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In this Letter we derive the gravity field equations by varying the action for an ultraviolet complete
quantum gravity. Then we consider the case of a static source term and we determine an exact black
hole solution. As a result we find a regular spacetime geometry: in place of the conventional curvature
singularity extreme energy fluctuations of the gravitational field at small length scales provide an
effective cosmological constant in a region locally described in terms of a de Sitter space. We show that
the new metric coincides with the noncommutative geometry inspired Schwarzschild black hole. Indeed,
we show that the ultraviolet complete quantum gravity, generated by ordinary matter is the dual theory
of ordinary Einstein gravity coupled to a noncommutative smeared matter. In other words we obtain
further insights about that quantum gravity mechanism which improves Einstein gravity in the vicinity
of curvature singularities. This corroborates all the existing literature in the physics and phenomenology
of noncommutative black holes.

© 2010 Elsevier B.V. Open access under CC BY license.
An ultraviolet (UV) complete quantum gravity theory has been
formulated using a diffeomorphism invariant action in which the
gravitational strength is√

G(x) = √
G N F

(�(x)/Λ2
G

)
, (1)

where G N is Newton’s constant, � = gμν∇μ∇ν is the gener-
ally covariant D’Alembertian operator, and F is an entire func-
tion [1]. Moreover, ΛG is a constant gravitational energy scale
and the entire function F has no poles in the finite complex
plane. The quantum gravity perturbation theory expanded against
a fixed Minkowski background spacetime is locally gauge invari-
ant and unitary to all orders. The graviton–graviton and graviton–
matter loops in Euclidean momentum space are finite to all orders.
The graviton tree graphs are point-like and local maintaining the
macroscopic local and causal property of gravity.

The attempts to use noncommutative geometry to deduce phe-
nomenological results from a perturbative expansion in the non-
commutative parameter θ , run into the difficulty that a truncation
of the Moyal �-product makes the theory local and leads to a lack
of renormalizabilty in the quantum gravity version of the theory
[2] (for a general review on the topic see [3]). In contrast, we find
that the nonlocal nature of the vertex function in the perturbative
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UV complete quantum gravity theory does not require a trunca-
tion, retaining its full nonlocality while the graviton is described
by a local, microcausal field and propagator. The same holds true
for the UV complete standard model Feynman rules in which the
interaction of particles is nonlocal but the physical fields and prop-
agators are local and causal [4].

In the following, we investigate the consequences of the UV
complete quantum gravity for black holes. Along the lines in [1]
we start with the four-dimensional action for gravity:

Sgrav = 1

16π

∫
d4x

√−g G−1(x)(R − 2λ), (2)

where we use the signature (− + ++) and λ is the cosmological
constant. The action (2) has a nonlocal character because of the
presence of the term F −2. In the Euclidean momentum space rep-
resentation:

√
G(p2) = √

G N F (p2/Λ2
G) and in addition we require

the on shell condition G(0) = G N . The field equations are obtained
by varying the action (2) with respect to the metric gμν . By ne-
glecting surface terms coming from the variation of the generally-
covariant D’Alembertian [5], we find

F −2(�(x)/Λ2
G

)(
Rμν − 1

2
gμν R

)
= 8πG N Tμν, (3)

where we have set λ = 0. We notice that (3) can be cast in a dif-
ferent form by “shifting” the operator F −2 to the r.h.s. leaving the
l.h.s. in the canonical form, i.e.,

Rμν − 1
gμν R = 8πG N Sμν, (4)
2
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where the tensor

Sμν ≡ F 2(�(x)/Λ2
G

)
Tμν. (5)

We notice that the new source term is conserved, i.e., ∇μSμν = 0.
As a matter of fact, (4) describes Einstein gravity coupled to a gen-
eralized matter source term, while (3) describes the UV complete
quantum gravity produced by ordinary matter. The two interpreta-
tions are physically equivalent.

