Photoelektronenspektren von Verbindungen der V. Hauptgruppe, III¹ Methylhalogenverbindungen MeEHal₂ und Me₂EHal

Photoelectron Spectra of Group V Compounds, III¹ Methylhalogen Compounds MeEHal₂ and Me₂EHal

SUSANNE ELBEL und HEINDIRK TOM DIECK

Institut für Anorganische Chemie der Universität Frankfurt

(Z. Naturforsch. 31b, 178-189 [1976]; eingegangen am 1. September 1975)

Photoelectron Spectra, Nitrogen, Phosphorus, Antimony Methyl Halides, n-Ionizations

The He I photoelectron spectra of certain MeEHal₂ and Me₂EHal compounds (E = (N), P, As, Sb; Hal = (F), Cl, Br, J; Me = CH₃) are interpreted in terms of a "composite molecule" approach derived for C_{3v}/C_s systems. Although an "internal standard" is missing here, substituent group-orbitals (n_{Hal} , C–H) may be classified with respect to their orientations in space (R, V, T). Ionisation energies are assigned according to this assumption.

PE data of the isoelectronic EMe₃/EHal₃ compounds and of related molecules (Me₂EH, MePH₂, CF₃PBr₂) as well as EHMO calculations with partial inclusion of spin orbit coupling are used to confirm the assignments given for Me₂EHal/MeEHal₂ series.

Correlations between PE ionisation energies (e.g. $n_{\rm E}$ (IE)) and molecular or atomic properties are critically revised and discussed.

1. Einleitung

Die Zuordnung der Photoelektronenspektren der Trimethylreihe EMe₃ (E = N, P, As, Sb) hatte gezeigt, daß das Kuriosum der konstanten Ionisierungsenergien der "freien Elektronenpaare" $n_{\rm E}$ auf einem komplexen Zusammenwirken elementspezifischer, sterischer und konjugativer Faktoren beruht². Auch die Photoelektronenspektren der Trihalogenide³⁻¹⁰ fügen sich in ein äquivalentes Schema symmetrie- und geometriebedingter Wechselwirkungen.

Mit ihren Zwischengliedern, den Methylhalogenverbindungen MeEHal₂ und Me₂EHal, umfassen sie einen großen Variationsbereich chemischer Eigenschaften: Während z.B. Trialkylphosphine die stärkst basischen Phosphor(III)-Verbindungen vertreten, gehört etwa PF₃ zu den stärksten π -Akzeptorliganden der Komplexchemie.

Daß Zusammenhänge zwischen Ionisierungsenergien und Molekül- bzw. Atomeigenschaften bestehen, zeigen Korrelationsversuche mit Basizitäten¹¹⁻¹³, Elektronegativitäten ^{14, 15}, σ -Konstanten ¹⁶ oder Kraftkonstanten ^{10, 17}.

Ob derartige Parallelen bestätigt oder erweitert werden können, etwa auf Polaritätsunterschiede in σ_{E-Cl} -Bindungen der Reihe Me₂ECl ($E = N \leftrightarrow P$, As), soll an Verbindungen Me_nEHal_{3-n} ($n = 0 \rightarrow 3$) sowohl durch Austausch des Zentralatoms ($E = N \rightarrow$ Sb) als auch des Halogensubstituenten (Hal = $F \rightarrow J$) analysiert werden.

Die Symmetrieänderung $C_{3v}-C_s-C_s-C_{3v}$ innerhalb der Reihe EMe₃-Me₂EHal-MeEHal₂-EHal₃ stellt solche Korrelationen wegen Mehrdeutigkeiten und in gewissem Sinn die Eigenständigkeit von typischen Ligandenorbitalen in Frage. Daher wird ferner untersucht, wieweit diese Korrelationsmöglichkeit eine Funktion der Separation von Energieschwerpunkten der Liganden ist ($a_{Me} \leftrightarrow a_{Hal}$) und wie die Energieveränderungen in einem C_s-MO-Modell erfaßt werden können.

2. Meßergebnisse

Im folgenden werden die He I-Photoelektronenspektren von Verbindungen des Typs MeHal₂ und Me₂EHal anhand ihrer MO-Modelle sowie im Zusammenhang mit Verbindungsreihen Me_nEHal_{3-n}

Sonderdruckanforderungen an Dr. S. ELBEL oder Prof. Dr. H. TOM DIECK, Institut für Anorganische Chemie der Universität, *D-6000 Frankfurt a. M.*, Theodor-Stern-Kai 7, BRD.

 $(n=0\rightarrow 3)$ und Vergleichsmolekülen R₂EH, MeEH₂ und CF₃PBr₂ zugeordnet. Abb. 1 zeigt die PE-Spektren der Methyldihalogenphosphane MePF₂ (1), MePCl₂ (2), MePBr₂ (3) und MePJ₂ (4). Ihre experimentellen Ionisierungsenergien sind nachfolgend mit denen von MeAsCl₂ (5), MeAsBr₂ (6), MeAsJ₂ (7), MeSbJ₂ (8) sowie CF₃PBr₂ (9) tabelliert (Tab. I).

Die Bezeichnungen der "lone pair"-Banden n_{Hal} , die erwartungsgemäß den Verlauf der Halogen-Atomionisierungspotentiale wiederspiegeln und von Fluor bis Jod zunehmend besser separiert auftreten, beziehen sich auf die Symbolik entsprechender Molekülorbitale. Diese wird in Abschnitt 3 erläutert und in 4 an Beispielen diskutiert. Abb. 2 enthält die PE-Spektren von Me₂NCl (10), Me₂PCl (11) und Me₂AsCl (12). Ihre Ionisierungsenergien sowie Meßdaten für Me₂NCH₂Cl (13), die analogen Bromide Me₂PBr (14), Me₂AsBr (15), Me₂SbBr (16) und Jodide Me₂AsJ (17), Me₂SbJ (18) finden sich in Tab. II.

Zur Abschätzung der induktiven und konjugativen Störung des Me₂E-Restsystems durch Halogen sind in Abb. 2 die Untergrundspektren von Me₂NH ^{10,18} (19), Me₂PH ¹⁰ (20) und Me₂AsH ^{10,19} (21) ebenfalls eingezeichnet (Abschnitt 4). Die unterschiedlich starke Wechselwirkung der beiden Elektronenpaare (T, V) des einen Halogenatoms mit Me₂E-Orbitalen prägt alle Me₂EHal-Spektren charakteristisch. Der Verlauf der $n_{\rm E}$ -Energien, u.a. gegenläufig in Reihen Me₂ECl und Me₂EH (E = N, P, As; Tab. II), wird in Abschnitt 5 einer kritischen Analyse unterworfen.

Neben der Substitution von Zentralatomen (Abb. 2) oder Halogen (Abb. 1) bietet die Korrelation von $Me_n EHal_{3-n}$ -Spektren weitere Zuordnungsaspekte. Stellvertretend ist in Abb. 3 als besonders

Tab. I. Vertikale Ionisierungsenergien IE_n (eV) von Methylelementdihalogeniden MeEHal₂ und CF₃PBr₂.

	IE_1	IE_2	IE3	IE_4	IE_5	IE ₆	IE7	IE_{8-n}	
MePF ₂	10,33	13,9	(14,66 -	- 14,88)	15,25	(15,9)	17	7,11(2)/(18,0)	
$MePCl_2$	9,86	(11, 75)	11,89	11,89	12,91	(14	4,0)	5,06(3)/18,58	
$MePBr_2$	9,66	10,59	11,00	11,16	12,03	13,05	(13, 45)	/ 14,83(3)/18,8	
$MePJ_2$	9,01	9,33	9,91	10,33	11,04	12,0	12,62	(14,57)*	
$MeAsCl_2$	10,02	(11, 50)	11	,59	12,55		,36	14,67(3)	
$MeAsBr_2$	9,58	10,29	10,67	10,80	11,65	12	2,48	14,45/(14,97)	
$MeAsJ_2$	9,08	9,40	9,83	10,25	10,93	11,79	12,15	14,5(3)**	
$MeSbJ_2$	8,7	9,05	9,59	9,87	10,48	11,27	(11, 44)	13,84(3)	
CF_3PBr_2	10,23	11,01	11,52	11,64	12,81	13,55	14,07	$n_{ m F}$: 15,20/ 15,90/16,94	

* ,,shake up"-Banden: 17,39/18,07/18,53/18,99/19,43/20,0/20,42.

