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1. Introduction

The precise measurement of the transverse momentum spectrum of charged particles produced in proton collisions in the energy range
of the Large Hadron Collider (LHC) [1] offers unique information about soft and hard interactions. Perturbative Quantum Chromodynamics
(pQCD) is a framework for the quantitative description of parton-parton interactions at large momentum transfers, i.e. hard scattering
processes. However, a significant fraction of the particles produced in pp collisions do not originate from hard interactions, even at
LHC energies. In contrast to hard processes, the description of particle production in soft interactions is not well-established within
QCD. Current models of hadron-hadron collisions at high energies, such as the event generators PYTHIA [2] and PHOJET [3], combine
perturbative QCD for the description of hard parton interactions with phenomenological approaches to model the soft component of the
produced particle spectrum. Data on charged particle production in hadron-hadron collisions will have to be used to tune these models
before they can provide a detailed description of the existing measurements and predictions for particle production characteristics in pp
collisions at the highest LHC energies. These data include the measurement of multiplicity, pseudorapidity (7) and transverse momentum
(pr) distributions of charged particles and correlations, such as the dependence of the average transverse momentum, (pr), on the charged
particle multiplicity.

The charged particle pseudorapidity densities and multiplicity distributions in pp collisions at /s = 0.9, 2.36 and 7 TeV were pre-
sented in recent publications by the ALICE Collaboration [4-6]. In this Letter, we present a measurement in pp collisions at /s = 900 GeV
of the transverse momentum spectrum of primary charged particles and the correlation between (pr) and the charged particle multi-
plicity. Primary particles include particles produced in the collision or their decay products, except those from weak decays of strange
hadrons. The measurement is performed in the central rapidity region (|| < 0.8) and covers a pr range 0.15 < pr < 10 GeV/c, where
both hard and soft processes are expected to contribute to particle production. The data from the ALICE experiment presented in
this Letter serve as a baseline for future studies of pp collisions at higher LHC energies and particle production in heavy-ion colli-
sions [7].

* © CERN, for the benefit of the ALICE Collaboration.
** Date submitted: 2010-07-06 T09:12:58.

0370-2693 2010 Published by Elsevier B.V. Open access under CC BY-NC-ND license.
doi:10.1016/j.physletb.2010.08.026


http://dx.doi.org/10.1016/j.physletb.2010.08.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://dx.doi.org/10.1016/j.physletb.2010.08.026
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

54 ALICE Collaboration / Physics Letters B 693 (2010) 53-68
2. Experiment and data collection

The data were collected with the ALICE detector [8] during the startup phase of the LHC in December 2009. The ALICE detector,
designed to cope with high track densities in heavy-ion collisions, provides excellent track reconstruction and particle identification capa-
bilities. This also makes the detector well-suited to detailed studies of global characteristics of pp interactions [7].

In this analysis of the first pp collisions at /s =900 GeV, charged particle tracking and momentum reconstruction are based on data
recorded with the Time Projection Chamber (TPC) and the Inner Tracking System (ITS), both located in the central barrel of ALICE. The
detectors in the central barrel are operated inside a large solenoidal magnet providing a uniform 0.5 T field.

The ALICE TPC [9] is a large cylindrical drift detector with a central high voltage membrane maintained at —100 kV and two readout
planes at the end-caps. The active volume is limited to 85 < r <247 cm and —250 < z < 250 cm in the radial and longitudinal directions
respectively. The material budget between the interaction point and the active volume of the TPC corresponds to 11% of a radiation
length, averaged in || < 0.8. The central membrane at z =0 divides the nearly 90 m? active volume into two halves. The homogeneous
drift field of 400 V/cm in the Ne-CO,-N; (85.7%-9.5%-4.8%) gas mixture leads to a maximum drift time of 94 ps. lonization electrons
produced by charged particles traversing the TPC drift towards the readout end-caps composed of 72 multi-wire proportional chambers
with cathode pad readout. The typical gas gain is 10%. Signals induced on the segmented cathode planes, comprising a total of 558k
readout pads, are transformed into differential semi-Gaussian signals by a charge-sensitive shaping amplifier (PASA). This is followed by
the ALICE TPC ReadOut (ALTRO) chip, which employs a 10 bit ADC at 10 MHz sampling rate and four digital filtering circuits. These filters
also perform tail cancellation and baseline restoration. They are optimized for precise position and dE/dx measurements in the high track
density environment of heavy-ion collisions. To ensure optimal drift and charge transport properties, the TPC was operated with an overall
temperature uniformity of AT ~ 60 mK (r.m.s.). The oxygen contamination was less than 5 ppm.

