overshoot the new
equilibrated state B and rebound. This will give rise
to the damped oscillations around this state. As simple
dimensional estimates show [17], the initial implosion
and following oscillations are characterized by the
millisecond time scale.

Such star rearrangement may involve many inter-
esting processes. First of all, large amount of hadronic
matter will be transformed into deconfined phase.
Since strangeness and leptonic contents are very dif-
ferent in two phases, this transformation will require
not only strong-interaction reactions but also weak
processes changing strangeness and lepton numbers.
Such reactions will inevitably produce large numbers
of neutrinos. For instance, to achieve chemical equi-
librium in the deconfined phase one needs reactions
e+u → d + ν andu + d → s + u which lead, respec-
tively, to emission of neutrinos and production of ad-
ditional strange quarks. We believe that the time scales
of these weak processes are much shorter than the
characteristic times of the star collapse.

The total number of neutrinos,Nν , produced dur-
ing the transition process can be estimated as fol-
lows. From Fig. 5 one can see that the final star
has the quark core with baryon densityρcore ∼ 5ρ0
and radiusRcore 	 4 km. Thus, the core contains
Ncore ∼ 2 × 1056 baryons. They were initially in
the HP at lower densityρB ∼ 2ρ0. According to
Fig. 2 the fraction of electrons in this phase was
about 10% and practically no electrons were in the
QP. Therefore, the difference between the number of
electrons in configurations A and B is4Ne ∼ 2 ×
1055 (the direct numerical calculation gives4Ne =
1.6 × 1055). Because of lepton number conservation,
all these electrons should be transformed into neu-
trinos and therefore,Nν = 4Ne ∼ 2 × 1055. This
number is about 1% of the total baryon number of
the star NB 	 1.7 × 1057. The neutrino energies

will cover a broad range up to a maximum value
Emax

ν = µe + µu − µd . One can estimateEmax
ν by as-

suming that initially the deconfined phase was pro-
duced in the nonequilibrium state with the flavor com-
position corresponding to the HP. The latter consisted
mainly of neutrons, with the quark structureudd , as
well as about 10% admixture of protons and elec-
trons. Takingρd 	 2ρu 	 10ρ0 andρe 	 0.5ρ0 we get
Emax

ν 	 150 MeV which corresponds to the mean neu-
trino energy∼ 100 MeV. Multiplying this energy by
Nν one obtains that a significant fraction (� 30%) of
the released energy will be carried away by the prompt
neutrino burst.

We expect that the remaining energy will be trans-
formed into heat. Nonequilibrium processes during the
phase transformation as well as viscosity effects might
be responsible for dissipation of collective kinetic en-
ergy and eventually for damping of oscillations. As-
suming that thermal energy4ET is initially dissipated
in the quark core, one can estimate its temperatureT0
from the relativistic Fermi gas formula

(13)
π2

4

T 2
0

µq
= 4ET

3Ncore
,

whereµq = µb/3 	 0.4 GeV is typical quark chem-
ical potential atρB ∼ ρcore. For 4ET ∼ 7× 1051 erg
Eq. (13) givesT0 	 40 MeV. At later times the heat
wave will propagate through the whole star and fi-
nally will produce photons and, possibly, electron-
positron pairs at its surface. The emission temper-
ature, Tem, can be estimated by assuming that the
thermal energy is distributed over the whole stellar
matter, which is nonrelativistic outside the core. Then
one obtainsTem ∼ 24ET /3NB ∼ 2 MeV. These pre-
dictions give us a ground to think that the discussed
mechanism may serve as the engine for Gamma-Ray
Bursts (GRB) [20]. Another obvious prediction is that
the discussed rearrangement of the star will lead to a
significant change in its moment of inertia. In a ro-
tating star this will result in a super-glitch phenom-
enon [21].

5. Conclusions and outlook

It is shown that within a realistic hybrid (NLZY-
MIT Bag) model two sequences of compact stars
(twin stars) are possible. We demonstrate that their
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interiors differ mainly by the size of pure quark
core. The energy difference between two twin stars
with the same baryon number is about 1052 erg
which is approximately 1% of their total energy.
The transition between twin stars may be triggered
by accretion of mass from a companion star or
by some other processes leading to increase of the
central density above the critical value. After that
a catastrophic rearrangement of the star begins. It
will first collapse and then oscillate around a new
equilibrium state.

Our estimates show that in the course of this
process the quark core can be heated up to tempera-
ture of about 40 MeV which is comparable to the one
in supernova explosions. Our main prediction is that
the transition between twin stars will produce a prompt
burst of neutrinos (with energies of about 100 MeV)
followed by a gamma ray burst (with photon energies
of about 1 MeV). These features of the twin star col-
lapse make it a potential candidate for the GRBs. On
the other hand, there are some characteristics of GRBs,
e.g., beaming of radiation, which is impossible to ex-
plain without additional assumptions invoking rotation
and strong magnetic fields. This problem needs further
study.

It is interesting to note that the presented model
predicts maximum masses of compact stars,(1.35–
1.38)M�, which agree well with observed masses of
pulsars [3]. Moreover, the twin stars of the second se-
quence have nearly the same masses in the broad range
of ρc . If pulsars have quark cores, this may explain
why their measured masses are clustered near the mass
of about 1.4M�.

Other phase transitions may take place in the interi-
ors of compact stars, e.g., kaon condensation, color su-
perconductivity etc. In Ref. [6] it was shown that for-
mation of metastable hyperonic matter can also lead
(in a certain range of parameters) to the twin star so-
lutions. The comparison of twin star properties pre-
dicted by different models will be given in a separate
work [8].
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