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Abstract

We solve the coupled Wong Yang—Mills equations for bGil1) andSU(2) gauge groups and anisotropic particle momentum
distributions numerically on a lattice. For weak fields with initial energy density much smaller than that of the particles we
confirm the existence of plasma instabilities and of exponential growth of the fields which has been discussed previously.
Also, theSU(2) case is qualitatively similar t&/ (1), and we do find significant “abelianization” of the non-Abelian fields
during the period of exponential growth. However, the effect nearly disappears when the fields are strong. This is because of
the very rapid isotropization of the particle momenta by deflection in a strong field on time scales comparable to that for the
development of Yang—Mills instabilities. This mechanism for isotropization may lead to smaller entropy increase than collisions
and multiplication of hard gluons, which is interesting for the phenomenology of high-energy heavy-ion collisions.
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High-energy heavy-ion collisions release a large much more abundant i@, > Aqcp and are better
amount of partons from the wavefunctions of the col- viewed as a classical non-Abelian figR].
liding nuclei. Partons with large transverse momenta  If the presence of the soft classical field is ne-
originate from high@? hard interactions which can  glected, which amounts to assuming tigat~ AQcps
be computed from perturbative QGD]. On the other  the time-evolution of the hard partons after they come
hand, partons with “small” transverse momenta on the on-shell can be studied by means of the Boltzmann
order of the so-called saturation momentgm(given equation with a collision kernel, which is the so-called
by the square root of the total color charge density per parton-cascade approa¢®,4]. The collision kernel
unit rapidity and unit area in the incoming nuclei) are could be truncated at the level of elastic binary col-
lisions (perhaps with a summation of time-like and
space-like parton showers in the leading logarithmic
approximation[3]); recently, an attempt to fully in-
E-mail addressynara@th.physik.uni-frankfurt.dgr. Nara). clude 2« 3 processes beyond the relaxation time
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and leading-logarithmic approximations has also been imizing the entropy during the first few fra of the
made[5]. reaction; isotropization could be sufficiefit5]. In
On the other hand, for large nuclei and at high ener- fact, datg18] from RHIC indicate that the number of
gies the saturation scafg, is expected to grow much  charged particles per participaim the final stateis
larger thandqcp [2,6] and so the presence of the clas- only ~ 30% lower in central d- Au collisions than it
sical field can no longer be neglected. The “bottom-up is in central Aui+ Au. This perhaps indicates that the
scenario”[7] generalizes the parton cascade descrip- equilibration process expected to occur in AuvAu
tion of the time-evolution after the collision to include (but notin d+ Au) does not produce a large amount of
the soft classical modes, too. Soft gluon radiation is entropy[19]. Hence, the mechanism of isotropization
found to be the dominant process leading to equilibra- of particles via strong fields could be very interesting
tion [5,7,8] (see also papers by Wong[ii). for the phenomenology of heavy-ion collisions.
Recently, it has been argued that collective pro- In this Letter we solve the classical transport equa-
cesses due to the soft gauge field should be takention for hard gluons with non-Abelian color char@é
into account. Specifically, QCD plasma instabilities in the collisionless approximatida0],
may develop due to anisotropic distributions of re- u 4 ey b e
leased hard partoni®] and modify the “bottom-up 7 [0 — 8 Q" Fi,0)) — 8fanc A, Q001 ]
scenario” significanthy{10]. The hard loop effective x f(x,p,Q)=0. Q)
action for anisotropic hard modes was formulated in
[11] and unstable soft modes were analyzedli.
Numerical studies of its static lim[iL3] revealed the d3p
interesting tendency of the non-Abelian gauge fields PuF"" =j" = g/ WdQ Ov'f(x,p,Q), (2)
to “abelianize” during the stage of instability in the )
sense that locally commutators become much smaller Wheref (x, p, Q) denotes the one-particle phase space
than the fields themselves (see below). The “abelian- distribution functiof20]. These equations were shoyvn
ization” has also been seen in solutions of the full non- {0 reproduce the *hard thermal loop” effective action
linear hard loop effective actiofd4]. Itis argued that, ~ [20] near equilibrium. If fluctuations on top of the
because of abelianization, non-Abelian effects should Méan fields are not neglected, one obtains a collision
not cause instabilities to saturate; rather, similarly to €M from their momentf21]. The same set of trans-
the Abelian case, the fields should continue to grow POrt equations were also derived within the world-
until their energy density becomes comparable to that lin€ formalism for the one loop effective action of
of the hard modefi 3-15] i.e., until the growing fields ~ QCD [22]; the emergence of classical transport from

begin to have a significant effect on the dynamics of & guantum kinetic equation derived within the closed-
the particles. time-path formalism was discussed in REf3]. For