The ITS is composed of high resolution silicon tracking detectors, arranged in six cylindrical layers at radial distances to the beam line
from 3.9 to 43 cm. Three different technologies are employed.

For the two innermost layers Silicon Pixel Detectors (SPD) are used, covering the pseudorapidity ranges |n| <2 and |n| < 1.4, respec-
tively. A total of 9.8 million 50 x 425 pm? pixels enable the reconstruction of the primary event vertex and the track impact parameters
with high precision. The SPD was also included in the trigger scheme for data collection.

The SPD is followed by two Silicon Drift Detector (SDD) layers with a total of 133k readout channels, sampling the drift time informa-
tion at a frequency of 20 MHz. The SDD are operated with a drift field of 500 V/cm, resulting in a drift speed of about 6.5 pm/ns and in
a maximum drift time of about 5.3 ys.

The two outermost Silicon Strip Detector (SSD) layers consist of double-sided silicon micro-strip sensors with 95 pum pitch, comprising
a total of 2.6 million readout channels. Strips of the two sensor sides form a stereo angle of 35 mrad, providing two-dimensional hit
reconstruction.

The design spatial resolutions of the ITS sub-detectors (or¢ x 0;) are: 12 x 100 pm? for SPD, 35 x 25 pm? for SDD, and 20 x 830 pm?
for SSD. The SPD and SSD detectors were aligned using survey measurements, cosmic muon data [10] and collision data to an estimated
accuracy of 10 pm for the SPD and 15 pm for the SSD. No alignment corrections are applied to the positions of the SDD modules, for
which calibration and alignment are in progress. The estimated misalignment of the SDD modules is about 100 pm. The TPC and ITS
are aligned relative to each other to the level of a few hundred micrometers using cosmic-ray and pp data by comparing pairs of track
segments independently reconstructed in the two detectors.

The two forward scintillator hodoscopes (VZERO) are included in the trigger. Each detector is segmented into 32 scintillator counters
which are arranged in four rings around the beam pipe. They are located at distances z=3.3 m and z= —0.9 m from the nominal
interaction point and cover the pseudorapidity ranges: 2.8 <n < 5.1 and —3.7 < n < —1.7 respectively. The time resolution of about 1 ns
of the VZERO hodoscope also allows for a discrimination against beam-gas interactions.

During the startup phase of the LHC in 2009, four proton bunches per beam were circulating in the LHC with two pairs of bunches
crossing at the ALICE intersection region and protons colliding at /s = 900 GeV. The detector readout was triggered using the LHC
bunch-crossing signals in coincidence with signals from the two upstream beam pick-up counters and a minimume-bias interaction trigger
requiring a signal in at least one of the SPD pixels or one of the VZERO counters [4,5]. Events with only one bunch or no bunches passing
through ALICE were also recorded to study beam related and random background.

3. Data analysis

The total inelastic pp cross section is commonly subdivided into contributions from diffractive and non-diffractive processes. To facili-
tate comparison with existing measurements, we perform our analysis for two classes of events: inelastic (INEL) and non-single-diffractive
(NSD) pp collisions.

In this analysis, 3.44 x 10° triggered pp events at /s = 900 GeV are analyzed. To remove beam related background events, an offline
event selection based on the VZERO timing signal and the correlation between the number of hits and tracklets in the SPD is applied as
in [5], reducing the sample to 2.67 x 10> events. This event selection is referred to as MBog [5].

For the INEL analysis we use the event sample selected with the MBgr condition. A subset of these events (2.15 x 10°) is used for
the NSD analysis, selected offline by requiring a coincidence between the two VZERO detectors (the MBanp selection). This condition
suppresses a significant fraction of the single-diffractive events and hence reduces the systematic errors related to model dependent
corrections [5].