** ,,shake up"-Banden: 16,12/16,55/16,91/17,33/17,72/18,05/18,16/18,5/18,9/19,33/19,62/19,97/20,07.

Tab. II. Vertikale Ionisierungsenergien IE_n (eV) von Dimethylelementhalogeniden Me_2EHal und Vergleichsverbindungen Me_2NCH_2Cl und Me_2EH .

×1.5	IE1	IE_2	IE_3	IE_4	IE_5	IE_6	IE_{7-n}
Me ₂ NCl	9,17	11,10/11,22	11,81	(13,2)·		(14,3)	(15, 5-16, 7)
Me_2PCl	9,15	11,0	11,74	(12,72))	13,9	(15,3)(4)/16,98(1)
Me ₂ AsCl	9,45	10,74	11,49	12,08	12,47	13,83	(14,34)(4)/18,0
Me_2PBr	9,24	10,47	11,06			(14	(-15)(5)
Me_2AsBr	9,29	10,18	10,82			(14	(-15)(5)/17,9
Me_2SbBr	9,02	10,01	10,61	11,2	11,5	(1:	3,83)/16,67
Me_2AsJ	8,85	9,41	10,13			(1:	3–15)
Me_2SbJ	8,81	9,39	10,03	10,88	(11,09)	(1:	B-15)
Me_2NH	8,95	12,6					16,7(1)/20,5(1)
Me_2PH	9,08			13,65	(14,0)		(17,45)(1)/(19,3-20,0)
Me_2AsH	8,87			· · · · · · · · ·	(13,8)		
Me_2NCH_2Cl	8,7			·····	(13,28)	(15,6/16,45/19,3)

durchsichtiges Beispiel die Reihe Me₃AsJ_{3-n} wiedergegeben. Trotz der komplexen Wechselwirkung in C_s zwischen n_{Hal} - und Rumpfmolekül-Orbitalen ist in EHMO-Eigenfunktionen der Orbitalcharakter zentralatom-entkoppelter Substituenten-Gruppenorbitale noch deutlich sichtbar. Wegen der großen Energiedifferenz zwischen Substituentenschwerpunkten (Coulombintegralen) a_{Me} (CH₄ ^{20a}) und a_J (HJ ²¹) und kleineren Wechselwirkungsintegralen $\beta_{E/R}$ ist die Differenzierung typischer Substituentenorbitale bei den Jodiden besonders ausgeprägt (Abschnitte 3 und 4). Die Bandenseparation wird hier zusätzlich durch partielle Spin-Bahn-Kopplung begünstigt.

In PE-Spektren mit unübersichtlichen Bandenverhältnissen ist die Zahl überlappender Banden in Klammern angegeben (Abbn. 1-3).

Abb. 1. PE-Spektren von Methyldihalogenphosphanen MePHal₂ (Hal = F, Cl, Br, J), zugeordnet nach einem qualitativen MO-Modell.

Abb. 2. PE-Spektren der Reihen Me₂ECl und Me₂EH (gestrichelt) (E = N, P, As).

Abb. 3. EHMO-Orbitalenergien und -Diagramme sowie PE-Spektren der Reihe Me_nAsJ_{3-n} $(n = 0 \rightarrow 3)$.

Die hochaufgelösten PE-Spektren von MePJ₂ (4), MeAsJ₂ (7) und Me₂SbJ (18) zeigen im E_s/Hal_s -Energiebereich (~15–21 eV) ausgeprägte Bandserien, die z. T. von C–H-Ionisierungen überdeckt sind. Ähnliche Bandenserien wurden bei J₂, HJ und MeJ aufgelöst¹⁰ und bei Methyljodid auf "shake up"-Anregung zurückgeführt²². Wenn auch die Zuordnung zu "shake up"-Zuständen plausibel erscheint, so können andere Ursachen, z. B. direkte Autoionisierung oder "shake up" neben Autoionisierung, nicht ausgeschlossen werden.

3. MO-Modell für Cs-Moleküle

Die Titelverbindungen MeEHal₂ und Me₂EHal (E = (N), P, As, Sb) haben bezüglich ihrer schweren Atome C_s-Symmetrie und damit kein ligandeninternes, "wechselwirkungsfreies" Bezugs-Molekülorbital. Dies ist ein Nachteil gegenüber höhersymmetrischen Molekülen, deren PE-Spektren häufig mit Hilfe dieses "internen Standards" gedeutet werden können²³. Als Basis eines an experimentellen Energien parametrisierten MO-Modells liefert es Aussagen z. B. über Wechselwirkungsgrößen und relative induktive Effekte von Substituenten¹⁰.

Bei den isoelektronischen C_{3v} -Systemen Me₃E² und Hal₃E³⁻¹⁰ gibt es zwar ein solches reines Substituentenorbital (1 a₂), doch wird es induktiv und durch "through space"-Wechselwirkungen beeinflußt und tritt nur bei wenigen ER₃-Verbindungen^{3, 5, 7-9} im PE-Spektrum separiert auf.

Eine qualitative Zuordnung von PE-Spektren der C_{3v} -Moleküle ER₃ gelingt näherungsweise über das MO-Modell zentralatomentkoppelter, d.h. planarer R₃-Gruppierungen durch Einführung einer geometrischen Störung (D_{3h} \rightarrow C_{3v}).

Im übergeordneten D_{3h} -System existieren zwei wechselwirkungsfreie Orbitaltypen (1 a_2' , 1e''), die sich zur Parametrisierung anbieten¹⁰. Allerdings kann nur le" wegen geringerer räumlicher Wechselwirkung als interner Standard dienen. Seine Energie sollte bei großen E–R-Abständen mit dem energetischen Schwerpunkt der R-Orbitale (p-Typ) übereinstimmen. Die Orbitaltypen für C_{3v}-Moleküle zeigen in Rechnungen (CNDO, EHMO) noch die Korrelation mit der günstigeren D_{3h}-Punktgruppe entkoppelter R₃-Einheiten und die Analogie zu PE-Daten von Vergleichsbedingungen der Borgruppe²⁴ (z. B. AsCl₃ \leftrightarrow InCl₃).

Die Orbitaltypen der Substituenten Me und Hal können bezüglich ihrer Ausrichtung zur E-R-Achse und in Anlehnung an das D_{3h} -MO-Modell mit den Symbolen V (=vertikal), T (=tangential) und R (=radial) charakterisiert werden. Diese Bezeichnungen werden auch zur Bandenzuordnung in den Abbn. 1-3 verwendet.

innerhalb einer Verbindungsreihe wie Da Me₃E-Me₂EHal-MeEHal₂-EHal₃ isoelektronische Substituenten wechseln, bleiben die Zuordnungsargumente des kombinierten D_{3h}/C_{3v}-Modells in C_s erhalten. Zu berücksichtigen sind für Hal und Me im Aufspaltungsschema aber zwei nicht energiegleiche Substituentenschwerpunkte ($a_{Me} \neq a_{Hal}$). Je größer deren Energieseparation ist und je kleiner die Wechselwirkungsintegrale für Substituenten- und Zentralatomorbitale sind, desto deutlicher sollten die PE-Spektren die Eigenarten des MO-Modells wiederspiegeln.