Our main purpose is to solve the field equations by assum-
ing a static source, i.e., the four-velocity field uμ has only a
non-vanishing time-like component uμ ≡ (u0, �0) u0 = (−g00)−1/2.
The component T 0

0 of the energy–momentum tensor for a static
source is given by [6]

T 0
0 = − M

4πr2
δ(r). (6)

The metric of our spacetime is assumed to be given by the usual
static, spherically symmetric form

ds2 = − f (r)dt2 + dr2

f (r)
+ r2Ω2, (7)

where

f (r) = 1 − 2G(r)M

r
. (8)

In Einstein gravity G(r) = G N and one obtains the Schwarzschild
geometry. To solve field equations we follow the form (4), by de-
termining the generalized matter source term Sμν . The metric
component can be written as

f (r) = 1 − 2G Nm(r)

r
, (9)

where

m(r) = −4π

∫
dr r2 S 0

0. (10)

For later convenience we temporarily adopt free falling Cartesian-
like coordinates and we calculate

S 0
0 = −M F 2(�(x)/Λ2

G

)
δ(�x) ≡ −ρΛG (�x). (11)

The covariant conservation and the additional condition, g00 =
−g−1

rr , completely specify the form of S μ
ν . Before proceeding fur-

ther, we need to specify the form of F within the class of entire
functions. We do not know the unique choice. However, a simple
form of F fulfilling the properties we require is

F
(

p2) = exp

(−p2

2Λ2
G

)
(12)

in Euclidean momentum space [1]. As a check of consistency we
can see that all Feynman graviton loops containing at least one
vertex function F are ultraviolet finite. As a consequence we have

F 2(�(x)/Λ2
G

)
δ(�x) = e∇2/Λ2

G δ(�x)
= 1

(2π)3

∫
d3 p e−p2/Λ2

G ei�x·�p . (13)

By calculating the above integral, one gets

ρΛG (�x) = M

(
1

2

√
Λ2

G

π

)3

e−�x2Λ2
G/4. (14)

We notice that the generalized matter energy density profile is
a Gaussian whose width is 1/ΛG . This means that for energies
smaller than ΛG the function ρΛG (�x) approaches the Dirac delta
distribution δ(�x). This is equivalent to say that the function m(r)
becomes the total mass M in Newtonian gravity, since we are
probing the system at asymptotic length scales where the UV com-
plete quantum gravity is nothing but Einstein gravity. The final step
is to obtain the mass function of the matter. From (10) one finds

m(r) = M

[
1 − Γ (3/2; r2Λ2

G/4)

Γ (3/2)

]
, (15)

where

Γ
(
3/2; r2Λ2

G/4
) =

∞∫
r2Λ2

G /4

dt t1/2 e−t (16)

and Γ (3/2) = √
π/2 is Euler’s gamma function. By expanding (15)

for r � 1/ΛG we have

m(r) ≈ M

[
1 − ΛG√

π
r e−r2Λ2

G/4
]
, (17)

which matches the required value M up to exponentially sup-
pressed corrections. Such corrections are important since the UV
complete quantum gravity can lead to experimentally testable de-
viations from Newton’s law [7]

φN(r) = G N
M

r

[
1 − ΛG√

π
r e−r2Λ2

G /4
]
. (18)

On the other hand we can observe the UV completeness of the
theory at work in the high energy regime. Indeed, if we expand
(15) for r 
 1/ΛG we get

m(r) ≈ 1

6

M√
π

r3Λ3
G . (19)

At this point we can substitute this value into (9) to get

ds2 ≈ −
(

1 − 1

3
Λeffr

2
)

dt2 + dr2

(1 − 1
3 Λeffr2)

+ r2Ω2. (20)

This is a de Sitter line element whose effective cosmological con-
stant Λeff = MG NΛ3

G/
√

π , accounts for the “vacuum energy” of
the “field” gμν . In other words we show that in the UV complete
quantum gravity the gravitational field acquires a repulsive char-
acter as far as one probes the seething fabric of spacetime. Again
we can say that the intrinsic nonlocality of the action (2) is able to
tame the curvature singularity of the Schwarzschild solution (see
Fig. 1). By calculating curvature tensors at the origin one finds that
they are finite. For instance, the Ricci scalar reads

R(0) = 4MG NΛ3
G√

π
. (21)

To get more insights about the nature of the generalized mat-
ter that generates the above regular geometry, it is worthwhile
to analyse the energy conditions. First one has to determine the
nonvanishing pressure terms coming from the conservation of the
stress tensor Sμν . For instance, the strong energy condition reads

ρΛG + pr + 2p⊥ ∼ e−r2Λ2
G /4

(
r2Λ2

G

2
− 2

)
� 0, (22)

where pr is the radial pressure and p⊥ is the angular one. From
Fig. 2 we can see that in the vicinity of the origin the matter has
an exotic character, i.e., strong, dominant and weak energy condi-
tions are violated.