The fractions of the different process types contributing to the selected event samples are estimated by a Monte Carlo simulation,
implementing a description of the ALICE detector response [11] to pp collisions at /s =900 GeV from the PYTHIA event generator
version 6.4.21 tune D6T (109) [12]. The process fractions of single-diffractive (SD) and double-diffractive (DD) events are scaled in Monte
Carlo to match the cross sections in pp at /s =900 GeV measured by UA5 [13]. The selection efficiency for INEL events using MBor and
NSD events using MBanp is approximately 96% and 93%, respectively [5].
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Charged particle tracks are reconstructed using information from the TPC and ITS detector systems. Signals on adjacent pads in the TPC
are connected to particle tracks by employing a Kalman filter algorithm. The TPC tracks are extrapolated to the ITS and matching hits in
the ITS detector layers are assigned to the track. In order to maximize the hit matching efficiency and avoid possible biases of the track
parameters due to the non-uniform degree of alignment of the ITS sub-detectors, the space point uncertainties of the ITS hits are set to
100 pm for SPD and 1 mm for both SDD and SSD.

The event vertex is reconstructed using the combined track information from TPC and ITS. The tracks are extrapolated to the intersec-
tion region and the position of the event vertex is fitted, using the measured average intersection profile as a constraint. The profile of the
intersection region is determined on a run-by-run basis in a first pass through the data using the mean and the spread of the distribution
of the reconstructed vertices. The event vertex distribution is found to be Gaussian with standard deviations of approximately 210 pm,
250 pm, and 4.1 cm, along x, y (transverse to the beam-axis) and z respectively. For events where only one track is found, the vertex is
determined from the point of closest approach of the track to the beam axis. If no track is found in the TPC, the event vertex reconstruc-
tion is based on tracklets built by associating pairs of hits of the two innermost ITS layers (SPD). An event with a reconstructed vertex
position z, is accepted if |z, — zg| < 10 cm, corresponding to about 2.5 standard deviations of the reconstructed event vertex distribution
centered at zg [5].

The vertex position resolution depends on the event multiplicity. It can be parametrized as 540 pm/(Nspp in x and y, and
550 pm/(Nspp)®® in z, where Nspp corresponds to the number of SPD tracklets. This resolution is consistent with Monte Carlo sim-
ulations. The probability of multiple interactions in the same bunch crossing (pile-up) in the present data set is 10~% and therefore
neglected.

The fraction of selected events in the MBor (MBanp) sample where an event vertex is successfully reconstructed is 80% (92%), resulting
in a sample of 2.13 x 10° INEL (1.98 x 10° NSD) events used in the present analysis. Events, where no vertex is found, are included
when normalizing the results. In order to understand and to subtract possible beam-induced background, the detector was also triggered
on bunches coming from either side of the interaction region, but not colliding with another bunch. From the study of these events
we estimate that 21% of the triggered MBor and MBanp events without a reconstructed event vertex or with zero selected tracks are
background, and the number of events used for normalization of the final results is corrected accordingly. The estimated contribution
from beam-induced background events to the event sample, where a vertex was found, is negligible. From the analysis of empty bunch
crossing events the random contribution from cosmics and noise triggers is also found to be negligible.

To study the transverse momentum spectrum, charged particle tracks are selected in the pseudorapidity range || < 0.8. In this range,
tracks in the TPC can be reconstructed with maximal length, and there are minimal efficiency losses due to detector boundaries. Additional
quality requirements are applied to ensure high tracking resolution and low secondary and fake track contamination. A track is accepted if
it has at least 70 out of the maximum of 159 space points in the TPC, and the x?2 per space point used for the momentum fit is less than 4.
Additionally, at least two hits in the ITS must be associated with the track, and at least one has to be in either of the two innermost layers,
i.e,, in the SPD. The average number of associated hits per track in the six ITS layers is 4.7, mainly determined by the fraction of inactive
channels, and is well reproduced in Monte Carlo simulations. Tracks with pr < 0.15 GeV/c are excluded because their reconstruction
efficiency drops below 50%. Tracks are also rejected as not associated to the primary vertex if their distance of closest approach to the
reconstructed event vertex in the plane perpendicular to the beam axis, dg, satisfies dgp > 0.35 mm + 0.42 mm x p;o‘g, with pr in GeV/c.
This cut corresponds to about seven standard deviations of the pr dependent transverse impact parameter resolution for primary tracks
passing the above selection. It is tuned to select primary charged particles with high efficiency and to minimize the contributions from
weak decays, conversions and secondary hadronic interactions in the detector material. The accepted number of charged particles per
event which fulfill these conditions is called nycc.