MO-Modelle für MeEHal₂ und Me₂EHal ergänzen sich wechselseitig: Vernachlässigt man näherungsweise den Einfluß von s-Orbitalen (C_s, E_s, Hal_s) und in den Orbitaldiagrammen alle Wasserstoffkoeffizienten, so erhält man qualitative MO-Bilder für die Orientierung zentralentkoppelter Gruppenorbitale von R in C_s-Molekülen R₂EH (R = z. B. Me, Hal) bzw. REH₂ (Abb. 4).

Abb. 4. MO-Diagramme für R-, V-, T-Gruppenorbitale zentralatomentkoppelter R- und R₂-Fragmente nach dem "composite molecule"-Modell: R ER₂' bzw. R₂ ER' (R = Me, R' = Hal, H; R = Hal, R' = Me, H).

Sinngemäß resultieren zwei σ -MOs (R) und vier π -MOs (2 × V, 2 × T) für R₂EH-Verbindungen, die symmetrie- und geometriebedingt um einen gemeinsamen Schwerpunkt ($a_{\rm R}$) aufspalten. Für das entkoppelte R in REH₂ erhält man entsprechend ein σ - und zwei π -Orbitaltypen.

MO-Modelle für die zusammengesetzten Moleküle (,,composite molecule"-Modell) Me EHal₂ (Me EH₂ + HE Hal₂) und Me₂EHal (Me₂ EH + Hal EH₂) ergeben sich dann konsequent durch Kombination der oben beschriebenen Cs-Modelle unter Berücksichtigung von zwei nichtäquivalenten Aufspaltungszentren (aMe, aHal) und "through bond"-Wechselwirkung mit Zentralatomorbitalen. Letztere entspricht einer Rückkopplung von Substituentenmit ER/ER₂-Orbitalen und beeinflußt deshalb die ursprünglichen $R(\sigma)$ -Orbitale am stärksten. Die Differenzierung der entstehenden Orbitaltypen bei diesem hypothetischen Vorgang bleibt bei großem Δa zum Teil erhalten, was durch die Struktur der PE-Spektren von Bromiden und Jodiden (Abbn. 1 und 3) nahegelegt wird. Die symmetriebedingte konjugative Wechselwirkung verursacht jedoch erhebliche Bandenverschiebungen:

Wesentlich für die aufgehobene Entartung von $\pi(a')$ - und $\pi(a'')$ -p_{Hal}-Orbitalen in R₂EHal ist die bindende Einmischung von ER-Orbitalen (a') in das V-Orbital und seine damit verbundene Stabilisierung relativ zu T (vgl. EHMO-Diagramm 7 a' für Me₂AsJ in Abb. 3). Im Me₂EHal-Spektrum treten deshalb zwei typische n_{Hal} -Banden auf, von denen die höherenergetische $\pi(a')$ verbreitert und kleiner sein sollte (s. Abb. 2 und Tab. II).

4. Weitere Zuordnungskriterien und Diskussion ausgewählter Spektren

Ein anderer Effekt innerhalb der EHal₃-Reihe erweist sich für die Diskussion von MeEHal₂- und Me₂EHal-Spektren als wesentlich: Die differierende Spin-Bahn-Aufspaltung der e-Orbitale bei den Trijodiden⁸⁻¹⁰ und Bromiden^{3, 7, 9} signalisiert unterschiedliche "through space"-Wechselwirkung für Hal-Atomorbitale (p_{Hal}). Sie belegt so die in C_{3v} noch vorhandene Differenzierung zwischen drei R₃-Gruppenorbitalen verschiedener räumlicher Orientierung²⁵ analog Abb. 4. In EHMO-Orbitaldiagrammen von Me₂AsJ und MeAsJ₂ bleibt der R, T, V-Charakter der Substituentenorbitale relativ gut sichtbar (Abb. 3). Zugleich erkennt man die z. T. komplexe "through bond"-Wechselwirkung reiner Halogen-p-Orbitale mit σ_{E-R} - bzw. π_{E-R} -Orbitaltypen.

Neben dem "composite molecule"-Modell, das bereits die vollständige Zuordnung enthält, können auch Vergleichsspektren ähnlicher Verbindungen (A) oder Ergebnisse semiempirischer Rechnungen (Abb. 3) und typische Substituenteneffekte (B) die Interpretation ergänzen:

A. Die Korrelation mit den PE-Spektren der Trimethyl- bzw. Trihalogenderivate ER₃ erlaubt eine Bestimmung der Bandenzahl im He I-Bereich. Die einfache Faustregel, nach der s-Valenzelektronen bei Energien <21 eV nicht ionisiert werden, trifft wohl für Brom- und Jodarsine bzw. -stibine nicht mehr zu, doch bleibt die Zuordnung von E_s/Hal_s-Orbitalen spekulativ. Abgesehen von drei s-MOs (1 a', 1 a'', 2 a') sollte man analog zu EMe₃²/ EHal₃ ³⁻¹⁰ zehn MOs vom p-Typ (4 × a''; 6 × a') im He I-Spektrum bei jeder Verbindung Me_nEHal_{3-n} $(n=0\rightarrow3)$ zuordnen können (vgl. auch EHMO-Orbitalenergien in Abb. 3).

Ein weiterer Nutzen der Korrelation mit ER3-Derivaten zeigt sich bei der Bestimmung typischer σ_{E-Me} - bzw. σ_{E-Hal} -Ionisierungsenergien in den Methylhalogenderivaten: Man verbindet in der Reihe Me_nEHal_{3-n} σ_{E-Me} und σ_{E-Hal} -Banden (4e bzw. 2e) von Me3E bzw. Hal3E durch eine Gerade. Diese schneidet, da $a_{Me} \neq a_{Hal}$ berücksichtigt ist, die σ -Banden (R) von MeEHal₂ und Me₂EHal, die meist in einem Bandenkomplex zusammenfallen (fast entartet bleiben). In MenPBr3-n bestimmen sich so die σ -Energien zu 14,05 eV (PBr₃, 2e), 13,25 eV (MePBr₂, 5a'/3a''), 12,20 eV (Me₂PBr, 6a'/4a''), 11,34 eV (Me₃P, 4e) und sind damit praktisch linear vom relativen Substitutionsgrad abhängig. Für Me_nAsJ_{3-n} ist diese Korrelation in Abb. 3 eingezeichnet. Von den drei σ_{E-R} -MOs (a1 (a') und e (a', a'')) können wegen ihrer Separation hier nur e-Orbitale diskutiert werden. Ähnliche Zusammenhänge wurden auch in anderen Verbindungsreihen Me_nSiR_{4-n} gefunden ²⁶.

Bei AsJ₃⁹ ist Spin-Bahn-Kopplung durch die Doppelgruppe C_{3v}' und die ihr entsprechende Symmetrieerniedrigung ($e \rightarrow e_{3/2}, e_{1/2}; a_1 \rightarrow e_{1/2}; a_2 \rightarrow e_{1/2}$) bei den EHMO-Eigenwerten in Abb. 3 berücksichtigt. Der rechnerische Aus- und Einschluß der Spin-Bahn-Kopplungskonstanten ξ_J ^{25a, b} gibt hier eine Vorstellung seiner Wirkung auf die verschiedenen e-Orbitale (T, V, R) und der erhöhten Wechselwirkungen in C_{3v}'. Im experimentellen Spektrum wurde C_{3v}-Symbolik beibehalten. Für die C_s-Moleküle MeEJ₂ und Me₂EJ ist die Spin-Bahn-Kopplung in der Rechnung von untergeordneter Bedeutung.

B. Zu den typischen Substituenteneffekten zählen bereits Bandenverschiebungen durch sukzessiven Austausch der Halogene innerhalb der Reihe MePHal₂ (Hal = $F \rightarrow J$, Abb. 1) oder der Wasserstoffatome durch Halogen in MeEH₂ bzw. Me₂EH (Abbn. 1 und 2). Partielle Spin-Bahn-Kopplung in Cs kann ferner bei Bromiden und vor allem Jodiden die durch größeres Δa und kleinere $\beta_{E/R}$ -Wechselwirkungs-Parameter hervorgerufene Separation in n_{Hal}- und C-H-Banden durch weitere Strukturierung noch verdeutlichen. Dafür nimmt man in Kauf, daß bei den Jodiden eine eindeutige Zuordnung der $n_{\rm E}$ -Banden (zur ersten oder zweiten Bande) nicht mehr sicher möglich ist. So tritt in den EHMO-Rechnungen für MeAsJ₂ gegenüber Me₂AsJ eine Sequenzumkehr $\varepsilon(n_{\text{Hal}}) < \varepsilon(n_{\text{E}})$ auf.

