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Abstract

We solve the coupled Wong Yang–Mills equations for bothU(1) andSU(2) gauge groups and anisotropic particle moment
distributions numerically on a lattice. For weak fields with initial energy density much smaller than that of the partic
confirm the existence of plasma instabilities and of exponential growth of the fields which has been discussed pr
Also, theSU(2) case is qualitatively similar toU(1), and we do find significant “abelianization” of the non-Abelian fie
during the period of exponential growth. However, the effect nearly disappears when the fields are strong. This is be
the very rapid isotropization of the particle momenta by deflection in a strong field on time scales comparable to tha
development of Yang–Mills instabilities. This mechanism for isotropization may lead to smaller entropy increase than c
and multiplication of hard gluons, which is interesting for the phenomenology of high-energy heavy-ion collisions.
 2005 Elsevier B.V.
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High-energy heavy-ion collisions release a la
amount of partons from the wavefunctions of the c
liding nuclei. Partons with large transverse mome
originate from high-Q2 hard interactions which ca
be computed from perturbative QCD[1]. On the other
hand, partons with “small” transverse momenta on
order of the so-called saturation momentumQs (given
by the square root of the total color charge density
unit rapidity and unit area in the incoming nuclei) a
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much more abundant ifQs � ΛQCD and are bette
viewed as a classical non-Abelian field[2].

If the presence of the soft classical field is n
glected, which amounts to assuming thatQs ∼ ΛQCD,
the time-evolution of the hard partons after they co
on-shell can be studied by means of the Boltzm
equation with a collision kernel, which is the so-call
parton-cascade approach[3,4]. The collision kernel
could be truncated at the level of elastic binary c
lisions (perhaps with a summation of time-like a
space-like parton showers in the leading logarithm
approximation[3]); recently, an attempt to fully in
clude 2↔ 3 processes beyond the relaxation ti
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and leading-logarithmic approximations has also b
made[5].

On the other hand, for large nuclei and at high en
gies the saturation scaleQs is expected to grow muc
larger thanΛQCD [2,6] and so the presence of the cla
sical field can no longer be neglected. The “bottom
scenario”[7] generalizes the parton cascade desc
tion of the time-evolution after the collision to includ
the soft classical modes, too. Soft gluon radiation
found to be the dominant process leading to equilib
tion [5,7,8] (see also papers by Wong in[4]).

Recently, it has been argued that collective p
cesses due to the soft gauge field should be ta
into account. Specifically, QCD plasma instabiliti
may develop due to anisotropic distributions of
leased hard partons[9] and modify the “bottom-up
scenario” significantly[10]. The hard loop effective
action for anisotropic hard modes was formulated
[11] and unstable soft modes were analyzed in[12].
Numerical studies of its static limit[13] revealed the
interesting tendency of the non-Abelian gauge fie
to “abelianize” during the stage of instability in th
sense that locally commutators become much sm
than the fields themselves (see below). The “abel
ization” has also been seen in solutions of the full n
linear hard loop effective action[14]. It is argued that
because of abelianization, non-Abelian effects sho
not cause instabilities to saturate; rather, similarly
the Abelian case, the fields should continue to gr
until their energy density becomes comparable to
of the hard modes[13–15], i.e., until the growing fields
begin to have a significant effect on the dynamics
the particles.

It is interesting to note the following differenc
between isotropization by propagation of particles
a strong random field versus that via scattering
gluon multiplication. Namely, in the absence of a co
sion kernel the entropy of any specific initial conditi
is conserved, while the standard parton cascade
proach produces additional entropy[4,16]. An ensem-
ble average over sufficiently random initial field co
figurations can nevertheless increase the entropy o
soft modes by a moderate (logarithmic) amount; t
follows from the equivalence of the averaged class
field description to a Boltzmann equation to lead
and subleading orders in the occupation number[17].

In heavy-ion collisions, it might not be necessa
to achieve “true” thermalization in the sense of ma
imizing the entropy during the first few fm/c of the
reaction; isotropization could be sufficient[15]. In
fact, data[18] from RHIC indicate that the number o
charged particles per participantin the final stateis
only ∼ 30% lower in central d+ Au collisions than it
is in central Au+ Au. This perhaps indicates that th
equilibration process expected to occur in Au+ Au
(but not in d+ Au) does not produce a large amount
entropy[19]. Hence, the mechanism of isotropizati
of particles via strong fields could be very interest
for the phenomenology of heavy-ion collisions.