At this point we could proceed further by studying the horizon
equation, the thermodynamic properties and the global structure
of the solution. However, we prefer to stop here, since the line
element we have found
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Fig. 1. The solution admits one, two or no horizons depending on M . In the case
of two horizons, f (r±) = 0, the Penrose diagram resembles the Reissner–Nordström
geometry, except for the origin where a regular de Sitter core lies in place of the
curvature singularity.

f (r) = 1 − 2G N M

r

γ (3/2; r2Λ2
G/4)

Γ (3/2)
(23)

is nothing but the noncommutative geometry inspired Schwarz-
schild black hole [8], where γ (3/2; x) = Γ (3/2)−Γ (3/2; x). In this
scenario the noncommutative geometry induced minimal length√

θ is nothing but 1/ΛG . The above metric was derived by one
of us and his coworkers Smailagic, Spallucci after a long path. At
the time there were already several attempts of incorporating non-
commutative effects in black hole physics. All such attempts were
based on expansions of the �-product among vielbein fields enter-
ing gravity Lagrangians [2]. The problem is that any truncation at a
desired order in the noncommutative parameter basically destroys
the non-locality encoded in the �-product and gives rise to a lo-
cal theory, plagued by spurious momentum-dependent terms. As a
result, in spite of the mathematical exactitude, all the proposed
corrections coming from this kind of approach failed in curing
the bad short distance behavior of black hole solutions in Einstein
gravity [9]. Against this background, the noncommutative geome-
try inspired Schwarzschild solution was derived in an effective way.
Fig. 2. The dashed curve is the function (ρΛG + pr +2p⊥)/Λ4
G vs rΛG (strong energy

condition); the solid curve is (ρΛG − |p⊥|)/Λ4
G (dominant energy condition); the

dotted curve is (ρΛG + p⊥)/Λ4
G (weak energy condition). In a region within r =

6/ΛG all conditions are violated.

Instead of embarking on the interesting but difficult problem of
formulating a computationally viable noncommutative gravity, it is
worthwhile to study the average effect of manifold noncommuta-
tive fluctuations on point like sources. In a series of papers based
on the use of coordinate coherent states [10–13] (and recently con-
firmed by means of another approach based on Voros products
[14]), it has been shown that the mean position of a pointlike ob-
ject in noncommutative geometry is no longer governed by a Dirac
delta function, but by a Gaussian distribution.

As a second step toward the solution (23), it has been shown
that primary corrections to any field equation in the presence of a
noncommutative smearing can be obtained by replacing the source
term (matter sector) with a Gaussian distribution, while keeping
formally unchanged differential operators (geometry sector) [15].
In the specific case of the gravity field equations this is equiva-
lent to saying that the only modification occurs at the level of the
energy–momentum tensor, while Gμν is formally left unchanged.
In this spirit further solutions have been derived corresponding to
the case of dirty [16], charged [17], spinning [18] black holes (for
a review see [19]).

Another important feature concerns the new thermodynamics
of these black holes. Indeed, even for the neutral solution, the
Hawking temperature reaches a maximum before running a posi-
tive heat capacity, cooling down phase towards a zero temperature
remnant configuration [20]. As a consequence, according to this
scenario quantum back reaction is strongly suppressed in contrast
to conventional limits of validity of the semiclassical approxima-
tion in the terminal phase of the evaporation. Furthermore the
higher-dimensional solutions [21,22], due to their attractive prop-
erties have been recently taken into account in Monte Carlo sim-
ulations as reliable candidate models to describe the conjectured
production of microscopic black holes in particle accelerators [23].

Let us consider further our solution and the relation between
UV complete quantum gravity and noncommutative geometry.
First, the form of Eq. (3) tells us that we are working in the
framework of UV complete quantum gravity [1]. Indeed, the matter
sector is unchanged, while nonlocal modifications enter the geom-
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etry. The dual theory is governed by equation (4), that is based
on a generalized matter energy–momentum tensor, keeping the
Einstein tensor in the canonical form. It is now clear that the
exotic nature of matter is nothing but a “seething” noncommu-
tative character of the source term. More specifically, the duality
between the two descriptions holds also at the level of the specific
choice of the operator F . Indeed, the natural choice (12), i.e., the
simplest form within the class of entire functions, corresponds to
the case of primary noncommutative geometry corrections to the
manifold, as often advocated in [10–13]. The virtue of these pri-
mary corrections is that they are not the result of a truncation in
a perturbative expansion, but are intrinsically nonlocal. The nat-
ural duality link between the UV complete quantum gravity and
the Einstein field equations with a generalized energy–momentum
tensor sheds light on the interpretation of this key point.
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