Die vorgeschlagene Zuordnung in den Abbildungen kann durch den Perfluormethyl-Effekt^{10, 27} erhärtet werden, der hier am Beispiel CF3PBr2/ CH₃PBr₂ vorgestellt wird (Tab. I). Im Gegensatz zum Perfluor-Effekt²⁸ kann die Wirkung des CF₃-Substituenten unter dem Aspekt einer rein induktiven Störung (-I) diskutiert werden. n_F-Orbitale lassen sich einem Energiebereich 15-17 eV zuordnen: Relativ zu HCF3²⁰ sind sie induktiv destabilisiert ($\Delta a_2 = 0.30 \text{ eV}$; $\Delta 5e = 0.26 \text{ eV}$; $\Delta 4e =$ 0,30 eV). σ_{C-F} -Banden liegen bei ~20 eV. Erwartungsgemäß werden alle a"-Banden wegen fehlender σ_{E-CF} -Beimischung (in C_s) schwächer stabilisiert als die a'-Species: $\Delta n_{\rm P}$ (a') = 0,56 eV; ΔT (a'') = 0,42 eV; ΔV (a'') = 0,36 eV; ΔV (a') = 0,52 eV; ΔT (a') = 0.78 eV; ΔR (a'') = 0.50 eV; ΔR (a') = 0,62 eV; vgl. auch die analogen Bandenverschiebungen für $Me_n PHal_{3-n} \rightarrow Me_n P(X)Hal_{3-n}$ durch den induktiven Effekt des Akzeptors X (z. B. O, S, Se)1,29. Auffallend schwach wirkt dieser σ -Effekt auf V (a''), was diesem Orbital gewissermaßen den Charakter eines internen Standards verleiht. Das zugehörige Orbitaldiagramm (Abb. 4) macht diese Aussage verständlich. Wegen der stärkeren energetischen Absenkung von a'-Orbitalen tritt bei CF3PBr2 gegenüber CH₃PBr₂ Separation von $R(\sigma)$ -Banden auf.

Neben einer qualitativen Analyse der Bandenformen liefert der Vergleich mit den PE-Spektren korrespondierender Methylamine, -phosphane und -arsane (MeEH₂, Me₂EH) weitere Information über typische C-H- oder σ_{E-R} -Bandenlagen und ggf. Substituenteneffekte. So enthält Abb. 1 die Ionisierungsenergien (bei Bandenkomplexen die Halbwertsbreiten) von Methylphosphin^{10,30} und das Untergrundspektrum von HPF2 31. Während die C-H-Banden (T, V-Orbitale) von MePH₂ nach MePHal₂ (Hal = Cl \rightarrow J) näherungsweise unverändert bleiben, ist ihre Zuordnung für Methyldifluorphosphan durch unstrukturierte Bandengebirge nur noch sehr pauschal möglich. Trotz einer Δa -Differenz von ~1,85 eV (bez. HF²¹ und CH₄^{20a}) fallen wegen des starken –I-Effekts von Fluor $n_{\rm F}$ - und C-H-Banden teilweise zusammen. Die Sequenzumkehr $a_{\rm F} > a_{\rm C-H}$ relativ zu $a_{\rm Cl \rightarrow J}$, allgemein typisch für analoge Verbindungen mit Elementen der zweiten bzw. dritten Periode¹⁰, erfordert eine andere Deutung für das MePF₂-Spektrum: So sind σ_{P-C} und C-H-Ionisierungen (T, V) der zweiten Bande zuzuordnen. Die Anhebung der $n_{\rm F}$ -Banden relativ zu HPF₂ kann durch eine stärkere Polarisierung (+)Me \leftrightarrow PF₂(-) verursacht sein. C-H-Energien sollten dann relativ zu MePH2 induktiv stabilisiert sein, was ihrer Zuordnung in Abb. 1 entspricht. Der dem induktiven entgegengerichtete hyperkonjugative Effekt von Me- auf PF2-Energien wäre dabei überkompensiert.

Semiempirische Rechenverfahren (CNDO, EHMO; mit und ohne Einschluß von d-Orbitalen) erweisen sich bei der Zuordnung des MePF₂-Spektrums als wenig nützlich, da sie entweder der veränderten Sequenz $a_{\text{Hal}} > a_{C-H}$ (Hal = F) nicht gerecht werden oder das experimentelle Intensitätsmuster falsch reproduzieren. Deshalb wird bei der qualitativen Zuordnung vor allem die Korrelation MePF₂/HPF₂ verwendet, da n_{F} -Sequenzänderungen bei Substitution Me \leftrightarrow H ausgeschlossen werden können. Unsere Deutung des HPF₂-Spektrums³¹ beruht auf *ab initio*-Orbitalenergien^{32, 33}. Sie favorisieren eine Intensitätsverteilung für HPF₂ im He I-Bereich von

1:3:3:1.

Berücksichtigt man den Übergang $\sigma_{P-H} \rightarrow \sigma_{P-C}$ und zwei zusätzliche C-H-Ionisierungen im zweiten Bandenkomplex (~14–16 eV), dann ergibt sich für MePF₂ ein Bandenverhältnis von

1:5:3:(1) (Abb. 1).

Eine bei 19–21 eV vermutete $\sigma_{\rm FP_{S}-Me}$ -Bande konnte nicht aufgelöst werden.

Auch die PE-Spektren der Dimethylelementhalogenide können qualitativ durch Vergleich mit Me₂EH-Spektren interpretiert werden. Eine Korrelation mit Untergrundspektren von Me₂EH ist wegen der sonst nur schwer ersichtlichen Verschiebung korrespondierender Banden für Me2ECl/ Me₂EH-Paare (E = N, P, As) in Abb. 2 durchgeführt. Abgesehen vom Verlauf der nE-Banden (s. Abschnitt 5) überrascht die Lagekonstanz der $n_{\rm Cl}$ -Banden in Chloramin- und -phosphanspektren, erwartet man doch auch hier Orbitalsequenzumkehr (vgl. $MePF_2 \leftrightarrow MePHal_2$) wegen Beteiligung von Elementen (E) aus zweiter bzw. dritter Periode. Diese bezieht sich - weniger deutlich - auf die relativen C-H- und σ_{E-CH} -Energien (σ_{P-CH} < C-H $\leq \sigma_{N-CH}$), was die Isolierung der beiden Chlorbanden (T, V, vgl. Abb. 4) im Aminspektrum begünstigt. Wegen der größeren Energieseparation $\Delta(\alpha_{N-CH}\leftrightarrow\alpha_{Cl})$ mischen σ_{N-C} - weniger in n_{Cl} -Orbitale.

Werden Halogen und Zentralatom über eine Methylenbrücke gekoppelt, wie z. B. im Dimethyl-(chlormethyl)amin, Tab. II, so wird die spezifische Wirkung von Zentralatom-Orbitalen (a'— $n_{\rm E}$, a''— $\sigma_{\rm E-C}$) auf T_{Hal} und V_{Hal} aufgehoben. Wegen ähnlich großer CH/Hal-Hyperkonjugation fallen die typischen $n_{\rm Hal}$ -Banden zusammen.