With this selection, the reconstruction efficiency for primary charged particles and the remaining contamination from secondaries as a
function of pr are estimated by Monte Carlo simulation using PYTHIA, combined with detector simulation and event reconstruction. The
procedure estimates losses due to tracking inefficiency, charged particles escaping detection due to weak decay, absorption and secondary
interaction in the detector. The inefficiencies of the event selection and of the event vertex reconstruction are accounted for. The latter two
affect mostly low-multiplicity events, which imposes a bias on the uncorrected pr spectrum due to the correlation between multiplicity
and average momentum.

The primary charged particle track reconstruction efficiency in the region |n| < 0.8 reaches 75% at pr ~ 1 GeV/c, as shown in Fig. 1. The
slight decrease of efficiency observed for pr > 1.5 GeV/c is a consequence of the projective segmentation of the readout plane in azimuth,
causing stiff tracks to remain undetected if they fall between two adjacent TPC readout sectors. For pr < 0.6 GeV/c, the reconstruction
efficiency decreases and reaches 50% at 0.15 GeV/c. The losses at low pr are mainly due to energy loss in the detector material and to
the track bending in the magnetic field. No significant dependence of the track reconstruction efficiency on the track density is observed
in simulations for charged particle multiplicities relevant for this analysis. The contamination from secondary particles such as charged
particles from weak decays, electrons from photon conversions, and products from secondary interactions in the detector material is also
shown in Fig. 1. It has a maximum of 9% at the lowest pr and drops below 3% for pr > 1 GeV/c. A comparison of the dy distributions of
data and Monte Carlo tracks indicates that the Monte Carlo simulation using PYTHIA underestimates the particle yield from secondaries
by 0-50%, depending on pr. This is consistent with the fact that PYTHIA underestimates the strangeness yield by a similar amount, when
compared to previous results in pp and pp collisions [14,15]. For the final corrections to the data we scale accordingly the contamination
level obtained with PYTHIA, resulting in an additional 0-1.5% decrease of the primary particle yields. The uncertainty in the strangeness
yield is taken into account in the evaluation of the overall systematic uncertainties, as discussed below.

The reconstruction efficiency and contamination are converted to pr dependent correction factors used to correct the raw pr spectrum.
We note that efficiency and secondary contamination are slightly different for positively and negatively charged particles, mainly due to
the larger absorption of negatively charged particles and isospin effects in secondary interactions.

The charged particle transverse momenta are measured in the TPC, taking into account energy loss based on the PID hypothesis
from TPC dE/dx and the material budget in front of the TPC. The material budget is studied via the measurement of electron-positron
pairs in the TPC from photon conversions. The radial distribution of the reconstructed photon conversion points is compared to Monte
Carlo simulations. The sum of all positive and negative deviations is +4.7% and —7.2%, respectively. The remaining material budget
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Fig. 1. Charged-particle track reconstruction efficiency for primary particles (top) and contamination from secondary particles (bottom), for positively and negatively charged
particles in |n| < 0.8 as a function of pr. The tracking efficiency is normalized to the number of generated primary particles using PYTHIA. The contamination from secondary
tracks was scaled in Monte Carlo to match the measured dy distributions (see text).

uncertainty enters into the final systematic uncertainties. In this analysis, we use the measurement of the momentum at the event
vertex.

At the present level of calibration, the transverse momentum resolution achieved in the TPC is given by (o (pr)/pr1)% = (0.01)% +
(0.007 - p1)2, with pr in GeV/c. The transverse momentum resolution for pr > 1 GeV/c is measured in cosmic muon events by comparing
the muon momenta reconstructed in the upper and lower halves of the TPC. For pr < 1 GeV/c, the Monte Carlo estimate of o (pr)/pr ~ 1%
is cross-checked using the measured I(? invariant mass distribution. A Monte Carlo based correction is applied to the pr spectra to account
for the finite momentum resolution. The correction increases with pr and reaches 1.2% at 10 GeV/c.