In this Letter we solve the classical transport eq
tion for hard gluons with non-Abelian color chargeQa

in the collisionless approximation[20],

(1)

pµ
[
∂µ − gQaFa

µν∂
ν
p − gfabcA

b
µQc∂Qa

]
× f (x,p,Q) = 0.

It is coupled to the Yang–Mills equation

(2)DµFµν = jν = g

∫
d3p

(2π)3
dQQvνf (x,p,Q),

wheref (x,p,Q) denotes the one-particle phase sp
distribution function[20]. These equations were show
to reproduce the “hard thermal loop” effective acti
[20] near equilibrium. If fluctuations on top of th
mean fields are not neglected, one obtains a colli
term from their moments[21]. The same set of trans
port equations were also derived within the wor
line formalism for the one loop effective action
QCD [22]; the emergence of classical transport fro
a quantum kinetic equation derived within the clos
time-path formalism was discussed in Ref.[23]. For
recent reviews of semi-classical transport theory
non-Abelian plasmas see Ref.[24]. Furthermore, we
refer to Ref.[25] for a study of particle production an
propagation in Abelian fields, including back-reacti
and collisions in the relaxation time approximatio
The specific point of the present Letter, however, is
study possible non-Abelian plasma instabilities due
anisotropic particle distributions[9–15].

We employ the test-particle method[26], replacing
the continuous distributionf (x,p,Q) by a large num-
ber of test particles:

f (x,p,Q) = 1

Ntest

∑
i

δ(x − xi )(2π)3

(3)× δ(p − pi )δ(Qi − Q),
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wherexi andpi are the coordinates of an individu
test particle. Thisansatzleads to Wong’s equation
[20,27]

(4)
dxi

dt
= vi ,

(5)
dpi

dt
= gQa

i

(
Ea + vi × Ba

)
,

(6)
dQi

dt
= igv

µ
i [Aµ,Qi]

for theith test particle.1

The time evolution of the Yang–Mills field can b
followed by the standard Hamiltonian method[28].
Numerical techniques to solve the classical field eq
tions coupled to particles have been developed
Ref. [29]. Our update algorithm is closely related
the one explained there which generalizes the Abe
version of the charge conservation method in part
simulations[30].

In the following, we assume that the fields only d
pend on time and on one spatial coordinate,x, which
reduces the Yang–Mills equations to 1+1 dimensions.
The hard modes represented by classical particles
allowed to propagate in three spatial dimensions.
simplicity, we also restrict ourselves to the case w
out expansion here; the more realistic case with lon
tudinal expansion[31] will be addressed in the future

The initial anisotropic phase-space distribution
hard gluons is taken to be

(7)f (p,x) ∝ e
−

√
p2

y+p2
z /phard

δ(px).

This represents a quasi-thermal distribution in two
mensions, with “temperature”phard which now takes
over the role of the saturation momentum mention
above. We have checked explicitly that no instab
ity occurs when the particle distribution is taken to
isotropic.

The initial field amplitudes are sampled from
Gaussian distribution with a width tuned to a giv
initial energy density. We solve the Yang–Mills equ
tions in A0 = 0 gauge and also setA = 0 (i.e., all
gauge links= 1) at timet = 0; the initial electric field

1 In our numerical calculations we redefine the HamiltonianH ′ =
g2H , the fieldsA′

µ = gAµ and the particle phase space dens

f ′ = g2f in order to remove the gauge coupling from the clas
cal theory.
is taken to be polarized in a random direction tra
verse to thex-axis. Gauss’ law is then used to obta
the initial charge distribution. All results shown belo
were obtained using a lattice withN = 512 sites; we
have checked the numerical accuracy by comparin
N = 256, 1024 lattices (for the same physical pa
meters) and by monitoring conservation of the to
energy and of Gauss’ law. The total energy was c
served to within 5×10−4 (5×10−3) over the course o
the simulations for the weak (strong) field initial co
ditions, and the maximal violation of Gauss’ law w
10−9 for SU(2) and 10−33 for U(1) (in lattice units).

