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Fuzziness at the horizon
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We study the stability of the noncommutative Schwarzschild black hole interior by analysing the propaga-
tion of a massless scalar field between the two horizons. We show that the spacetime fuzziness triggered
by the field higher momenta can cure the classical exponential blue-shift divergence, suppressing the
emergence of infinite energy density in a region nearby the Cauchy horizon.

© 2010 Elsevier B.V. Open access under CC BY license. 
Black holes can exhibit not only an event horizon, namely the
outermost surface that physically separates two noncommunicat-
ing regions of spacetime, but also inner Cauchy horizons. These in-
ternal horizons, null surfaces beyond which spacetime predictabil-
ity breaks down, have the intriguing properties of showing up a
“dual effect” of the conventional red shift, i.e. the blue shift. To
understand the physics of this blue shift, it is common procedure
to study a radiation represented by a scalar field, propagating in
the region between the two horizons. For the sake of clarity we
consider a spherically symmetric spacetime region, whose metric
can be cast in the form

ds2 = r2 dr2

(r+ − r)(r − r−)
− (r+ − r)(r − r−)

r2
dt2 − r2 dΩ2 (1)

where r− is the Cauchy horizon, r+ is the event horizon, i.e. r− <

r < r+ , r plays the role of a temporal coordinate and t is a spatial
one. Introducing tortoise coordinates

r� = −r − 1

κ+
ln(r+ − r) + 1

κ−
ln(r − r−) (2)

where κ± ≡ (r+ − r−)/r2± , we can define null coordinates x− =
−r∗ − t and x+ = −r∗ + t to study the propagation of a scalar field
on this background in terms of the scalar wave equation

gμν∇μ∇νφ = 0. (3)
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The solution of the above equation, let us conclude that the field,
in the vicinity of the Cauchy horizon where x+ → ∞, decays as
φ ∼ x−2�−2+ , with � the multipole order of the field. However this
is no longer true for the energy of the field. Indeed, if we consider,
the field’s rate variation as measured by a free falling observer
(FFO) crossing the Cauchy horizon we obtain the infinite result

φ,μUμ � φ,x+ ẋ+ ∼ x−2�−3+ eκ−x+ (4)

where Uμ is the 4-velocity of the observer (the dot denotes differ-
entiation with respect to proper time). Actually the FFO measures
a flux of energy given by the square of the above quantity, that
is even more divergent. This mechanism of instability due to the
infinite blue shift at the Cauchy horizon can be explained in these
terms. An external observer would require an infinite time to reach
the future null infinity (x+ = ∞) since at the best its velocity is
ẋ+ � 1. On the other hand, a FFO can reach the Cauchy horizon in
a finite proper time, which implies that ẋ+ will diverge as x → ∞.
From Eq. (4) we see that this divergence overcomes the field decay.
As a result the Cauchy horizon is unstable. An extensive study on
this subject has basically led to the general conclusion that this in-
finite amount of energy density at the Cauchy horizon can develop
unbounded curvature, disrupting the spacetime geometry [1–18].

Up to now we have mentioned purely classical solutions, since
the above analyses have concerned quantum effect at the most in
the matter fields propagating on the spacetime manifold. On the
other hand, there is a recent class of black hole solutions (QGBHs)
obtained by means of quantum gravity arguments, like loop quan-
tum black holes [19–21], asymptotically safe gravity black holes
[22,23], generalized uncertainty principle [24,25] and noncommu-

http://dx.doi.org/10.1016/j.physletb.2010.07.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:dbatic@uniandes.edu.co
mailto:nicolini@th.physik.uni-frankfurt.de
http://dx.doi.org/10.1016/j.physletb.2010.07.007
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