It is interesting to note the following difference recent reviews of semi-classical transport theory for

between isotropization by propagation of particles in Non-Abelian plasmas see R¢24]. Furthermore, we
a strong random field versus that via scattering and réfer to Ref[25] for a study of particle production and
gluon multiplication. Namely, in the absence of a colli- Propagation in Abelian fields, including back-reaction
sion kernel the entropy of any specific initial condition @nd collisions in the relaxation time approximation.
is conserved, while the standard parton cascade ap-! "€ Specific point of the present Letter, however, is to
proach produces additional entrojy16]. An ensem- stu_dy p05_5|ble r_10n—A_beI_|an _plasma instabilities due to
ble average over sufficiently random initial field con- @nisotropic particle distributior[S-15]. _
figurations can nevertheless increase the entropy of the e employ the test-particle meth{is], replacing
soft modes by a moderate (logarithmic) amount; this the continuous distributiogii(x, p, Q) by alarge num-
follows from the equivalence of the averaged classical Per of test particles:
field description to a Boltzmann equation to leading 1 3
and subleading orders in the occupation nunjbe}. flx. p, Q)= New D 8x —xi)(27)

In heavy-ion collisions, it might not be necessary esti
to achieve “true” thermalization in the sense of max- x8(p—pi)d(Qi — 0), 3)

It is coupled to the Yang—Mills equation
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is taken to be polarized in a random direction trans-
verse to thec-axis. Gauss’ law is then used to obtain

wherex; and p; are the coordinates of an individual
test particle. Thisansatzleads to Wong's equations

[20,27] the initial charge distribution. All results shown below
dx; were obtained using a lattice withi = 512 sites; we
=v;, 4 have checked the numerical accuracy by comparing to
dd; N = 256, 1024 lattices (for the same physical para-
L =g0f (E“ +v; x B”), (5) meters) and by monitoring conservation of the total
dt energy and of Gauss’ law. The total energy was con-
% =igv[Ay, Qi (6)  servedtowithin 5 10~* (5x 10~3) over the course of

the simulations for the weak (strong) field initial con-
for theith test particlé ditions, and the maximal violation of Gauss’ law was
The time evolution of the Yang—Mills field can be  10~° for SU(2) and 10733 for U (1) (in lattice units).
followed by the standard Hamiltonian meth{B]. Before coming to our results, we also comment on
Numerical techniques to solve the classical field equa- the occurence of “anomalous Cherenkov radiation”.
tions coupled to particles have been developed in This corresponds to anomalous hard radiation from
Ref. [29]. Our update algorithm is closely related to soft modes which may occur for simulations on a dis-
the one explained there which generalizes the Abelian crete lattice, as the dispersion relation of the fields
version of the charge conservation method in particle may contain real space-like modes. For example, tak-
simulationg30]. ing w(k) = k for free fields in the continuum leads
In the following, we assume that the fields only de- to the dispersion relatiow (k) = 2|sin(ka/2)|/a on
pend on time and on one spatial coordinatewhich a one-dimensional latticék| < r/a). Consequently,
reduces the Yang—Mills equations ta-1 dimensions.  hard field modes witlt ~ 1/a would then get popu-
The hard modes represented by classical particles arelated on the lattice because their “massi? — k2 is
allowed to propagate in three spatial dimensions. For imaginary. The situation could perhaps be improved
simplicity, we also restrict ourselves to the case with- by employing higher-order discretization schemes for
out expansion here; the more realistic case with longi- the Yang—Mills action or by damping hard modes ex-

tudinal expansiof31] will be addressed in the future.
The initial anisotropic phase-space distribution of
hard gluons is taken to be

F(px) oce VIR ™
This represents a quasi-thermal distribution in two di-
mensions, with “temperaturejnarg which now takes
over the role of the saturation momentum mentioned
above. We have checked explicitly that no instabil-
ity occurs when the particle distribution is taken to be
isotropic.