The calibration of the absolute momentum scale is verified employing the invariant mass spectra of A, A, K? and ¢. The reconstructed
peak positions agree with their PDG values within 0.3 MeV/c2. As a cross-check, the q/pr distributions of particles with charge q in data
and Monte Carlo simulation are compared and the symmetry of the minimum around q/pr = 0 is studied. Based on these studies, we
estimate an upper limit on the systematic uncertainty of the momentum scale of |[A(pr)/pr| < 0.003. Within the pr reach of this study,
the effect of the momentum scale uncertainty on the final spectra is found to be negligible.

For the normalization of the transverse momentum spectra to the number of events, multiplicity dependent correction factors are
derived from the event selection and vertex reconstruction efficiencies for INEL and NSD events, evaluated with the PYTHIA Monte Carlo
event generator.

The fully corrected pr spectra are fitted by the modified Hagedorn function [16]

1 dN -b
d cho(p_r<1+p_r> _ )
2mpr dndpr  mr PT.0

For the transverse mass mr = ,/m2 +p%, the pion mass is assumed for all tracks. At small pr, the term (1 + %)—b behaves like an

exponential in pr with inverse slope parameter pr o/b. This provides a good description of the soft part of the speétrum, allowing for an
extrapolation of the measured data to pr = 0. To assess the tail of the spectrum at pr > 3 GeV/c, a power law fit is performed

1 d®Ng
2w pr dndpr

xpr", (2)

yielding a very good description of the hard part of the spectrum characterized by the power n.

The calculation of (pr) in all INEL and NSD events is performed using the weighted average over the measured points in the range
0.15 < pr < 10 GeV/c combined with the result of the Hagedorn fit to extrapolate to pr = 0.

In order to analyze the behaviour of (pr) as function of multiplicity, the INEL data sample is subdivided into bins of n... The results
for (pr) are presented calculating the weighted average over two different pr ranges, 0.15 < pr <4 GeV/c and 0.5 < pr <4 GeV/c. In
addition, results are presented employing the extrapolation to pr =0 as described above.

To extract the correlation between (pr) and the number of primary charged particles (ns) in [n] < 0.8, the following weighting
procedure is applied to account for the experimental resolution of the measured event multiplicities:

(PT) () = D (1) (Nacc) R (e Mace).- (3)

Nacc
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Table 1
Contributions to the systematic uncertainties on the differential primary charged particle yields 1/Ney1/(27 pr) d®Ney/(dndpr) and the average transverse momentum (pr).
Ranges are given if the contributions are pr dependent.

1 1 d*Ng

pr range (GeV/c) R g A (pr)
0.15-10 0.5-4 0.15-4 0-4 (extrap.)

Track selection cuts 0.2-4% negl. 0.3% 0.5%
Contribution of diffraction (INEL) 0.9-1% negl. negl. negl.
Contribution of diffraction (NSD) 2.8-3.9% - - -
Event generator dependence (INEL) 2.5% negl. negl. negl.
Event generator dependence (NSD) 0.5% - - -
Particle composition 1-2% 0.1% negl. 0.1%
Secondary particle rejection 0.2-1.5% negl. 0.1% 0.2%
Detector misalignment negl. negl. negl. negl.
ITS efficiency 0-1.6% negl. 0.3% 0.5%
TPC efficiency 0.8-4.5% negl. 0.5% 0.7%
SPD triggering efficiency negl. negl. negl. negl.
VZERO triggering efficiency (INEL) negl. negl. negl. negl.
VZERO triggering efficiency (NSD) 0.2% - - -
Beam-gas events negl. negl. negl. negl.
Pile-up events negl. negl. negl. negl.
Total (INEL) 3.0-7.1% 0.1% 0.7% 1.0%
Total (NSD) 3.5-7.2% - - -

R weighting procedure 3.0% 3.0% 3.0%
Extrapolation to pr =0 - - 1.0%
Total 3.0% 31% 3.3%

This method employs the normalized response matrix R(ng, nacc) from Monte Carlo simulations which contains the probability that
an event with multiplicity n, is reconstructed with multiplicity nac.. The results from this approach are consistent with an alternative
Monte Carlo based procedure, where an average multiplicity (nq,) is assigned to every measured multiplicity nacc.