Relativ zu Me₂EH sind die C–H-Bandenkomplexe von Me₂ECl nur wenig stabilisiert (<0,5 eV), $\sigma_{\text{E-CH}}$ -Banden dagegen stärker. Unsicher ist die Energie der $\sigma_{\text{Me-N-C1}}$ (a')-Bande. Sie wird im Bereich 15,5–16,7 eV vermutet. Immerhin kann durch Spektrenvergleich Me₂NCl \leftrightarrow Me₂NH die Zuordnung des typischen $\sigma_{\text{Me-N-H}}$ (a')-Orbitals von Me₂NH zur vierten Bande (16,7 eV) bestätigt werden¹⁰, da sie bei Me₂NCl kein Pendant besitzt.

Ob eine Beziehung zwischen Ionisierungsenergien und unterschiedlichem chemischem Verhalten (Basizität, Hydrolyse) bei Chloramin vgl. 34 und -phosphan z.B. durch Analyse induktiv verursachter Bandenverschiebungen hergestellt werden kann, scheint fraglich: Die konstanten n_{Hal} -Ionisierungsenergien können wie die $n_{\rm E}$ -Energien der Me₃E-Reihe durch Annahme größerer Wechselwirkungsparameter $\beta_{E-C/Hal}$ bei größerer Energiedifferenz $\alpha_{E-C} \leftrightarrow \alpha_{Hal}$ für E = N gegenüber $P \leftrightarrow Sb$ zwanglos gedeutet werden. Auch wenn stärkere hyperkonjugative und induktive Effekte, die sich hier in ihrer Wirkung addieren (Anhebung von n_{Cl} -Energien relativ zu HCl²¹, Absenkung von σ_{E-C} - und C-H-Energien relativ zu Me2NH), für das Amin nicht ausgeschlossen werden können, ist ihre Annahme nicht zwingend, solange Energieargumente und unterschiedliche Konjugation der Interpretation genügen.

5. "lone pair"-Ionisierungsenergien $n_{\rm E}$ in Verbindungsreihen Me_nPHal_{3-n} und Me_nPH_{3-n} $(n = 0 \rightarrow 3)$

Die "lone pair"-Banden $n_{\rm E}$ treten in allen bekannten PE-Spektren von Verbindungen $R_n ER'_{3-n}$ separiert mit den geringsten Energien auf. Problematisch erscheint ihre Zuordnung nur bei den Diund Trijodiden^{8,9}. Die allgemein geringere Intensität von $n_{\rm E}$ - gegenüber $n_{\rm Hal}$ -Banden spricht jedoch für ihre Zuordnung zur ersten Bande.

Die Energiekonstanz von "lone pair"-Orbitalen in analogen Aminen, Phosphanen, Arsanen, etc. wurde bereits für Me₃E ($E = N \rightarrow Sb$) ausführlich diskutiert². Eine schwache Anhebung in Richtung schwerer Zentralatome E kann dem dominanten Einfluß ihrer relativen Atomionisierungspotentiale zugeschrieben werden, der auch bei Me3E durch konjugative Wechselwirkung nicht völlig kompensiert ist. Insofern überrascht der Verlauf der "lone pair"-Energien bei den Dimethylelementchloriden (Abb. 2), die in Richtung $E = N \rightarrow As$ stabilisiert werden. Ähnliche Effekte treten auch bei den Trihalogeniden EHal₃ auf, wo n_{As} - gegenüber n_{P} - und nsp-Elektroden bei größeren Energien ionisiert werden (Tab. III). Besonders augenfällig ist dieser Befund bei den Trifluoriden, wurde aber bisher nie vergleichend diskutiert. Die Unstetigkeit im Verlauf der $n_{\rm E}$ -Energien könnte durch unterschiedliche Geometrieänderung bei Ionisierung (PF3 35: fast planares Kation, erhöhte Hyperkonjugation $\beta_{nE/nHal}$ gedeutet werden. Eine Geometrieänderung des Chlorarsans Me₂AsCl (Winkelverkleinerung) relativ zum Amin und Phosphin wäre dann hier eine adäquate Erklärung.

Die in letzter Zeit ansteigende Zahl von PE-Publikationen mit Ionisierungsenergie/Moleküleigenschaft-Korrelation speziell an Verbindungen R_nPHal_{3-n} ¹⁷ veranlaßt uns zu einer kritischen Analyse derartiger Zusammenhänge. Zu diesem Zweck sind in Abb. 5 "lone pair"-Ionisierungsenergien (IE₁) von Verbindungen R_nPHal_{3-n} und R_nPH_{3-n} verglichen.

Abgesehen von $\mathbf{R} = \mathbf{F}$ bewirkt Erstsubstitution bei den Hydriden die stärkste Änderung der \mathbf{IE}_1 von $\mathbf{H}_3\mathbf{P}$. Den Verlauf der $n_{\mathbf{P}}$ -Korrelationslinien von z. B. $\mathbf{Me}_n\mathbf{PH}_{3-n}$ findet man in anderen Moleküleigenschaften (z. B. Basizität³⁶) reproduziert. Er kann durch ein einfaches Störungsmodell auf Basis von Molekül-Topologie und Gillespie-Regeln erfaßt werden. Bei Vernachlässigung induktiver Effekte

Abb. 5. Zusammenhänge der ersten vertikalen Ionisierungsenergien IE₁ $(n_{\rm P})$ verschiedener Verbindungsreihen $R_n {\rm PH}_{3-n}$ und $R_n {\rm PR'}_{3-n}$ $(n = 0 \rightarrow 3)$ in Abhängigkeit vom Substitutionsgrad n.

Tab. III. ,,Lone pair"-Ionisierungsenergien IE₁ (n_E) von Phosphanen R_nPHal_{3-n} und Trihalogeniden EHal₃ ($E = N \rightarrow Sb$; $Hal = F \rightarrow J$, CN; R = z.B. CH₃, CF₃, F).