The initial field amplitudes are sampled from a
Gaussian distribution with a width tuned to a given
initial energy density. We solve the Yang—Mills equa-
tions in A% = 0 gauge and also set =0 (i.e., all
gauge links= 1) at timer = 0; the initial electric field

1 In our numerical calculations we redefine the Hamiltont&n=
g2H, the fieIdsA;l = gA, and the particle phase space density

' = g2 in order to remove the gauge coupling from the classi-
cal theory.

ponentially att = 0. However, we have not done so at
present. Our tests with different lattices do not indi-
cate a significant dependence of either the growth or
the saturation of the instability on the lattice spacing.
Also, our solutions for isotropic particle momentum
distributions appear to be stable when the number of
test particles is taken to infinity. A possible physical
reason for this observation could be that interactions
among soft modes with <« 1/a and with large occu-
pation numbers, and interactions of those modes with
the particles, which give the largest contribution to the
total energy (see below), actually dominate. Neverthe-
less, this effect may deserve a more careful numerical
study in the future.

We first show results for a large separation of initial
particle and field energy densities which should qual-
itatively resemble the conditions studied [tt3—15]

The results shown ifig. 1 corresponds to a lattice of
physical sizel. = 40 fm, a hard scal@parg= 10 GeV
and a particle density of/g2 = 10 fm 3.

For the U (1) case we observe a rapid exponen-

tial growth of the magnetic field energy density start-
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Fig. 1. Time evolution of the kinetic (particle), magnetic and elec-
tric energy densities in GeNm3 for U (1) andSU(2) gauge group,
respectively.

ing at aboutr/L ~ 0.1, turning into a slower growth
at t/L ~ 0.5; at this point the magnetic fields have
grown sufficiently to affect the particles which visi-
bly start loosing energy. The electric field grows less
rapidly and equipartitioning is not achieved within the
depicted time interval. This indicates that the field
strengths are still too high for linear response to apply.
In the non-Abelian case the growth of the magnetic
field saturates earlier, and the electric field has com-
parable strength by the end of the simulation. Also,
it appears that the saturation of the magnetic insta-
bility occurs before it has a noticeable effect on the
particles since their energy density is nearly constant.
Nevertheless, at a purely qualitative level #hél) and
SU(2) simulations are not vastly different, as antici-
pated in[13].

This is analyzed further irFig. 2, showing the
growth of the rms average

L
¢rms= |:/
0

dx

1/2
% (atas +A3Az>} » ®
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Fig. 2. The average amplitu@ems (in units of GeV) and the relative
sizeC of commutators as a function of time; physical parameters as
in Fig. L

and the average of the relative size of the field com-
mutator defined by13]
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The behavior ofprms is similar to that of the field en-
ergy density shown above. Initiallg is constant but
then starts dropping exponentially when the magnetic
instability sets in, indicating the partial “abelianiza-
tion” of the fields[13,14] The rate by whiciC drops

in the intermediate stage is roughly comparable to the
growth rate ofpyms; also, the abelianization appears to
stop afterC dropped by about one order of magnitude,
at about the same time when the exponential growth of
the fields and ofms saturates.

Finally, in Fig. 3 we show the time evolution of
the longitudinal and transverse components of the
energy—-momentum tensor of the patrticles, i.e., the ki-
netic pressure. For botti (1) and SU(2) we observe
a rapid growth of the longitudinal pressure, which is
zero initially. Again, the rate is somewhat smaller for
the non-Abelian case. The approach to “isotropiza-
tion” of the kinetic pressure is clearly correlated to
the stage of exponential growth of the soft fields seen
before[15]. However, for both caseg,, remains sig-
nificantly smaller than the transverse component for
times< L.