D. Batic, P. Nicolini / Physics Letters B 692 (2010) 32–35 33
tative geometry inspired black holes [26–32] (for a review see [33]
and the references therein). Independently on their starting point
the above solutions, converge on a unique qualitative behavior,
namely the absence of any curvature singularity and the presence
of more than a horizon. In other words, as far as some sort of
smearing effect is concerned due to the fuzziness of spacetime in
its quantum gravity regime, the physics of QGBHs has a univer-
sal character. This fact has its equivalent on the thermodynamics
side: the Hawking temperature admits a maximum, followed by
a “SCRAM phase”, a thermodynamic stable shut down, character-
ized by a positive black hole heat capacity. As a consequence, also
for the neutral solution, in place of the runaway behavior of the
temperature, one finds that the evaporation ends up with a zero
temperature extremal black hole, a final configuration entirely gov-
erned by a quantum gravity induced minimal length. This new
scenario of the evaporation implies a further virtue of QGBHs: a fi-
nite temperature prevents any relevant back reaction, namely a self
interaction of the radiated energy with its source. Thus we can
conclude that these solutions are stable versus back reaction and
can describe the entire black hole life until the final configura-
tion. However, having an inner Cauchy horizon is again a source
of concern, since we might have the suspect that the interior of
these black holes is unstable. As a result the solutions could be
no longer singularity free, since the singularity might occur on
the inner horizon rather than at the origin, frustrating the efforts
that vivified the formulations at the basis of their derivation. In
some sense, the instability of QGBHs is even worse with respect
to the conventional classical analogs, since it affects the neutral,
static case too. To address this problem we need to change our
perspective. If we do believe in the tenets of quantum gravity, we
have to accept the possibility for a quantum manifold to provide
a natural ultraviolet cut-off for any field propagating over it in or-
der to prevent any growth of energy beyond Planckian magnitude.
Without loss of generality we will consider the neutral noncom-
mutative spacetime only, even if our analysis holds for the charged
solution too and other QGBHs. Indeed noncommutative geometry
is just one of the possible effective ways to implement a natural
cut-off.

We shall start recalling some properties of the noncommutative
geometry inspired black hole, whose line element is given in [27]

ds2 = (
1 − 2m(r)/r

)
dt2 − dr2

(1 − 2m(r)/r)
− r2 dΩ2 (5)

with the mass function m(r) = 4Mγ (3/2, r2/4θ)/
√

π , where M is
the total mass in the spacetime manifold, θ is a parameter en-
coding noncommutativity and having the dimension of a length
squared, while

γ
(
3/2, r2/4θ

) =
r2/4θ∫
0

dt t1/2e−t (6)

is the incomplete lower gamma function. The above line element is
clearly regular at the origin, where a de Sitter core accounts for the
mean value of the quantum fluctuations of the manifold. The met-
ric admits one, two or no horizon depending on the total mass M ,
respectively equal, larger or smaller than extremal black hole total
mass M0 ≈ 1.9

√
θ . In the following we shall restrict our attention

to the case of two horizons. In this scenario the line element (5)
in the interior region r− < r < r+ can be cast in the form

ds2 = dτ 2

(
2m(τ )

τ − 1)
−

(
2m(τ )

τ
− 1

)
dρ2 − τ 2 dΩ2 (7)

where we introduced the new variables τ and ρ in place of r
and t , since in this region they become a temporal and a spatial
coordinate, respectively. It is convenient to introduce a temporal
tortoise coordinate τ ∗ defined as dτ ∗ = dτ/(2m(τ )/τ − 1) such
that τ ∗ → ±∞ as τ → r± . In the sequel we shall introduce null
coordinates x− ≡ −τ ∗ − ρ and x+ ≡ −τ ∗ + ρ as in [5,6]. Then the
metric reads

ds2 =
(

2m(τ )

τ
− 1

)
dx− dx+ − τ 2 dΩ2. (8)