$\overline{\mathrm{ER}_{3}/\mathrm{PR}_{3}}$			RPR_{2}^{\prime}			$R_2 \mathbf{P} R'$	Se.	
$\begin{array}{c} {\rm PH}_{3} \\ {\rm PMe}_{3} \\ {\rm P(CF_{3})_{3}} \\ {\rm P(SiH_{3})_{3}} \\ {\rm P(SiH_{3})_{3}} \\ {\rm P(SiMe_{3})_{3}} \\ {\rm P(SiMe_{3})_{3}} \\ {\rm P(t-Bu)_{3}} \\ {\rm P(t-Bu)_{3}} \\ {\rm P(CN)_{3}} \\ {\rm PF}_{3} \\ {\rm PCl}_{3} \\ {\rm PBr}_{3} \\ {\rm PBr}_{3} \\ {\rm PJ}_{3} \\ {\rm PEt}_{3} \\ {\rm P(OMe)_{3}} \\ {\rm P(i-Pr)_{3}} \end{array}$	$\begin{array}{c} (53)\\ (2, 30)\\ (10, 52)\\ (10, 30)\\ (10)\\ (10, 17)\\ (10)\\ (3, 5, 6)\\ (5, 7)\\ (3, 7)\\ (8, 10)\\ (10)\\ (10, 17)\\ (10) \end{array}$	$10,59 \\ 8,60 \\ 11,57 \\ 9,29 \\ 7,87 \\ 7,70 \\ 11,98 \\ 12,31 \\ 10,52 \\ 9,95 \\ 9,05 \\ 8,28 \\ 9,20 \\ 9,22 \\ \end{cases}$	$\begin{array}{c} Me_2PH \\ (CF_3)_2PH \\ (SiH_3)_2PH \\ (SiMe_3)_2PH \\ (t\text{-}Bu)_2PH \\ (t\text{-}Bu)_2PH \\ MeP(CN)_2 \\ MePF_2 \\ MePF_2 \\ MePBr_2 \\ MePBr_2 \\ MePJ_2 \end{array}$	$\begin{array}{c} (10,17)\\ (10,52)\\ (10)\\ (10)\\ (17)\\ (10)\\ (10,17)\\ (10,17)\\ (10)\\ (10)\\ (10) \end{array}$	$\begin{array}{c} 9,08\\11,43\\9,62\\8,35\\8,35\\10,81\\10,33\\9,86\\9,66\\9,01\end{array}$	$\begin{array}{c} MePH_2\\ CF_3PH_2\\ SiH_3PH_2\\ SiMe_3PH_2\\ t-BuPH_2\\ t-BuPH_2\\ Me_2PCN\\ Me_2PF\\ Me_2PF\\ Me_2PCl\\ Me_2PBr\\ \end{array}$	$\begin{array}{c} (10,\ 30)\\ (10,\ 52)\\ (10,\ 30)\\ (10)\\ (17)\\ (10)\\ (17)\\ (10,\ 17)\\ (10,\ 17)\\ (10) \end{array}$	9,62 11,15 9,90 9,1 9,32 9,79 9,35 9,15 9,24
$egin{array}{c} NF_3 \ NCl_3 \ AsF_3 \ AsCl_3 \ AsBr_3 \ AsJ_3 \ SbF_3 \ SbCl_3 \ SbBr_3 \ SbBr_3 \ SbBr_3 \ SbJ_3 \ \end{array}$	(3, 4, 5)(3)(10, 3)(3, 9)(9)(10, 9)(10)(9)(9, 10)(9, 10)	$13,73 \\ 10,7 \\ 12,96 \\ 10,85 \\ 10,16 \\ 9,28 \\ 12,54 \\ 10,84 \\ 10,04 \\ 9,18 \\$	$\begin{array}{c} (\mathrm{CF}_3)_2\mathrm{PCl}\\ (\mathrm{CF}_3)_2\mathrm{PJ}\\ \mathrm{F}_2\mathrm{PH}\\ \mathrm{F}_2\mathrm{PCl}\\ \mathrm{F}_2\mathrm{PBr}\\ \mathrm{F}_2\mathrm{PJ}\\ (\mathrm{t}\mathrm{-Bu})_2\mathrm{PF}\\ (\mathrm{CF}_3)_2\mathrm{PCN} \end{array}$	(52) (10) (31) (31) (31) (31) (17) (29)	11,1310,1011,011,510,8610,1 $8,511,74$	${ m CF_3PCl_2}\ { m CF_3PJ_2}\ { m CF_3PBr_2}\ { m CF_3PBr_2}$ tert-BuPF $_2$ ${ m CF_3P({ m CN})_2}$	(52) (10) (17) (29)	10,70 9,50 10,23 9,65 11,79

Literaturzitate in Klammern.

erhält man unter bestimmten Annahmen (s. u.) für die konjugative Wechselwirkung von "lone pair"mit Substituentenorbitalen ($\beta_{n/\mathbf{R}}$) in Verbindungsreihen $\mathbf{R}_n \mathbf{EH}_{3-n}$ eine funktionale Abhängigkeit der Ionisierungspotentiale IE₁ vom Substitutionsgrad n:

$$\beta(n\mathbf{R}) + (3-n)\mathbf{H} = \sqrt{n}\beta_{\mathbf{R}} + \sqrt{3-n}\beta_{\mathbf{H}}$$

oder

 $\mathbf{3} \mathbf{R} : \mathbf{2} \mathbf{R} : \mathbf{R} = \sqrt{\mathbf{3}} : \sqrt{\mathbf{2}} : \mathbf{1}.$

Annahmen:

a) $\langle \varphi_{\mathbf{R}} | \mathcal{H} | \varphi_{\mathbf{H}} \rangle = 0$

- b) $a_{n_{\mathbf{E}}} = \text{const.}$ für $\mathbf{R}_n \mathbf{E} \mathbf{H}_{3-n} = \mathbf{I} \mathbf{E}_1 (\mathbf{H}_3 \mathbf{E})$
- c) $\beta_{\rm EH} < \beta_{\rm ER}$

$$egin{aligned} &\mathbf{R_1} + \mathbf{R_2} + \mathbf{R_3} \colon \ η &= \langle arPsi_n | \mathscr{K} | \sqrt{rac{1}{3}} \left(arphi_{\mathbf{R_1}} + arphi_{\mathbf{R_2}} + arphi_{\mathbf{R_3}}
ight)
angle \ & ext{ wenn } arphi_{\mathbf{R_1}} riangleq arphi_{\mathbf{R_2}} riangleq arphi_{\mathbf{R_3}} \end{aligned}$$

$$\begin{split} \mathbf{R}_{1} &= \mathbf{R}_{2} = \mathbf{R}_{3} \text{:} \\ \beta_{3\text{ER}} &= \sqrt{\frac{1}{3}} \cdot 3 \left\langle \boldsymbol{\varPhi}_{n} | \boldsymbol{\mathscr{R}} | \boldsymbol{\varphi}_{\text{R}} \right\rangle = \sqrt{3} \ \boldsymbol{\beta}_{\text{ER}} \\ \beta_{2\text{ER}^{+}\text{EH}} &= \boldsymbol{\beta}_{\text{EH}} + \sqrt{2} \ \boldsymbol{\beta}_{\text{ER}} \\ \boldsymbol{\beta}_{\text{ER}^{+}\text{2\text{EH}}} &= \sqrt{2} \ \boldsymbol{\beta}_{\text{EH}} + \boldsymbol{\beta}_{\text{ER}} \\ \boldsymbol{\beta}_{3\text{EH}} &= \sqrt{3} \ \boldsymbol{\beta}_{\text{EH}} \end{split}$$

Für zwei verschiedene β -Werte ist in Abb. 5 der Typ der parabolischen Korrelationslinie ("Sättigungskurve") (gepunktete Linien) verzeichnet. Die erwartungsgemäß kleineren Wechselwirkungsintegrale für z.B. Silylsubstituenten ($\beta_{E/SIR_s} < \beta_{E/CR_s}$) werden dabei zufriedenstellend reproduziert. Abweichungen vom berechneten Verlauf (CF₃, F) können auf einen dominierenden induktiven Substituenteneffekt zurückgeführt werden.

Dabei scheint die Annahme eines sich linear ändernden induktiven Effekts für sukzessive Substitution von H in H₃E gegen R eine gute Näherung zu sein; die resultierende experimentelle Korrelationslinie wäre dann durch Superposition aus der oben abgeleiteten "Parabel" für die mesomere Wechselwirkung und einer Geraden entstanden, deren Steigung den relativen induktiven Effekt anzeigt. Eine lineare Änderung der ersten Ionisierungspotentiale $(n = 0 \rightarrow 3)$ ist nur bei sehr kleinen β_{ER} -Parametern zu erwarten. Korrelationen z. B. mit Taft-Konstanten (bei $\mathbb{R}_n NH_{3-n})^{16}$ sind deshalb für $\mathbb{R} = Alkyl$ nach Abb. 5 nicht zulässig, und die so abgeleiteten Substituenteneffekte nicht uneingeschränkt auf PE-spektroskopische Probleme übertragbar (vgl. ³⁷).

Während bei den Hydriden noch die Molekültopologie den Sättigungscharakter der Korrelationslinien bestimmt, gibt es für $n_{\rm P}$ -Energien von

Abb. 6. Zusammenhänge zwischen n_P -Energien (IE₁) trisubstituierter Phosphane PR₃ und Pauling-Elektronegativitäten \varkappa der Substituenten R. (Die Korrelation ist auf die schwarzen Punkte beschränkt.)

 $R_n PHal_{3-n}$ kein allgemein anwendbares Konzept, da der Verlauf der "Kurven" durch die unterschiedlichen Wechselwirkungsparameter ($\beta_{ER} \leftrightarrow \beta_{ER'}$), überlagert vom induktiven Effekt, bestimmt wird.