4. Systematic uncertainties

In order to estimate the systematic uncertainties of the final pr spectra, the results of the data analysis and of the evaluation of the
corrections from Monte Carlo simulations are checked for stability under varying cuts and Monte Carlo assumptions, within reasonable
limits. In particular we studied a variation of the ratios of the most abundant primary charged particles (p, 7, K) by +30% with respect
to their PYTHIA values, the relative fractions of diffractive processes corresponding to their experimental errors [5,13], the TPC readout
chamber alignment (+100 pm), and track and event quality cuts in the analysis procedure. Particular attention was paid to the rejection
efficiency of secondary particles using the dg cut. The stability of the results under variation of the dy cut value (+3 standard deviations
with respect to the nominal value), the secondary yield from strange hadron decays (+30%) and the material budget (+10%) was studied
and the systematic uncertainty is estimated accordingly. Systematic uncertainties of the ITS and TPC detector efficiencies are estimated by
a comparison of the experimental ITS-TPC track matching efficiency with the Monte Carlo one. The systematic uncertainty of the VZERO
triggering efficiency is studied by varying the calibration and threshold settings in the data and in the Monte Carlo simulation. The event
generator dependence is determined from a comparison of the PYTHIA results with those obtained using PHOJET. The total systematic
uncertainty on the pr spectra derived from this study is 3.0-7.1% for INEL events and 3.5-7.2% for NSD events, in the pr range from
0.2-10 GeV/c (see Table 1).

Also listed in Table 1 are the systematic errors in (pr) arising from these contributions. We note that only pr dependent errors on the
pr spectra contribute to the systematic error in (pr). Additional systematic uncertainties in (pr) arise from the specific choice of the fit
function used for the pr = 0 extrapolation, and the weighting procedure which is employed to derive (pr) as function of n,. To estimate
the uncertainty in the extrapolation to pr = 0 the results are compared to those obtained from a fit of the Tsallis function [17], or by
fitting the spectral shape predicted by PYTHIA and PHOJET to our low pr data points. Based on this comparison a systematic error of 1%
in (pr) is assigned to the pr = 0 extrapolation. The weighting procedure (Eq. (3)) was studied using PYTHIA and PHOJET simulations. For
both models, the true (pr) dependence on ng, from Monte Carlo can be recovered within 3% from the reconstructed dependence of (pr)
on nyee using (3). No significant multiplicity dependence of the systematic errors on (pr) is observed. The total systematic uncertainties
on (pr) are listed in Table 1.

5. Results and discussion

The normalized differential yield in INEL pp collisions at /s =900 GeV and the fit with the parametrization given in Eq. (1) are
shown in Fig. 2. The modified Hagedorn fit provides a good description of the data for pr <4 GeV/c. The fit parameters for INEL events
are pr,o = 1.05+£ 0.01 (stat.) £ 0.05 (syst.) GeV/c and b =7.92 £ 0.03 (stat.) £ 0.02 (syst.). The average transverse momentum including
the extrapolation to pr =0 is (pr)ineL = 0.483 £0.001 (stat.) £ 0.007 (syst.) GeV/c. For NSD events we obtain pr o =1.0540.01 (stat.)+
0.05 (syst.) GeV/c, b=7.84£0.03 (stat.)£0.02 (syst.) and (pr)nsp = 0.489+0.001 (stat.)££0.007 (syst.) GeV/c. Restriction of the modified
Hagedorn fit to pr <4 GeV/c has a negligible effect on these results. Fig. 2 also shows the result of a power law fit (Eq. (2)) to the INEL
data for pr > 3 GeV/c. The power law fit provides a significantly better description of the high pr tail of the spectrum than the modified
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Fig. 2. Normalized differential primary charged particle yield in INEL pp collisions at /s = 900 GeV, averaged in || < 0.8. The fit ranges are 0.15 < pr < 10 GeV/c for the
modified Hagedorn function (Eq. (1)) and 3 < pr < 10 GeV/c for the power law (Eq. (2)). In the lower panels, the ratios fit over data are shown. The open symbols indicate
here data points which are not included in the fit. Errors bars are statistical only. Indicated as shaded areas are the relative systematic data errors.

Hagedorn parametrization. The result of the power law fit is n = 6.63 4+ 0.12 (stat.) & 0.01 (syst.) for both INEL and NSD events. The
power law shape of the high pr part of the spectrum is suggestive of pQCD. Estimates of differential cross sections can be obtained
using the cross sections derived from the measurement by UA5 [13] in pp at /s =900 GeV, ongL = 50.3 & 0.4 (stat.) & 1 (syst.) mb and
OoNsp = 42.6 1.4 mb (see also [18]).