The event horizon becomes the null hypersurface x− = −∞ and
the left and right branches of the Cauchy horizon r− are null
hypersurfaces x− = ∞ and x+ = ∞, respectively. In the region
between the two horizons (see Fig. 1) we consider the propaga-
tion of a massless scalar test field φ = φ(τ ,ρ,ϑ,ϕ) governed by
Eq. (3) where the metric is associated to the background geome-
try (7). Now it is the time to invoke the noncommutative nature
of the field. Indeed, up to now, noncommutative effects have been
considered to smear the matter generating the background geom-
etry only. We need to extend this procedure to matter propagating
over the manifold too. To this purpose, we follow the formula-
tion proposed in [34–40] to get a modified integral measure in
the momentum representation of the field, which between the two
horizons can be written as

φ
(
τ ∗,ρ,ϑ,ϕ

)

=
∞∑

�=0

�∑
m=−�

∞∫
−∞

dk e−k2θ/4e−ikρ 1

τ
ψ�mk

(
τ ∗)Y�m. (9)

The presence of an exponential damping factor encodes the ef-
fect of the noncommutative UV regularization. Here τ has to be
thought as an implicit function of the variable τ ∗ , while Y�m =
Y�m(ϑ,ϕ) denotes the spherical harmonics. Analogous modifica-
tions have been already efficiently employed in a variety of con-
texts, namely to describe a traversable wormhole sustained by
quantum geometry fluctuations [41], to remove the initial cosmo-
logical singularity and drive the inflation without an inflaton field
[42] and to get corrections to the Unruh thermal bath by means
of a nonlocal deformation of conventional field theories [43–46].
Further contributions concern the modification of the Newton po-
tential in the presence of noncommutative spacetime coordinates
[47], the evaporation of the noncommutative black holes in terms
of gravitational amplitudes for boson and fermion fields [48–50]
and for up to ten spatial dimensions in particle detectors at the
LHC [51] and the calculation of the spectral dimension of a quan-
tum spacetime [52]. As a result we obtain the “radial” function
ψ�mk obeys the equation

d2ψ�mk

dτ ∗2
+ [

k2 − V
(
τ ∗)]ψ = 0 (10)

where the potential is given by

V
(
τ ∗) = gρρ

τ

[
�(� + 1)

τ
+ 2

gρρ

τ
+ ∂τ gρρ

]
. (11)

For our purposes we are interested in the asymptotic solutions of
(10) as τ ∗ → −∞. The potential V (τ ∗) decays exponentially in
time as

V
(
τ ∗) ≈ e∓α±τ ∗

, τ ∗ → ±∞ (12)

where 2α± ≡ ±(dg00/dr)r=r± . Finally, near the Cauchy horizon the
asymptotic solutions of (10) are

e−ikρψ�mk
(
τ ∗) ≈ e±ikx±[

1 + O
(
eα−τ ∗)]

. (13)

Up to exponentially vanishing corrections, the solution are plane
waves approaching the left and right branch of the horizon r− ,
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respectively. As in [7] the energy density in the scalar field φ as
measured by a freely falling observer near a horizon with four ve-
locity Uμ will be proportional to

E = (
φ,αUα

)(
φ,β Uβ

) + 1

2
φ,αφ∗,α

. (14)

Since −τ ∗ ±ρ = const are null surfaces and taking into account for
the form of φ nearby the horizon, we have that the energy density
is dominated by the term |φ,αUα |2. Therefore we can restrict our
analysis to the term φ,αUα only. To this purpose, we need the
form of the velocity vector field associated to the FFO which can
be written as

U = U x− ∂

∂x−
+ U x+ ∂

∂x+
(15)

where

U x± = − τ

2m(τ ) − τ

(
h ∓

√
h2 + 2m(τ ) − τ

τ

)
, (16)

with h a dimensionless parameter. If h > 0 the FFO worldline en-
ters region III from region I and exits region III through the left-
hand branch (x− = ∞) of the inner horizon. If h < 0 the worldline
enters region III from region II and exits through the right-hand
(x+ = ∞) branch of r− . If h = 0 the worldline will move through
the region III passing through the bifurcation points of the hori-
zon r− . In the vicinity of the Cauchy horizon, we have for h > 0