Einige $n_{\rm P}$ -Energien von PR₃ (in Abb. 6 durch Kreuze gekennzeichnet) lassen sich mit Elektronegativitäten (PAULING) 38 von Substituenten korrelieren. Für PHal₃ (Hal = $F \rightarrow J$) könnte analog zu anderen Verbindungsklassen^{14,15} ein linearer Zusammenhang \varkappa/IE_1 bestehen. Die weitaus meisten Korrelationsversuche mit PE-Daten beziehen sich auf Basizitäten bzw. Donor/Akzeptor-Vermögen von "lone pair"-Verbindungen^{11-13, 17, 39}. Vorausgegangene PE-Untersuchungen an Modellsystemen $R_3E \rightarrow R_3EX$ (E=N, P; X=O \rightarrow Se, BH₃)^{10,29} haben allerdings gezeigt, daß die Stabilisierung des "freien Elektronenpaares" bei Koordination dem Einfluß der relativen s-Valenzionisierungspotentiale der Akzeptoren X unterliegt und das entstehende σ_{E-X} - nicht nur dem veränderten n_E -Orbital zugeschrieben werden kann.

Die unerwartet konstanten ersten Ionisierungsenergien von Trimethylderivaten EMe₃ (E=N \rightarrow Sb)² konnten durch Energie- und Symmetrie-Eigenschaften von Zentralatom bzw. Molekül gedeutet werden. Eine Korrelation zwischen gleichbleibenden $n_{\rm E}$ -Potentialen und differierenden Basizitäten ist dort natürlich nicht möglich. Ob ein derartiger direkter Zusammenhang dennoch für unterschiedlich substituierte Phosphane hergestellt werden darf, scheint in Anbetracht stark streuender Werte¹⁷ wenig ermutigend.

Experimenteller Teil

Die He (I)-PE-Spektren wurden mit einem Photoelektronen-Spektrometer Perkin Elmer PS 16 aufgenommen und mit Argon/Xenon geeicht (Auflösung 30 meV). CNDO- und EHMO-Rechnungen (mit Einschluß

CNDO- und EHMO-Rechnungen (mit Einschluß von Spin-Bahn-Kopplungskonstanten) wurden auf der Univac 1108 im Zentralen Recheninstitut der Universität Frankfurt durchgeführt. Das EHMO-Programm²⁵ wurde von R. MANNE (Bergen) freundlicherweise zur Verfügung gestellt.

Die Synthesen der Verbindungen folgten meist bekannten Vorschriften: Die Methylchlorphosphane, MePCl₂ (2) und Me₂PCl (11), waren Spenden der Hoechst AG, Werk Knapsack (Hürth) und dienten z. T. als Ausgangsmaterialien zu weiteren Synthesen.

Methyldifluorphosphan (1) erhält man durch Fluorierung von Methyldichlorphosphan (2) mit Antimontrifluorid in absolutem Benzol⁴⁰ (Struktur⁴¹). Methyldibromphosphan (3) und -dijodphos-

phan (4) entstehen beim Überleiten von Methylbromid bzw. -jodid über ein Gemisch aus rotem Phosphor und Kupferpulver im Röhrenofen (280 bis 350 °C)⁴². Die Darstellung von Methyldihalogenarsanen⁴³ (5)-(7) erfolgt am besten durch Reduktion von käuflichem Natrium-Methanarsonat (MeAs(O)(ONa₂), Merck/Darmstadt) mit SO₂ in konzentrierter HCl-, HBr- bzw. salzsaurer KJ-Lösung. Für kleine Mengen von MeAsCl₂ (5) und MeAsBr₂ (6) empfiehlt sich der Halogenaustausch über $MeAsJ_2$ (7) mit entsprechenden Silberhalogeniden in Benzol. Methyldijodstibin (8) entsteht aus Dimethyljodstibin (18) durch Umsetzung mit Jod⁴⁴. Trifluormethyldibrom-phosphan (9) stellte R. DE-MUTH (Braunschweig) freundlicherweise zur Ver-fügung (Darstellung^{42a, 45}).

Die Synthese von Dimethylchloramin (10) gelingt durch Chlorieren von Dimethylamin mit Bleichlauge⁴⁶ (Struktur⁴⁷). Dimethylchlor- (12) und -bromarsane (15) lassen sich z. B. über Dimethyljodarsan (17) durch Halogenaustausch mit Silberhalogeniden

- ¹ II. Mitteilg.: S. ELBEL und H. TOM DIECK, Inorg.
- Chem. (1976), im Druck. ² S. ELBEL, H. BERGMANN und W. ENSSLIN, J. C. S. Faraday II 70, 555 [1974]
- ³ NF₃, NCl₃, PF₃, PCl₃, PBr₃, AsCl₃: A. W. POTTS, H. J. LEMPKA, D. G. STREETS und W. C. PRICE, Phil. Trans. Roy. Soc. London A 268, 59 [1970]. ⁴ NF₃: P. J. BASSETT und D. R. LLOYD, Chem. Phys.
- Lett. 6, 166 [1970].
- NF3, PF3, PCl3: P. J. BASSETT und D. R. LLOYD. J. C. S. Dalton, 1972, 248. 6 PF₃: a) J. C. GREEN, D. I. KING und J. H. D. ELAND,
- Chem. Commun. 1970, 1121; b) J. P. MAIER und D. W. TURNER, J. C. S. Faraday II 68, 711 [1972].
 ⁷ PCl₃, PBr₃: P. A. Cox, S. Evans, A. F. ORCHARD, N. V. RICHARDSON und P. J. ROBERTS, Faraday
- Disc. Chem. Soc. 54, 28 [1972].
- ⁸ PJ₃: J. L. BERKOSKY, F. O. ELLISON, T. H. LEE und J. W. RABALAIS, J. Chem. Phys. **59**, 5342 [1973].
- ⁹ AsHal₃, SbHal₃ (Hal = Cl, Br, J): T. H. LEE und J. W. RABALAIS, J. Chem. Phys. 60, 1172 [1974].
- ¹⁰ S. ELBEL, Dissertation, Universität Frankfurt/M. 1974.
- ¹¹ B. G. RAMSAY und F. A. WALKER, J. Amer. Chem. Soc. 96, 3314 [1974].
- ¹² G. LEVY, P. DE LOTH und F. GALLAIS, C. R. Acad. Sci., Ser. C, 278, 1405 [1974].
- ¹³ K. YOSHIKAWA, M. HASHIMOTO und I. MORISHIMA, J. Amer. Chem. Soc. 96, 288 [1974].
- ¹⁴ A. D. BAKER, D. BETTERIDGE, N. R. KEMP und R. E. KIRBY, Int. J. Mass Spectrom. Ion Phys. 4, 90 [1970].
- ¹⁵ J. BERKOWITZ, J. Chem. Phys. 61, 407 [1974].
- ¹⁶ B. W. LEVITT und L. S. LEVITT, Israel J. Chem. 9, 71 [1971].
- ¹⁷ O. STELZER und E. UNGER, Chem. Ber. 108, 1246 [1975].
- 18 a) D. R. LLOYD und N. LYNAUGH, J. C. S. Faraday II, 68, 947 [1972]; b) R. F. LAKE, Spectrochim. Acta 27 A, 1220 [1971]; c) A. B. CORNFORD, D. C. FROST, F. G. HERRING und C. A. MCDOWELL, Canad. J. Chem. 49, 1135 [1971]; d) V. I. VOVNA und F. I. VILESOV, Opt. Spectrosk., 36, 436 [1974]; e) H.

in Benzol gewinnen. Dimethyljodarsan (17) wird aus Dimethylarsinigsäure (Merck/Darmstadt) und KJ in salzsaurer Lösung durch Reduktion mit Schwefeldioxid dargestellt⁴⁸. Dimethylbromphosphan (14) erhält man durch Entschwefelung von Dimethylthiophosphonsäurebromid⁴⁹ in Tri-*n*-butylphosphin oder Spaltung von Tetramethyldiphosphan mit Brom 42a, 50.

Die thermische Zersetzung von Trimethyldihalogenantimon Me_3SbHal2 44 (Hal = Br, J) im Vakuum liefert Dimethylbromstibin (16) und Dimethyljodstibin (18). Beide Verbindungen sind nach einigen Tagen bei Raumtemperatur disproportioniert.