The transverse momentum distribution for NSD events is shown in Fig. 3 (left panel) together with data recently published by AT-
LAS [19] and CMS [20], measured in larger pseudorapidity intervals. Below pr =1 GeV/c the data agree. At higher pr the data are slightly
above the other two LHC measurements. The observation of a harder spectrum is related to the different pseudorapidity windows (see
below).

In the right panel of Fig. 3, the normalized invariant yield in NSD events is compared to measurements of the UA1 Collaboration in pp
at the same energy [21], scaled by their measured NSD cross section of 43.5 mb. As in the previous comparison to ATLAS and CMS, the
higher yield at large pr may be related to the different pseudorapidity acceptances. The excess of the UA1 data of about 20% at low pr is
possibly due to the UA1 trigger condition, which suppresses events with very low multiplicity, as pointed out in [19].

The results for (pr) in INEL and NSD events are compared to other experiments [20-25] in Fig. 4. Our results are somewhat higher than
previous measurements in pp and pp at the same energy, but in larger pseudorapidity windows. This is consistent with the comparison
of the spectra in Fig. 3. A similar trend exhibiting a larger (pr) in a smaller pseudorapidity interval around mid-rapidity is apparent in
Fig. 4 at Tevatron energies.

Indeed, a decrease of (pr) by about 2% is found between || < 0.2 and 0.6 < |n| < 0.8 in a pseudorapidity dependent analysis of
the present data. A consistent decrease of (pr) is also observed in the CMS data, when pseudorapidity is increased [20,26]. Likewise,
a decrease of (pr) by about 5% between |7| < 0.8 and |5| < 2.5 is found at /s =900 GeV in PYTHIA.

Charged particle transverse momentum distributions can be used to tune Monte Carlo event generators of hadron-hadron interactions,
such as PYTHIA and PHOJET. Recently, PYTHIA was tuned to describe the energy dependence of existing measurements, e.g. with respect
to the treatment of multiple parton interactions and divergencies of the 2 — 2 parton scattering cross section at small momentum
transfers.

In Fig. 5, the results for INEL events are compared to PHOJET and different tunes of PYTHIA, D6T (tune 109) [12], PerugiaO (tune 320)
[27] and ATLAS-CSC (tune 306) [28]. The best agreement is found with the PerugiaO tune, which gives a fair description of the spectral
shape, but is approximately 20% below the data. The D6T tune is similar to PerugiaO below 2 GeV/c but underestimates the data more
significantly at high pr. PHOJET and the PYTHIA ATLAS-CSC tune fail to reproduce the spectral shape of the data. They overestimate the
yield below 0.7 GeV/c and fall short of the data at high pr. We note that PHOJET and ATLAS-CSC agree best with the charged particle
multiplicity distributions at /s = 0.9, 2.36 and 7 TeV, respectively [5,6].
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Fig. 6 shows the pr spectra in INEL events for three different multiplicity selections (n,.c) along with fits to the modified Hagedorn
function (Eq. (1)). A considerable flattening of the tails of the spectra is visible with increasing multiplicity. The fit parameters pr ¢ and
b drop by more than 50% from the lowest to the highest multiplicities. The results for the fit parameters in bins of n. are listed in
Table 2, along with the average multiplicity (nq,) assigned to each n,. as determined from Monte Carlo simulations.
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Table 2

Parameters of the modified Hagedorn fits (Eq. (1)) to the transverse momentum spectra. The fit range in pr is 0.15-10 GeV/c for the mul-
tiplicity integrated spectra (first two rows) and 0.15-4 GeV/c for the spectra binned in multiplicity. The errors are statistical and systematic
added in quadrature. Also given are the average multiplicities (n.,) of events contributing to the nac bins, as determined from Monte Carlo.