Before coming to our results, we also comment
the occurence of “anomalous Cherenkov radiatio
This corresponds to anomalous hard radiation fr
soft modes which may occur for simulations on a d
crete lattice, as the dispersion relation of the fie
may contain real space-like modes. For example,
ing ω(k) = k for free fields in the continuum lead
to the dispersion relationω(k) = 2|sin(ka/2)|/a on
a one-dimensional lattice (|k| < π/a). Consequently
hard field modes withk ∼ 1/a would then get popu
lated on the lattice because their “mass”

√
ω2 − k2 is

imaginary. The situation could perhaps be improv
by employing higher-order discretization schemes
the Yang–Mills action or by damping hard modes e
ponentially att = 0. However, we have not done so
present. Our tests with different lattices do not in
cate a significant dependence of either the growth
the saturation of the instability on the lattice spaci
Also, our solutions for isotropic particle momentu
distributions appear to be stable when the numbe
test particles is taken to infinity. A possible physic
reason for this observation could be that interacti
among soft modes withk � 1/a and with large occu
pation numbers, and interactions of those modes
the particles, which give the largest contribution to
total energy (see below), actually dominate. Nevert
less, this effect may deserve a more careful nume
study in the future.

We first show results for a large separation of init
particle and field energy densities which should qu
itatively resemble the conditions studied in[13–15].
The results shown inFig. 1corresponds to a lattice o
physical sizeL = 40 fm, a hard scalephard= 10 GeV
and a particle density ofn/g2 = 10 fm−3.

For the U(1) case we observe a rapid expone
tial growth of the magnetic field energy density sta
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Fig. 1. Time evolution of the kinetic (particle), magnetic and el
tric energy densities in GeV/fm3 for U(1) andSU(2) gauge group,
respectively.

ing at aboutt/L ≈ 0.1, turning into a slower growth
at t/L ≈ 0.5; at this point the magnetic fields ha
grown sufficiently to affect the particles which vis
bly start loosing energy. The electric field grows le
rapidly and equipartitioning is not achieved within t
depicted time interval. This indicates that the fie
strengths are still too high for linear response to ap
In the non-Abelian case the growth of the magne
field saturates earlier, and the electric field has co
parable strength by the end of the simulation. Al
it appears that the saturation of the magnetic in
bility occurs before it has a noticeable effect on
particles since their energy density is nearly const
Nevertheless, at a purely qualitative level theU(1) and
SU(2) simulations are not vastly different, as anti
pated in[13].

This is analyzed further inFig. 2, showing the
growth of the rms average

(8)φrms=
[ L∫

0

dx

L

(
Aa

yA
a
y + Aa

zA
a
z

)]1/2

,

Fig. 2. The average amplitudeφrms (in units of GeV) and the relative
sizeC̄ of commutators as a function of time; physical parameter
in Fig. 1.

and the average of the relative size of the field co
mutator defined by[13]

(9)C̄ =
L∫

0

dx

L

√
Tr((i[Ay,Az])2)

Tr(A2
y + A2

z)
.

The behavior ofφrms is similar to that of the field en
ergy density shown above. Initially,̄C is constant bu
then starts dropping exponentially when the magn
instability sets in, indicating the partial “abelianiz
tion” of the fields[13,14]. The rate by whichC̄ drops
in the intermediate stage is roughly comparable to
growth rate ofφrms; also, the abelianization appears
stop afterC̄ dropped by about one order of magnitud
at about the same time when the exponential growt
the fields and ofφrms saturates.

Finally, in Fig. 3 we show the time evolution o
the longitudinal and transverse components of
energy–momentum tensor of the particles, i.e., the
netic pressure. For bothU(1) andSU(2) we observe
a rapid growth of the longitudinal pressure, which
zero initially. Again, the rate is somewhat smaller
the non-Abelian case. The approach to “isotropi
tion” of the kinetic pressure is clearly correlated
the stage of exponential growth of the soft fields s
before[15]. However, for both casesTxx remains sig-
nificantly smaller than the transverse component
times� L.