U x+ ≈ 1

2
, U x− ≈ e−α−τ ∗ = eα−(x−+x+)/2 (17)

whereas for h < 0

U x+ ≈ eα−(x−+x+)/2, U x− ≈ 1

2
. (18)

Hence, for h > 0 and asymptotically for x− → ∞ we have

φ,αUα ≈ eα−(x−+x+)/2 ∂φ

∂x−
+ 1

2

∂φ

∂x+
(19)

whereas for h < 0 and x+ → ∞

φ,αUα ≈ 1

2

∂φ

∂x−
+ eα−(x−+x+)/2 ∂φ

∂x+
. (20)

In order that the FFO can measure a nondivergent amount of field
energy density near the r− horizon, the appropriate derivative of
the field times the exponential blue-shift factor must be finite. In
the classical picture [5,7] from the last two relations above one
concludes that the e−ikx+ waves are singular along the left branch
of r− and the eikx− waves become singular along the right branch
of r− . We shall see that due to the noncommutativity of the field,
(19) and (20) stay bounded at the Cauchy horizon. Indeed, we find
that for the left-going component

φ,αUα ∼ x−
θ3/2

eα−(x−+x+)/2e−x2−/θ (21)

which vanishes as x− → ∞, keeping x+ constant. Analogously, we
find for the right-going component

φ,αUα ∼ x+
θ3/2

eα−(x−+x+)/2e−x2+/θ (22)

which vanishes as x+ → ∞, for x− fixed. The above result con-
firms that, probing higher momenta the field basically triggers the
noncommutative nature of the manifold, which shows graininess
and prevents any spacetime resolution beyond the value

√
θ . This
Fig. 1. The Carter–Penrose diagram of the manifold. The conformal diagram of the
maximally extended noncommutative inspired Schwarzschild spacetime. The radii
r± represent the outer and inner horizons, respectively. The central singularity ap-
pearing in the Reissner–Nordström metric is now replaced by a regular de Sitter
core, dotted line. The upper and bottom part of the box indicated by the dashed
line can be identified to make the manifold cyclic in the time coordinate.

let us also conclude that in this framework no mass inflation can
occur. To this purpose, we define

Tab = Einlalb + Eoutnanb (23)

as the two-dimensional section of the stress tensor, which de-
scribes the cross flowing stream of infalling and outgoing of light
like particles following null geodesics. Here la is the radial null vec-
tor pointing inwards, na is the radial null vector pointing outwards,
while Ein and Eout represent the energy density of the fluxes. The
mass inflation is a huge boom of the black hole internal mass
parameter, which becomes classically unbounded at the Cauchy
horizon. Contrary to the intuition, the inflation is due to both the
outflux and the blueshifted influx of a collapsing star as shown in
[9]. On the other hand, in the present framework, energy densities
cannot diverge even at the Cauchy horizon. Therefore, the mass
inflation which is in general proportional to the product T ab Tab
will not take place. The above analysis concerns the leading con-
tribution to the energy density of the field in the vicinity of the
Cauchy horizon along the lines of [5,6]. Since higher order terms
fall off faster, we argue that the stability of QGBH interiors can be
shown in general. However, according to the theory of the stabil-
ity in [3,4], an exponential decay is a mere necessary condition
only: in other words even if each term of the expansion is van-
ishing, their global contribution could yet destabilize the solution.
Furthermore, we have addressed here the most simple case of clas-
sical perturbation of the manifold, while in general the field could
be quantized. In such a case, according to previous contributions
[15], the stress tensor 〈Tab〉 is expected to have an even worse UV
behavior. For the above reasons, we think that, after the present
analysis, further investigations will be necessary, also to include
the other spacetimes within the class of QGBHs.
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