Event class Nacc (Nch) pr,0 (GeV/c) b

INEL all 1.05+0.05 7.924+0.04
NSD all 1.05+0.05 7.84+0.04
INEL 1 21+0.1 2.64+0.29 16.50 +£1.32
INEL 2 3.5+0.1 1.86 £0.15 12.58 £ 0.69
INEL 3 48+0.1 1.49+0.11 10.56 £+ 0.45
INEL 4 6.1+0.1 1.26 £0.08 9.28+0.34
INEL 5 7.4+0.1 1.16 £0.07 8.60+0.28
INEL 6 8.7+0.1 1.04 £+ 0.06 7.87+£0.24
INEL 7 10.0+£0.2 1.01+£0.07 7.60 +0.23
INEL 8 11.3+0.2 0.95 £+ 0.05 7.27+0.21
INEL 9 12.6 £0.2 0.97 +£0.06 7.28+0.22
INEL 10 13.9+0.3 0.90 +0.06 6.87+£0.21
INEL 11 15.1+£0.3 0.91+0.06 6.82+0.21
INEL 12 16.4+0.3 0.90 + 0.06 6.80 £ 0.22
INEL 13 17.7+0.4 0.91+0.06 6.74+0.23
INEL 14 18.9+0.5 0.89 + 0.06 6.65 +0.24
INEL 15 20.1+0.5 0.96 +0.07 6.88 +0.27
INEL 16 21.34+0.6 0.79 +0.06 6.144+0.23
INEL 17 22.5+0.5 0.92 +0.08 6.64 +0.30
INEL 18 23.7+0.6 0.84+0.08 6.29+0.29
INEL 19 24.9+0.7 0.80 +0.09 6.06 +0.31
INEL 20-21 26.6 +0.7 0.79+0.09 6.03+0.31
INEL 22-24 29.4+0.8 0.78 +0.09 5.89+0.32
INEL 25-27 33.0+1.1 0.54+0.10 5.02 4+ 0.40
INEL 28-45 37.1+1.5 0.59+0.16 5.42+0.67

Also shown in Fig. 6 are ratios of pr spectra in different multiplicity regions over the inclusive pr spectrum in INEL events. A very
pronounced multiplicity dependence of the spectral shape is manifest, exhibiting enhanced particle production at high pr in high multi-
plicity events. At pr < 0.8 GeV/c the trend is opposite, albeit with a much weaker multiplicity dependence. The evolution of the spectral
shape with multiplicity may shed light on different particle production mechanisms in pp collisions. A qualitatively similar evolution of
the pr spectra with multiplicity has been seen in pp data at /s =200 GeV [29].
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The average transverse momentum (p7) as a function of the multiplicity of accepted particles (nacc) in INEL pp collisions at /s =
900 GeV is shown in the left panel of Fig. 7. For all three selected pr ranges a significant increase of (pr) with multiplicity is observed.
Most significantly for 0.5 < pr <4 GeV/c, the slope changes at intermediate multiplicities.

In the right panel of Fig. 7 the same data is shown as a function of ng, after application of the weighting procedure (Eq. (3)). In
comparison to model calculations, good agreement with the data for 0.5 < pr <4 GeV/c is found only for the PYTHIA PerugiaO tune
(Fig. 8, left panel). In a wider pseudorapidity interval (|| < 2.5), similar agreement of the data with Perugia0 was reported by ATLAS [19].
For 0.15 < pr <4 GeV/c, Perugia0 and PHOJET are the closest to the data, as shown in the right panel of Fig. 8, however, none of the
models gives a good description of the entire measurements.
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6. Conclusion

A measurement is presented of the primary charged particle transverse momentum spectrum and of the mean transverse momentum
in pp collisions at /s = 900 GeV with the ALICE detector at the LHC. Good agreement with previous results from LHC is found up to
pr =1 GeV/c. At higher pr, the data exhibit a harder momentum spectrum of primary charged particles than other measurements in
pp and pp collisions at the same energy. We argue that this is most likely related to the different pseudorapidity intervals studied. The
average transverse momentum in |7| < 0.8 is (pr)neL = 0.483 £ 0.001 (stat.) & 0.007 (syst.) GeV/c and (pr)nsp = 0.489 £ 0.001 (stat.) +
0.007 (syst.) GeV/c. None of the models and tunes investigated simultaneously describes the pr spectrum and the correlation between
(pr) and ney. In particular in the low pr region, where the bulk of the particles are produced, the models require further tuning. These
measurements will help to improve the phenomenological description of soft QCD processes and the interplay between soft and hard
QCD. The presented data demonstrate the excellent performance of the ALICE detector for momentum measurement and will be used as
a baseline for measurements at higher LHC energies and for comparison with particle production in heavy-ion collisions.
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