The initial conditions above were chosen such as
to verify qualitatively the picture emerging in the hard
loop approximation, where the field energy density is

- ©
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and so the back-reaction can be negle¢i&d-15] In
the color glass condensate model of high-energy co
lisions one does not expect such a strong separation
of energy densities, however. Since our numerical so- qg
lution includes the back-reaction of the fields on the
particles, we study the situation with stronger fields
next.

Specifically, the simulations below were performed
with the following set of physical parameters: length
L =10 fm, hard scalenarg= 1 GeV, particle density
n/g? =500 fm~2 and an initial field energy density of
about 20 GeYfm3.

Fig. 4 shows the time evolution of the energy den-
sities for these initial conditions. This case clearly dif- r

|- Fig. 4. Time evolution of the kinetic and field energy densities for
strong initial fields.
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fgrs f_rom the weak-field limit shown before. Over the 107, 0.05 01 015 0.2 025
time interval shown, the electric field energy density time t/L/N,
is practically constant for botly (1) and SU(2). The }
Abelian magnetic field does exhibit a slow grovvth, Fig. 5. Time evolution ofyyms andC in the strong field case.

draining some energy from the particle reservoir. For
SU(2), however, after a short initial growth the mag- and saturates at 10%, which is an order of magni-
netic field energy decreases again, to saturate prettytude larger than for the weak field case frétig. 2
much at its initial value. Therefore, the particle energy This indicates a much smaller degree of “abelianiza-
density is also more or less constant over the depictedtion” for strong fields.
time interval. Perhaps surprisingl\Fig. 6 nevertheless shows a
Fig. 5 confirms this observation via thgms ob- very rapid isotropization of the kinetic pressure for
servable: the initial growth saturates much earlier than bothU (1) andSU(2) (note that /L = 0.1 corresponds
before. Similarly, the average commutator stays tor = 1 fmin physical units for this lattice). Moreover,
constant for some time then drops by about a factor the degreeof isotropization is much higher, i.e., the
5 (during the period where the magentic field drops!) transverse and longitudinal pressures are closer than in
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Fig. 6. Transverse and longitudinal components of the energy—
momentum tensor of the particles for the simulation corresponding
to Figs. 4, 5(strong field).

Fig. 3. The very fast and nearly complete isotropiza-
tion is, of course, the reason why field instabilities
cannot be sustained over a significant period of time
in this case. It is caused by the bending of the particle
trajectories in the strong field which is very differ-
ent from conventional parton cascade transport with
small-angle perturbative scattering (and no field). The
random initial fields then cause a rapid isotropization
of the particle momenta via E¢p). Note that this does
not require hard modes in the fields, which indeed
would violate the assumed separation of momentum
scales, but large field amplitudes.

In summary, we have studied instabilities in the
coupled Wong Yang—Mills equations for strongly
anisotropic initial particle momentum distributions.
For bothU (1) and SU(2) gauge groups we do ob-
serve a period of exponential growth of the fields when
their initial energy density is far less than that of the
hard modes (particles). This, in turn, leads to partial
isotropization of the particle momentum distributions
and of the kinetic pressure. Although we find some-
what smaller field growth and isotropization rates for
the non-Abelian case, we nevertheless qualitatively
confirm the picture developed if13,14] in that the
non-Abelian fields “abelianize” efficiently during the
period of exponential growth.

For large initial field amplitudes, corresponding to
a smaller ratio of initial particle to field energy densi-
ties, our results are qualitatively different. We observe
a very rapid isotropization of the particle momentum

A. Dumitru, Y. Nara / Physics Letters B 621 (2005) 89—95

distributions which is due to bending of their trajec-
tories in the strong fields on a time-scale that is rel-
evant for the physics of high-energy collisions. This,
however, inhibits the development of instabilities of
the Yang—Mills fields. Nevertheless, these results, too,
suggest that the presence of the strong non-Abelian
fields should be taken into account to understand the
process of isotropization in the early stages of high-
energy collisions.

Note added

After this manuscript was submitted for publica-
tion, a paper appearg®2] which presents an ana-
lytical discussion of a possible effective potential for
anisotropic QCD plasmas beyond the hard loop ap-
proximation. Also, a modified “bottom-up” scenario
for gluon thermalization in high-energy heavy-ion col-
lisions appearefB3].
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