The initial conditions above were chosen such
to verify qualitatively the picture emerging in the ha
loop approximation, where the field energy density
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Fig. 3. Transverse and longitudinal components of the ene
momentum tensor of the particles for the simulation correspon
to Figs. 1, 2(weak field).

(and remains) much smaller than that of the partic
and so the back-reaction can be neglected[13–15]. In
the color glass condensate model of high-energy
lisions one does not expect such a strong separa
of energy densities, however. Since our numerical
lution includes the back-reaction of the fields on
particles, we study the situation with stronger fie
next.

Specifically, the simulations below were perform
with the following set of physical parameters: leng
L = 10 fm, hard scalephard= 1 GeV, particle density
n/g2 = 500 fm−3 and an initial field energy density o
about 20 GeV/fm3.

Fig. 4 shows the time evolution of the energy de
sities for these initial conditions. This case clearly d
fers from the weak-field limit shown before. Over t
time interval shown, the electric field energy dens
is practically constant for bothU(1) andSU(2). The
Abelian magnetic field does exhibit a slow grow
draining some energy from the particle reservoir.
SU(2), however, after a short initial growth the ma
netic field energy decreases again, to saturate p
much at its initial value. Therefore, the particle ene
density is also more or less constant over the depi
time interval.

Fig. 5 confirms this observation via theφrms ob-
servable: the initial growth saturates much earlier t
before. Similarly, the average commutatorC̄ stays
constant for some time then drops by about a fa
5 (during the period where the magentic field drop
Fig. 4. Time evolution of the kinetic and field energy densities
strong initial fields.

Fig. 5. Time evolution ofφrms andC̄ in the strong field case.

and saturates at≈ 10%, which is an order of magn
tude larger than for the weak field case fromFig. 2.
This indicates a much smaller degree of “abeliani
tion” for strong fields.

Perhaps surprisingly,Fig. 6 nevertheless shows
very rapid isotropization of the kinetic pressure
bothU(1) andSU(2) (note thatt/L = 0.1 corresponds
to t = 1 fm in physical units for this lattice). Moreove
the degreeof isotropization is much higher, i.e., th
transverse and longitudinal pressures are closer th
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Fig. 6. Transverse and longitudinal components of the ene
momentum tensor of the particles for the simulation correspon
to Figs. 4, 5(strong field).

Fig. 3. The very fast and nearly complete isotropiz
tion is, of course, the reason why field instabiliti
cannot be sustained over a significant period of t
in this case. It is caused by the bending of the part
trajectories in the strong field which is very diffe
ent from conventional parton cascade transport w
small-angle perturbative scattering (and no field). T
random initial fields then cause a rapid isotropizat
of the particle momenta via Eq.(5). Note that this does
not require hard modes in the fields, which inde
would violate the assumed separation of momen
scales, but large field amplitudes.

In summary, we have studied instabilities in t
coupled Wong Yang–Mills equations for strong
anisotropic initial particle momentum distribution
For bothU(1) and SU(2) gauge groups we do ob
serve a period of exponential growth of the fields wh
their initial energy density is far less than that of t
hard modes (particles). This, in turn, leads to par
isotropization of the particle momentum distributio
and of the kinetic pressure. Although we find som
what smaller field growth and isotropization rates
the non-Abelian case, we nevertheless qualitativ
confirm the picture developed in[13,14] in that the
non-Abelian fields “abelianize” efficiently during th
period of exponential growth.

For large initial field amplitudes, corresponding
a smaller ratio of initial particle to field energy den
ties, our results are qualitatively different. We obse
a very rapid isotropization of the particle momentu
distributions which is due to bending of their traje
tories in the strong fields on a time-scale that is
evant for the physics of high-energy collisions. Th
however, inhibits the development of instabilities
the Yang–Mills fields. Nevertheless, these results,
suggest that the presence of the strong non-Abe
fields should be taken into account to understand
process of isotropization in the early stages of hi
energy collisions.

Note added

After this manuscript was submitted for public
tion, a paper appeared[32] which presents an ana
lytical discussion of a possible effective potential
anisotropic QCD plasmas beyond the hard loop
proximation. Also, a modified “bottom-up” scenar
for gluon thermalization in high-energy heavy-ion c
lisions appeared[33].
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