Dimethylchlormethylamin (13) kann über Bis-(dimethylamino)methan (Merck/Darmstadt) mit Acetylchlorid erhalten werden⁵¹. Die Dimethyl-elementhydride (20) und (21) lassen sich durch Reduktion mit LiAlH₄ in Diglym aus ihren Chloriden (11/12) oder Bromiden (14/15) herstellen.

OGATA, H. ONIZUKA, Y. NIHEI und H. KAMADA, Bull. Chem. Soc. Japan 46, 3036 [1973]; f) A. W. POTTS, T. A. WILLIAMS und W. C. PRICE, Faraday Disc. Chem. Soc. 54, 104 [1972].

- 19 W. R. CULLEN, D. C. FROST und W. R. LEEDER,
- J. Fluorine Chem. 1, 227 [1971/72].
 ²⁰ a) C. R. BRUNDLE, M. B. ROBIN und H. BASCH, J. Chem. Phys. 53, 2196 [1970]; b) W. R. HARSH-BARGER, M. B. ROBIN und E. N. LASSETTRE, J. Electron Spectrosc. 1, 328 [1972/73]; c) B. P. PUL-LEN, T. A. CARLSON, W. E. MODDEMANN, G. K. SCHWEITZER, W. E. BULL und F. A. GRIMM, J.
- ²¹ H. J. LEMPKA, T. R. PASSMORE und W. C. PRICE, Proc. Roy. Soc. A 304, 53 [1968].
 ²² a) M. OKUDA und N. JONATHAN, J. Electron
- Spectrosc. 3, 19 [1974]; b) L. J. AARONS, M. BARBER, M. F. GUEST, I. H. HILLIER und J. H. MCCARTNEY, Mol. Phys. 26, 1247 [1973]; c) A. W. POTTS und T. A. WILLIAMS, J. Electron Spectrosc. 3, 3 [1974].
- ²³ a) z. B.: H. BOCK und B. G. RAMSAY, Angew. Chem.
 85, 773 [1973]; b) K. WITTEL, A. HAAS und H. BOCK, Chem. Ber. 105, 3865 [1972].
- ²⁴ a) J. L. DEHMER, J. BERKOWITZ, L. C. CUSACHS und H. S. ALDRICH, J. Chem. Phys. **61**, 594 [1974]; b) M. F. LAPPERT, J. B. PEDLEY, G. J. SHARP und N. P. C. WESTWOOD, J. Electron. Spectrosc. **3**, 237 [1974].
- ²⁵ a) K. WITTEL, Dissertation, Universität Frank-furt/M. 1974; b) K. WITTEL und R. MANNE, Theor. Chim. Acta 33, 347 [1974].
- ²⁶ M. C. GREEN, M. F. LAPPERT, J. B. PEDLEY, W. SCHMIDT und B. T. WILKINS, J. Organometal. Chem. 31, C 55 [1971].
- 27 S. Elbel, H. Tom Dieck, R. Demuth und J. Grobe, unveröffentlicht.
- 28 C. R. BRUNDLE, M. B. ROBIN, N. A. KUEBLER und H. BASCH, J. Amer. Chem. Soc. 94, 1451 [1972].
- 29 S. ELBEL und H. TOM DIECK, J. C. S. Dalton Transact. (1976), im Druck.
- 30 S. CRADOCK, E. A. V. EBSWORTH, W. J. SAVAGE und R. A. WHITEFORD, J. C. S. Faraday II, 68, 934 [1972].

- ³¹ S. CRADOCK und D. W. H. RANKIN, J. C. S. Faraday II, 68, 940 [1972].
- 32 J. ABSAR und J. R. VAN WAZER, J. Amer. Chem. Soc. 94, 6294 [1972].
- 33 D. R. ARMSTRONG, Inorg. Chim. Acta 13, 121 [1975].
- ³⁴ N. BODOR, J. J. KAMINSKI, S. D. WORLEY, R. J. COLTON, T. H. LEE und J. W. RABALAIS, J. Pharm. Sci. 63, 1387 [1974]
- 35 a) J. P. MAIER und D. W. TURNER, J. C. S. Faraday II, 68, 711 [1972]; b) L. J. AARONS, M. F. GUEST, M. B. HALL und I. H. HILLIER, J. C. S. Faraday II, 69, 643 [1973].
- ³⁶ a) R. H. STALEY und J. L. BEAUCHAMP, J. Amer. Chem. Soc. 96, 6252 [1974]; b) M. S. B. MUNSON, J. Amer. Chem. Soc. 87, 2332 [1965].
- 37 K. N. HOUK, YOU-MIN CHANG und P. S. ENGEL, J. Amer. Chem. Soc. 97, 1824 [1975].
- ³⁸ J. E. HUHEEY, J. Phys. Chem. 69, 3284 [1965].
 ³⁹ J. MÜLLER, K. FENDERL und B. MERTSCHENK, Chem. Ber. 104, 700 [1971].
- ⁴⁰ Methoden der Órganischen Chemie (Houben-Weyl), ed. E. MÜLLER, G. Thieme Verlag, Stuttgart 1963; Bd. 12/1, K. SASSE, Organische Phosphorverbindungen. J. G. RIESS, R. BENDER und J.-C. ELKAIM, Z. Anorg. Allg. Chem. 391, 60 [1972].
- 41 E. G. CODDING, R. A. CRESWELL und R. H. SCHWEN-DEMANN, Inorg. Chem. 13, 856 [1974].
- ⁴² a) L. MAIEF, Helv. Chim. Acta 46, 2026 [1963];
 b) Angew. Chem. 71, 574 [1959].
 ⁴³ a) L. H. LONG, H. J. EMELÉUS und H. V. A.

BRISCOE, J. Chem. Soc. 1946, 1123; b) C. K. BANKS et al., J. Amer. Chem. Soc. 69, 927 [1947]; c) L. MAIER, E. G. ROCHOW und W. C. FERNELIUS, J. Inorg. Nucl. Chem. 16, 213 [1961]; d) E. G. CLAEYS, J. Organometal. Chem. 5, 446 [1966].

- 44 G. T. MORGAN und G. R. DAVIES, Proc. Roy. Soc.
- 110 A, 523 [1926]. 45 F. W. BENNETT, H. J. EMELÉUS und R. N. HASZEL-DINE, J. Chem. Soc. 1953, 1565.
- 46 a) K.-L. KOMPPA, Dissertation, Universität München 1965, S. 65; b) A. BERG, Ann. Chim. 3, 308 [1894].
- ⁴⁷ a) K. Höhne, J. JANDER, M. KNUTH und D. Schlegel, Z. Anorg. Allg. Chem. 386, 316 [1971];
 b) P. KOVACIÈ, M. K. LOWERY und K. W. FIELD, Chem. Rev. 70, 639 [1970].
- ⁴⁸ R. D. FELTHAM, A. KASENALLY und R. S. NYHOLM, J. Organometal. Chem. 7, 285 [1967].
- ⁴⁹ a) L. MAIER, Chem. Ber. 94, 3051 [1961]; b) W. KUCHEN und H. BUCHWALD, Angew. Chem. 71, 162 [1959].
- ⁵⁰ L. MAIER, Helv. Chim. Acta 47, 2137 [1964].
- ⁵¹ H. BÖHME und K. HARTKE, Chem. Ber. 93, 1305 [1960].
- 52 A. H. COWLEY, M. J. S. DEWAR, J. W. GILJE, D. W. GOODMAN und J. R. SCHWEIGER, Chem. Commun. 1974, 340.
- 53 a) A. W. POTTS und W. C. PRICE, Proc. Roy. Soc. (A) 326, 181 [1972]; b) G. R. BRANTON, D. C. FROST, C. A. MCDOWELL und I. A. STENHOUSE, Chem. Phys. Lett. 5, 1 [1970].